

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

Table	of	Contents

Summary
Introduction

Booting

From	bootloader	to	kernel

First	steps	in	the	kernel	setup	code

Video	mode	initialization	and	transition	to	protected	mode

Transition	to	64-bit	mode

Kernel	decompression

Initialization

First	steps	in	the	kernel

Early	interrupts	handler

Last	preparations	before	the	kernel	entry	point

Kernel	entry	point

Continue	architecture-specific	boot-time	initializations

Architecture-specific	initializations,	again...

End	of	the	architecture-specific	initializations,	almost...

Scheduler	initialization

RCU	initialization

End	of	initialization

Interrupts

Introduction

Start	to	dive	into	interrupts

Interrupt	handlers

Initialization	of	non-early	interrupt	gates

Implementation	of	some	exception	handlers

Handling	Non-Maskable	interrupts

Dive	into	external	hardware	interrupts

Initialization	of	external	hardware	interrupts	structures

Softirq,	Tasklets	and	Workqueues

2

1.4.10

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.8

1.8.1

1.8.2

1.8.3

1.9

1.10

1.10.1

1.10.2

1.10.3

1.11

1.11.1

1.11.2

1.11.3

1.12

Last	part

System	calls

Introduction	to	system	calls

How	the	Linux	kernel	handles	a	system	call

vsyscall	and	vDSO

How	the	Linux	kernel	runs	a	program

Timers	and	time	management

Introduction

Clocksource	framework

The	tick	broadcast	framework	and	dyntick

Introduction	to	timers

Clockevents	framework

x86	related	clock	sources

Time	related	system	calls

Synchronization	primitives

Introduction	to	spinlocks

Queued	spinlocks

Semaphores

Mutex

Reader/Writer	semaphores

Memory	management

Memblock

Fixmaps	and	ioremap

kmemcheck

SMP

Concepts

Per-CPU	variables

Cpumasks

The	initcall	mechanism

Data	Structures	in	the	Linux	Kernel

Doubly	linked	list

Radix	tree

Bit	arrays

Theory

3

1.12.1

1.12.2

1.12.3

1.12.4

1.12.5

1.13

1.13.1

1.14

1.14.1

1.14.2

1.14.3

1.14.4

1.14.5

1.15

1.16

Paging

Elf64

Inline	assembly

CPUID

MSR

Initial	ram	disk

initrd

Misc

How	the	kernel	is	compiled

Linkers

Linux	kernel	development

Write	and	Submit	your	first	Linux	kernel	Patch

Data	types	in	the	kernel

Useful	links

Contributors

4

linux-insides
A	book-in-progress	about	the	linux	kernel	and	its	insides.

The	goal	is	simple	-	to	share	my	modest	knowledge	about	the	insides	of	the	linux	kernel
and	help	people	who	are	interested	in	linux	kernel	insides,	and	other	low-level	subject
matter.

Questions/Suggestions:	Feel	free	about	any	questions	or	suggestions	by	pinging	me	at
twitter	@0xAX,	adding	an	issue	or	just	drop	me	an	email.

Support
Support	If	you	like		linux-insides		you	can	support	me	with:

	 	 	 	

On	other	languages
Chinese
Spanish

LICENSE
Licensed	BY-NC-SA	Creative	Commons.

Contributions
Feel	free	to	create	issues	or	pull-requests	if	you	have	any	problems.

Please	read	CONTRIBUTING.md	before	pushing	any	changes.

Introduction

5

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
mailto:anotherworldofworld@gmail.com
https://flattr.com/submit/auto?user_id=0xAX&url=https://github.com/0xAX/linux-insides/&title=linux-insed
https://gratipay.com/~0xAX/
https://www.coinbase.com/checkouts/0bfa452a41cf52c0b3f99500b4f31685
https://gumroad.com/l/gitbook_54c9232c1db1670300055523?wanted=true
https://gitter.im/0xAX/linux-insides?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://github.com/MintCN/linux-insides-zh
https://github.com/leolas95/linux-insides
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/0xAX/linux-insides/blob/master/CONTRIBUTING.md

Author
@0xAX

Introduction

6

https://twitter.com/0xAX

Kernel	boot	process
This	chapter	describes	the	linux	kernel	boot	process.	You	will	see	here	a	couple	of	posts
which	describe	the	full	cycle	of	the	kernel	loading	process:

From	the	bootloader	to	kernel	-	describes	all	stages	from	turning	on	the	computer	to
running	the	first	instruction	of	the	kernel;
First	steps	in	the	kernel	setup	code	-	describes	first	steps	in	the	kernel	setup	code.	You
will	see	heap	initialization,	query	of	different	parameters	like	EDD,	IST	and	etc...
Video	mode	initialization	and	transition	to	protected	mode	-	describes	video	mode
initialization	in	the	kernel	setup	code	and	transition	to	protected	mode.
Transition	to	64-bit	mode	-	describes	preparation	for	transition	into	64-bit	mode	and
details	of	transition.
Kernel	Decompression	-	describes	preparation	before	kernel	decompression	and	details
of	direct	decompression.

Booting

7

http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-1.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-4.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html

Kernel	booting	process.	Part	1.

From	the	bootloader	to	the	kernel
If	you	have	read	my	previous	blog	posts,	you	can	see	that	sometime	ago	I	started	to	get
involved	with	low-level	programming.	I	wrote	some	posts	about	x86_64	assembly
programming	for	Linux.	At	the	same	time,	I	started	to	dive	into	the	Linux	source	code.	I	have
a	great	interest	in	understanding	how	low-level	things	work,	how	programs	run	on	my
computer,	how	they	are	located	in	memory,	how	the	kernel	manages	processes	and
memory,	how	the	network	stack	works	at	a	low	level	and	many	many	other	things.	So,	I
decided	to	write	yet	another	series	of	posts	about	the	Linux	kernel	for	x86_64.

Note	that	I'm	not	a	professional	kernel	hacker	and	I	don't	write	code	for	the	kernel	at	work.
It's	just	a	hobby.	I	just	like	low-level	stuff,	and	it	is	interesting	for	me	to	see	how	these	things
work.	So	if	you	notice	anything	confusing,	or	if	you	have	any	questions/remarks,	ping	me	on
twitter	0xAX,	drop	me	an	email	or	just	create	an	issue.	I	appreciate	it.	All	posts	will	also	be
accessible	at	linux-insides	and	if	you	find	something	wrong	with	my	English	or	the	post
content,	feel	free	to	send	a	pull	request.

Note	that	this	isn't	the	official	documentation,	just	learning	and	sharing	knowledge.

Required	knowledge

Understanding	C	code
Understanding	assembly	code	(AT&T	syntax)

Anyway,	if	you	just	start	to	learn	some	tools,	I	will	try	to	explain	some	parts	during	this	and
the	following	posts.	Ok,	simple	introduction	finishes	and	now	we	can	start	to	dive	into	the
kernel	and	low-level	stuff.

All	code	is	actually	for	kernel	-	3.18.	If	there	are	changes,	I	will	update	the	posts	accordingly.

The	Magic	Power	Button,	What	happens	next?
Despite	that	this	is	a	series	of	posts	about	the	Linux	kernel,	we	will	not	start	from	the	kernel
code	(at	least	not	in	this	paragraph).	Ok,	you	press	the	magic	power	button	on	your	laptop	or
desktop	computer	and	it	starts	to	work.	After	the	motherboard	sends	a	signal	to	the	power
supply,	the	power	supply	provides	the	computer	with	the	proper	amount	of	electricity.	Once
the	motherboard	receives	the	power	good	signal,	it	tries	to	start	the	CPU.	The	CPU	resets	all
leftover	data	in	its	registers	and	sets	up	predefined	values	for	each	of	them.

From	bootloader	to	kernel

8

http://0xax.blogspot.com/search/label/asm
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Power_good_signal

80386	and	later	CPUs	define	the	following	predefined	data	in	CPU	registers	after	the
computer	resets:

IP										0xfff0

CS	selector	0xf000

CS	base					0xffff0000

The	processor	starts	working	in	real	mode.	Let's	back	up	a	little	to	try	and	understand
memory	segmentation	in	this	mode.	Real	mode	is	supported	on	all	x86-compatible
processors,	from	the	8086	all	the	way	to	the	modern	Intel	64-bit	CPUs.	The	8086	processor
has	a	20-bit	address	bus,	which	means	that	it	could	work	with	a	0-0x100000	address	space
(1	megabyte).	But	it	only	has	16-bit	registers,	and	with	16-bit	registers	the	maximum	address
is	2^16	-	1	or	0xffff	(64	kilobytes).	Memory	segmentation	is	used	to	make	use	of	all	the
address	space	available.	All	memory	is	divided	into	small,	fixed-size	segments	of	65536
bytes,	or	64	KB.	Since	we	cannot	address	memory	above	64	KB	with	16	bit	registers,	an
alternate	method	is	devised.	An	address	consists	of	two	parts:	a	segment	selector	which	has
an	associated	base	address	and	an	offset	from	this	base	address.	In	real	mode,	the
associated	base	address	of	a	segment	selector	is		Segment	Selector	*	16	.	Thus,	to	get	a
physical	address	in	memory,	we	need	to	multiply	the	segment	selector	part	by	16	and	add
the	offset	part:

PhysicalAddress	=	Segment	Selector	*	16	+	Offset

For	example	if		CS:IP		is		0x2000:0x0010	,	the	corresponding	physical	address	will	be:

>>>	hex((0x2000	<<	4)	+	0x0010)

'0x20010'

But	if	we	take	the	largest	segment	selector	and	offset:		0xffff:0xffff	,	it	will	be:

>>>	hex((0xffff	<<	4)	+	0xffff)

'0x10ffef'

which	is	65520	bytes	over	first	megabyte.	Since	only	one	megabyte	is	accessible	in	real
mode,		0x10ffef		becomes		0x00ffef		with	disabled	A20.

Ok,	now	we	know	about	real	mode	and	memory	addressing.	Let's	get	back	to	discuss	about
register	values	after	reset:

The		CS		register	consists	of	two	parts:	the	visible	segment	selector	and	the	hidden	base
address.	While	the	base	address	is	normally	formed	by	multiplying	the	segment	selector
value	by	16,	during	a	hardware	reset,	the	segment	selector	in	the	CS	register	is	loaded	with

From	bootloader	to	kernel

9

https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/A20_line

0xf000	and	the	base	address	is	loaded	with	0xffff0000.	The	processor	uses	this	special	base
address	until	CS	is	changed.

The	starting	address	is	formed	by	adding	the	base	address	to	the	value	in	the	EIP	register:

>>>	0xffff0000	+	0xfff0

'0xfffffff0'

We	get		0xfffffff0		which	is	4GB	-	16	bytes.	This	point	is	called	the	Reset	vector.	This	is
the	memory	location	at	which	the	CPU	expects	to	find	the	first	instruction	to	execute	after
reset.	It	contains	a	jump	instruction	which	usually	points	to	the	BIOS	entry	point.	For
example,	if	we	look	in	the	coreboot	source	code,	we	see:

				.section	".reset"

				.code16

.globl		reset_vector

reset_vector:

				.byte		0xe9

				.int			_start	-	(.	+	2)

				...

Here	we	can	see	the	jmp	instruction	opcode	-	0xe9	and	its	destination	address	-		_start	-	(
.	+	2)	,	and	we	can	see	that	the		reset		section	is	16	bytes	and	starts	at		0xfffffff0	:

SECTIONS	{

				_ROMTOP	=	0xfffffff0;

				.	=	_ROMTOP;

				.reset	.	:	{

								*(.reset)

								.	=	15	;

								BYTE(0x00);

				}

}

Now	the	BIOS	starts:	after	initializing	and	checking	the	hardware,	it	needs	to	find	a	bootable
device.	A	boot	order	is	stored	in	the	BIOS	configuration,	controlling	which	devices	the	BIOS
attempts	to	boot	from.	When	attempting	to	boot	from	a	hard	drive,	the	BIOS	tries	to	find	a
boot	sector.	On	hard	drives	partitioned	with	an	MBR	partition	layout,	the	boot	sector	is	stored
in	the	first	446	bytes	of	the	first	sector	(which	is	512	bytes).	The	final	two	bytes	of	the	first
sector	are		0x55		and		0xaa	,	which	signals	the	BIOS	that	this	device	is	bootable.	For
example:

From	bootloader	to	kernel

10

http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/JMP_%28x86_instruction%29
http://www.coreboot.org/
http://ref.x86asm.net/coder32.html#xE9

;

;	Note:	this	example	is	written	in	Intel	Assembly	syntax

;

[BITS	16]

[ORG		0x7c00]

boot:

				mov	al,	'!'

				mov	ah,	0x0e

				mov	bh,	0x00

				mov	bl,	0x07

				int	0x10

				jmp	$

times	510-($-$$)	db	0

db	0x55

db	0xaa

Build	and	run	it	with:

nasm	-f	bin	boot.nasm	&&	qemu-system-x86_64	boot

This	will	instruct	QEMU	to	use	the		boot		binary	we	just	built	as	a	disk	image.	Since	the
binary	generated	by	the	assembly	code	above	fulfills	the	requirements	of	the	boot	sector
(the	origin	is	set	to		0x7c00	,	and	we	end	with	the	magic	sequence),	QEMU	will	treat	the
binary	as	the	master	boot	record	(MBR)	of	a	disk	image.

You	will	see:

From	bootloader	to	kernel

11

http://qemu.org

In	this	example	we	can	see	that	the	code	will	be	executed	in	16	bit	real	mode	and	will	start	at
0x7c00	in	memory.	After	starting	it	calls	the	0x10	interrupt	which	just	prints	the		!		symbol.	It
fills	the	rest	of	the	510	bytes	with	zeros	and	finishes	with	the	two	magic	bytes		0xaa		and
	0x55	.

You	can	see	a	binary	dump	of	this	with	the		objdump		util:

nasm	-f	bin	boot.nasm

objdump	-D	-b	binary	-mi386	-Maddr16,data16,intel	boot

A	real-world	boot	sector	has	code	to	continue	the	boot	process	and	the	partition	table
instead	of	a	bunch	of	0's	and	an	exclamation	mark	:)	From	this	point	onwards,	BIOS	hands
over	control	to	the	bootloader.

NOTE:	As	you	can	read	above	the	CPU	is	in	real	mode.	In	real	mode,	calculating	the
physical	address	in	memory	is	done	as	follows:

PhysicalAddress	=	Segment	Selector	*	16	+	Offset

The	same	as	mentioned	before.	We	have	only	16	bit	general	purpose	registers,	the
maximum	value	of	a	16	bit	register	is		0xffff	,	so	if	we	take	the	largest	values,	the	result	will
be:

>>>	hex((0xffff	*	16)	+	0xffff)

'0x10ffef'

From	bootloader	to	kernel

12

http://www.ctyme.com/intr/rb-0106.htm

Where		0x10ffef		is	equal	to		1MB	+	64KB	-	16b	.	But	a	8086	processor,	which	is	the	first
processor	with	real	mode,	has	a	20	bit	address	line	and		2^20	=	1048576		is	1MB.	This
means	the	actual	memory	available	is	1MB.

General	real	mode's	memory	map	is:

0x00000000	-	0x000003FF	-	Real	Mode	Interrupt	Vector	Table

0x00000400	-	0x000004FF	-	BIOS	Data	Area

0x00000500	-	0x00007BFF	-	Unused

0x00007C00	-	0x00007DFF	-	Our	Bootloader

0x00007E00	-	0x0009FFFF	-	Unused

0x000A0000	-	0x000BFFFF	-	Video	RAM	(VRAM)	Memory

0x000B0000	-	0x000B7777	-	Monochrome	Video	Memory

0x000B8000	-	0x000BFFFF	-	Color	Video	Memory

0x000C0000	-	0x000C7FFF	-	Video	ROM	BIOS

0x000C8000	-	0x000EFFFF	-	BIOS	Shadow	Area

0x000F0000	-	0x000FFFFF	-	System	BIOS

In	the	beginning	of	this	post	I	wrote	that	the	first	instruction	executed	by	the	CPU	is	located
at	address		0xFFFFFFF0	,	which	is	much	larger	than		0xFFFFF		(1MB).	How	can	the	CPU
access	this	in	real	mode?	This	is	in	the	coreboot	documentation:

0xFFFE_0000	-	0xFFFF_FFFF:	128	kilobyte	ROM	mapped	into	address	space

At	the	start	of	execution,	the	BIOS	is	not	in	RAM,	but	in	ROM.

Bootloader
There	are	a	number	of	bootloaders	that	can	boot	Linux,	such	as	GRUB	2	and	syslinux.	The
Linux	kernel	has	a	Boot	protocol	which	specifies	the	requirements	for	bootloaders	to
implement	Linux	support.	This	example	will	describe	GRUB	2.

Now	that	the	BIOS	has	chosen	a	boot	device	and	transferred	control	to	the	boot	sector	code,
execution	starts	from	boot.img.	This	code	is	very	simple	due	to	the	limited	amount	of	space
available,	and	contains	a	pointer	which	is	used	to	jump	to	the	location	of	GRUB	2's	core
image.	The	core	image	begins	with	diskboot.img,	which	is	usually	stored	immediately	after
the	first	sector	in	the	unused	space	before	the	first	partition.	The	above	code	loads	the	rest
of	the	core	image	into	memory,	which	contains	GRUB	2's	kernel	and	drivers	for	handling
filesystems.	After	loading	the	rest	of	the	core	image,	it	executes	grub_main.

	grub_main		initializes	the	console,	gets	the	base	address	for	modules,	sets	the	root	device,
loads/parses	the	grub	configuration	file,	loads	modules	etc.	At	the	end	of	execution,
	grub_main		moves	grub	to	normal	mode.		grub_normal_execute		(from		grub-

From	bootloader	to	kernel

13

https://en.wikipedia.org/wiki/Intel_8086
http://www.coreboot.org/Developer_Manual/Memory_map
https://www.gnu.org/software/grub/
http://www.syslinux.org/wiki/index.php/The_Syslinux_Project
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/boot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/diskboot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/kern/main.c

core/normal/main.c)	completes	the	last	preparation	and	shows	a	menu	to	select	an
operating	system.	When	we	select	one	of	the	grub	menu	entries,		grub_menu_execute_entry	
runs,	which	executes	the	grub		boot		command,	booting	the	selected	operating	system.

As	we	can	read	in	the	kernel	boot	protocol,	the	bootloader	must	read	and	fill	some	fields	of
the	kernel	setup	header,	which	starts	at		0x01f1		offset	from	the	kernel	setup	code.	The
kernel	header	arch/x86/boot/header.S	starts	from:

				.globl	hdr

hdr:

				setup_sects:	.byte	0

				root_flags:		.word	ROOT_RDONLY

				syssize:					.long	0

				ram_size:				.word	0

				vid_mode:				.word	SVGA_MODE

				root_dev:				.word	0

				boot_flag:			.word	0xAA55

The	bootloader	must	fill	this	and	the	rest	of	the	headers	(only	marked	as		write		in	the	Linux
boot	protocol,	for	example	this)	with	values	which	it	either	got	from	command	line	or
calculated.	We	will	not	see	a	description	and	explanation	of	all	fields	of	the	kernel	setup
header,	we	will	get	back	to	that	when	the	kernel	uses	them.	You	can	find	a	description	of	all
fields	in	the	boot	protocol.

As	we	can	see	in	the	kernel	boot	protocol,	the	memory	map	will	be	the	following	after
loading	the	kernel:

From	bootloader	to	kernel

14

https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt#L354
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt#L156

									|	Protected-mode	kernel		|

100000			+------------------------+

									|	I/O	memory	hole								|

0A0000			+------------------------+

									|	Reserved	for	BIOS						|	Leave	as	much	as	possible	unused

									~																								~

									|	Command	line											|	(Can	also	be	below	the	X+10000	mark)

X+10000		+------------------------+

									|	Stack/heap													|	For	use	by	the	kernel	real-mode	code.

X+08000		+------------------------+

									|	Kernel	setup											|	The	kernel	real-mode	code.

									|	Kernel	boot	sector					|	The	kernel	legacy	boot	sector.

							X	+------------------------+

									|	Boot	loader												|	<-	Boot	sector	entry	point	0x7C00

001000			+------------------------+

									|	Reserved	for	MBR/BIOS		|

000800			+------------------------+

									|	Typically	used	by	MBR		|

000600			+------------------------+

									|	BIOS	use	only										|

000000			+------------------------+

So	when	the	bootloader	transfers	control	to	the	kernel,	it	starts	at:

0x1000	+	X	+	sizeof(KernelBootSector)	+	1

where		X		is	the	address	of	the	kernel	boot	sector	loaded.	In	my	case		X		is		0x10000	,	as	we
can	see	in	a	memory	dump:

The	bootloader	has	now	loaded	the	Linux	kernel	into	memory,	filled	the	header	fields	and
jumped	to	it.	Now	we	can	move	directly	to	the	kernel	setup	code.

Start	of	Kernel	Setup

From	bootloader	to	kernel

15

Finally	we	are	in	the	kernel.	Technically	the	kernel	hasn't	run	yet,	we	need	to	set	up	the
kernel,	memory	manager,	process	manager	etc	first.	Kernel	setup	execution	starts	from
arch/x86/boot/header.S	at	_start.	It	is	a	little	strange	at	first	sight,	as	there	are	several
instructions	before	it.

A	Long	time	ago	the	Linux	kernel	had	its	own	bootloader,	but	now	if	you	run	for	example:

qemu-system-x86_64	vmlinuz-3.18-generic

You	will	see:

Actually		header.S		starts	from	MZ	(see	image	above),	error	message	printing	and	following
PE	header:

#ifdef	CONFIG_EFI_STUB

#	"MZ",	MS-DOS	header

.byte	0x4d

.byte	0x5a

#endif

...

...

...

pe_header:

				.ascii	"PE"

				.word	0

From	bootloader	to	kernel

16

https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L293
https://en.wikipedia.org/wiki/DOS_MZ_executable
https://en.wikipedia.org/wiki/Portable_Executable

It	needs	this	to	load	an	operating	system	with	UEFI.	We	won't	see	how	this	works	right	now,
we'll	see	this	in	one	of	the	next	chapters.

So	the	actual	kernel	setup	entry	point	is:

//	header.S	line	292

.globl	_start

_start:

The	bootloader	(grub2	and	others)	knows	about	this	point	(0x200		offset	from		MZ)	and
makes	a	jump	directly	to	this	point,	despite	the	fact	that		header.S		starts	from		.bstext	
section	which	prints	an	error	message:

//

//	arch/x86/boot/setup.ld

//

.	=	0;																				//	current	position

.bstext	:	{	*(.bstext)	}		//	put	.bstext	section	to	position	0

.bsdata	:	{	*(.bsdata)	}

So	the	kernel	setup	entry	point	is:

				.globl	_start

_start:

				.byte		0xeb

				.byte		start_of_setup-1f

1:

				//

				//	rest	of	the	header

				//

Here	we	can	see	a		jmp		instruction	opcode	-		0xeb		to	the		start_of_setup-1f		point.		Nf	
notation	means		2f		refers	to	the	next	local		2:		label.	In	our	case	it	is	label		1		which	goes
right	after	jump.	It	contains	the	rest	of	the	setup	header.	Right	after	the	setup	header	we	see
the		.entrytext		section	which	starts	at	the		start_of_setup		label.

Actually	this	is	the	first	code	that	runs	(aside	from	the	previous	jump	instruction	of	course).
After	the	kernel	setup	got	the	control	from	the	bootloader,	the	first		jmp		instruction	is	located
at		0x200		(first	512	bytes)	offset	from	the	start	of	the	kernel	real	mode.	This	we	can	read	in
the	Linux	kernel	boot	protocol	and	also	see	in	the	grub2	source	code:

segment	=	grub_linux_real_target	>>	4;

state.gs	=	state.fs	=	state.es	=	state.ds	=	state.ss	=	segment;

state.cs	=	segment	+	0x20;

From	bootloader	to	kernel

17

https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt#L156

It	means	that	segment	registers	will	have	the	following	values	after	kernel	setup	starts:

gs	=	fs	=	es	=	ds	=	ss	=	0x1000

cs	=	0x1020

In	my	case	when	the	kernel	is	loaded	at		0x10000	.

After	the	jump	to		start_of_setup	,	it	needs	to	do	the	following:

Be	sure	that	all	values	of	all	segment	registers	are	equal
Set	up	correct	stack	if	needed
Set	up	bss
Jump	to	C	code	at	main.c

Let's	look	at	the	implementation.

Segment	registers	align
First	of	all	it	ensures	that		ds		and		es		segment	registers	point	to	the	same	address	and
clears	the	direction	flag	with	the		cld		instruction:

				movw				%ds,	%ax

				movw				%ax,	%es

				cld

As	I	wrote	earlier,	grub2	loads	kernel	setup	code	at	address		0x10000		and		cs		at		0x1020	
because	execution	doesn't	start	from	the	start	of	file,	but	from:

_start:

				.byte	0xeb

				.byte	start_of_setup-1f

	jump	,	which	is	at	512	bytes	offset	from	the	4d	5a.	It	also	needs	to	align		cs		from		0x10200	
to		0x10000		as	all	other	segment	registers.	After	that	we	set	up	the	stack:

				pushw			%ds

				pushw			$6f

				lretw

push		ds		value	to	the	stack	with	the	address	of	the	6	label	and	execute		lretw		instruction.
When	we	call		lretw	,	it	loads	address	of	label		6		into	the	instruction	pointer	register	and
	cs		with	the	value	of		ds	.	After	this		ds		and		cs		will	have	the	same	values.

From	bootloader	to	kernel

18

https://en.wikipedia.org/wiki/.bss
https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L47
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L494
https://en.wikipedia.org/wiki/Program_counter

Stack	Setup
Actually,	almost	all	of	the	setup	code	is	preparation	for	the	C	language	environment	in	real
mode.	The	next	step	is	checking	the		ss		register	value	and	making	a	correct	stack	if		ss		is
wrong:

				movw				%ss,	%dx

				cmpw				%ax,	%dx

				movw				%sp,	%dx

				je						2f

This	can	lead	to	3	different	scenarios:

	ss		has	valid	value	0x10000	(as	all	other	segment	registers	beside		cs)
	ss		is	invalid	and		CAN_USE_HEAP		flag	is	set	(see	below)
	ss		is	invalid	and		CAN_USE_HEAP		flag	is	not	set	(see	below)

Let's	look	at	all	three	of	these	scenarios:

	ss		has	a	correct	address	(0x10000).	In	this	case	we	go	to	label	2:

2:		andw				$~3,	%dx

				jnz					3f

				movw				$0xfffc,	%dx

3:		movw				%ax,	%ss

				movzwl		%dx,	%esp

				sti

Here	we	can	see	the	alignment	of		dx		(contains		sp		given	by	bootloader)	to	4	bytes	and	a
check	for	whether	or	not	it	is	zero.	If	it	is	zero,	we	put		0xfffc		(4	byte	aligned	address
before	maximum	segment	size	-	64	KB)	in		dx	.	If	it	is	not	zero	we	continue	to	use		sp		given
by	the	bootloader	(0xf7f4	in	my	case).	After	this	we	put	the		ax		value	to		ss		which	stores
the	correct	segment	address	of		0x10000		and	sets	up	a	correct		sp	.	We	now	have	a	correct
stack:

From	bootloader	to	kernel

19

https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L467
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L481

In	the	second	scenario,	(ss		!=		ds).	First	of	all	put	the	_end	(address	of	end	of	setup
code)	value	in		dx		and	check	the		loadflags		header	field	with	the		testb		instruction	to
see	whether	we	can	use	the	heap	or	not.	loadflags	is	a	bitmask	header	which	is	defined
as:

#define	LOADED_HIGH					(1<<0)

#define	QUIET_FLAG						(1<<5)

#define	KEEP_SEGMENTS			(1<<6)

#define	CAN_USE_HEAP				(1<<7)

And	as	we	can	read	in	the	boot	protocol:

Field	name:	loadflags

		This	field	is	a	bitmask.

		Bit	7	(write):	CAN_USE_HEAP

				Set	this	bit	to	1	to	indicate	that	the	value	entered	in	the

				heap_end_ptr	is	valid.		If	this	field	is	clear,	some	setup	code

				functionality	will	be	disabled.

If	the		CAN_USE_HEAP		bit	is	set,	put		heap_end_ptr		in		dx		which	points	to		_end		and	add
	STACK_SIZE		(minimal	stack	size	-	512	bytes)	to	it.	After	this	if		dx		is	not	carry	(it	will	not	be
carry,	dx	=	_end	+	512),	jump	to	label		2		as	in	the	previous	case	and	make	a	correct	stack.

From	bootloader	to	kernel

20

https://github.com/torvalds/linux/blob/master/arch/x86/boot/setup.ld#L52
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L321

When		CAN_USE_HEAP		is	not	set,	we	just	use	a	minimal	stack	from		_end		to		_end	+
STACK_SIZE	:

BSS	Setup
The	last	two	steps	that	need	to	happen	before	we	can	jump	to	the	main	C	code,	are	setting
up	the	BSS	area	and	checking	the	"magic"	signature.	First,	signature	checking:

				cmpl				$0x5a5aaa55,	setup_sig

				jne					setup_bad

This	simply	compares	the	setup_sig	with	the	magic	number		0x5a5aaa55	.	If	they	are	not
equal,	a	fatal	error	is	reported.

If	the	magic	number	matches,	knowing	we	have	a	set	of	correct	segment	registers	and	a
stack,	we	only	need	to	set	up	the	BSS	section	before	jumping	into	the	C	code.

The	BSS	section	is	used	to	store	statically	allocated,	uninitialized	data.	Linux	carefully
ensures	this	area	of	memory	is	first	blanked,	using	the	following	code:

From	bootloader	to	kernel

21

https://en.wikipedia.org/wiki/.bss
https://github.com/torvalds/linux/blob/master/arch/x86/boot/setup.ld#L39

				movw				$__bss_start,	%di

				movw				$_end+3,	%cx

				xorl				%eax,	%eax

				subw				%di,	%cx

				shrw				$2,	%cx

				rep;	stosl

First	of	all	the	__bss_start	address	is	moved	into		di		and	the		_end	+	3		address	(+3	-
aligns	to	4	bytes)	is	moved	into		cx	.	The		eax		register	is	cleared	(using	a		xor		instruction),
and	the	bss	section	size	(cx	-	di)	is	calculated	and	put	into		cx	.	Then,		cx		is	divided	by
four	(the	size	of	a	'word'),	and	the		stosl		instruction	is	repeatedly	used,	storing	the	value	of
	eax		(zero)	into	the	address	pointed	to	by		di	,	automatically	increasing		di		by	four	(this
occurs	until		cx		reaches	zero).	The	net	effect	of	this	code	is	that	zeros	are	written	through
all	words	in	memory	from		__bss_start		to		_end	:

Jump	to	main
That's	all,	we	have	the	stack	and	BSS	so	we	can	jump	to	the		main()		C	function:

				calll	main

The		main()		function	is	located	in	arch/x86/boot/main.c.	You	can	read	about	what	this	does
in	the	next	part.

Conclusion
This	is	the	end	of	the	first	part	about	Linux	kernel	insides.	If	you	have	questions	or
suggestions,	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.	In	the	next	part	we
will	see	first	C	code	which	executes	in	Linux	kernel	setup,	implementation	of	memory

From	bootloader	to	kernel

22

https://github.com/torvalds/linux/blob/master/arch/x86/boot/setup.ld#L47
https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals/issues/new

routines	as		memset	,		memcpy	,		earlyprintk		implementation	and	early	console	initialization
and	many	more.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Intel	80386	programmer's	reference	manual	1986
Minimal	Boot	Loader	for	Intel®	Architecture
8086
80386
Reset	vector
Real	mode
Linux	kernel	boot	protocol
CoreBoot	developer	manual
Ralf	Brown's	Interrupt	List
Power	supply
Power	good	signal

From	bootloader	to	kernel

23

https://github.com/0xAX/linux-internals
http://css.csail.mit.edu/6.858/2014/readings/i386.pdf
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/Real_mode
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://www.coreboot.org/Developer_Manual
http://www.ctyme.com/intr/int.htm
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_good_signal

Kernel	booting	process.	Part	2.

First	steps	in	the	kernel	setup
We	started	to	dive	into	linux	kernel	insides	in	the	previous	part	and	saw	the	initial	part	of	the
kernel	setup	code.	We	stopped	at	the	first	call	to	the		main		function	(which	is	the	first
function	written	in	C)	from	arch/x86/boot/main.c.

In	this	part	we	will	continue	to	research	the	kernel	setup	code	and

see	what		protected	mode		is,
some	preparation	for	the	transition	into	it,
the	heap	and	console	initialization,
memory	detection,	cpu	validation,	keyboard	initialization
and	much	much	more.

So,	Let's	go	ahead.

Protected	mode
Before	we	can	move	to	the	native	Intel64	Long	Mode,	the	kernel	must	switch	the	CPU	into
protected	mode.

What	is	protected	mode?	Protected	mode	was	first	added	to	the	x86	architecture	in	1982
and	was	the	main	mode	of	Intel	processors	from	the	80286	processor	until	Intel	64	and	long
mode	came.

The	main	reason	to	move	away	from	Real	mode	is	that	there	is	very	limited	access	to	the
RAM.	As	you	may	remember	from	the	previous	part,	there	is	only	2 	bytes	or	1	Megabyte,
sometimes	even	only	640	Kilobytes	of	RAM	available	in	the	Real	mode.

Protected	mode	brought	many	changes,	but	the	main	one	is	the	difference	in	memory
management.	The	20-bit	address	bus	was	replaced	with	a	32-bit	address	bus.	It	allowed
access	to	4	Gigabytes	of	memory	vs	1	Megabyte	of	real	mode.	Also	paging	support	was
added,	which	you	can	read	about	in	the	next	sections.

Memory	management	in	Protected	mode	is	divided	into	two,	almost	independent	parts:

Segmentation
Paging

20

First	steps	in	the	kernel	setup	code

24

https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c
http://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Intel_80286
http://wiki.osdev.org/Real_Mode
http://en.wikipedia.org/wiki/Paging

Here	we	will	only	see	segmentation.	Paging	will	be	discussed	in	the	next	sections.

As	you	can	read	in	the	previous	part,	addresses	consist	of	two	parts	in	real	mode:

Base	address	of	the	segment
Offset	from	the	segment	base

And	we	can	get	the	physical	address	if	we	know	these	two	parts	by:

PhysicalAddress	=	Segment	Selector	*	16	+	Offset

Memory	segmentation	was	completely	redone	in	protected	mode.	There	are	no	64	Kilobyte
fixed-size	segments.	Instead,	the	size	and	location	of	each	segment	is	described	by	an
associated	data	structure	called	Segment	Descriptor.	The	segment	descriptors	are	stored	in
a	data	structure	called		Global	Descriptor	Table		(GDT).

The	GDT	is	a	structure	which	resides	in	memory.	It	has	no	fixed	place	in	the	memory	so,	its
address	is	stored	in	the	special		GDTR		register.	Later	we	will	see	the	GDT	loading	in	the
Linux	kernel	code.	There	will	be	an	operation	for	loading	it	into	memory,	something	like:

lgdt	gdt

where	the		lgdt		instruction	loads	the	base	address	and	limit(size)	of	global	descriptor	table
to	the		GDTR		register.		GDTR		is	a	48-bit	register	and	consists	of	two	parts:

size(16-bit)	of	global	descriptor	table;
address(32-bit)	of	the	global	descriptor	table.

As	mentioned	above	the	GDT	contains		segment	descriptors		which	describe	memory
segments.	Each	descriptor	is	64-bits	in	size.	The	general	scheme	of	a	descriptor	is:

31										24								19						16														7												0

--

|													|	|B|	|A|							|	|			|	|0|E|W|A|												|

|	BASE	31:24		|G|/|L|V|	LIMIT	|P|DPL|S|		TYPE	|	BASE	23:16	|	4

|													|	|D|	|L|	19:16	|	|			|	|1|C|R|A|												|

--

|																													|																												|

|								BASE	15:0												|							LIMIT	15:0											|	0

|																													|																												|

--

Don't	worry,	I	know	it	looks	a	little	scary	after	real	mode,	but	it's	easy.	For	example	LIMIT
15:0	means	that	bit	0-15	of	the	Descriptor	contain	the	value	for	the	limit.	The	rest	of	it	is	in
LIMIT	19:16.	So,	the	size	of	Limit	is	0-19	i.e	20-bits.	Let's	take	a	closer	look	at	it:

First	steps	in	the	kernel	setup	code

25

1.	 Limit[20-bits]	is	at	0-15,16-19	bits.	It	defines		length_of_segment	-	1	.	It	depends	on
	G	(Granularity)	bit.

if		G		(bit	55)	is	0	and	segment	limit	is	0,	the	size	of	the	segment	is	1	Byte
if		G		is	1	and	segment	limit	is	0,	the	size	of	the	segment	is	4096	Bytes
if		G		is	0	and	segment	limit	is	0xfffff,	the	size	of	the	segment	is	1	Megabyte
if		G		is	1	and	segment	limit	is	0xfffff,	the	size	of	the	segment	is	4	Gigabytes

So,	it	means	that	if

if	G	is	0,	Limit	is	interpreted	in	terms	of	1	Byte	and	the	maximum	size	of	the
segment	can	be	1	Megabyte.
if	G	is	1,	Limit	is	interpreted	in	terms	of	4096	Bytes	=	4	KBytes	=	1	Page	and	the
maximum	size	of	the	segment	can	be	4	Gigabytes.	Actually	when	G	is	1,	the	value
of	Limit	is	shifted	to	the	left	by	12	bits.	So,	20	bits	+	12	bits	=	32	bits	and	2 	=	4
Gigabytes.

2.	 Base[32-bits]	is	at	(0-15,	32-39	and	56-63	bits).	It	defines	the	physical	address	of	the
segment's	starting	location.

3.	 Type/Attribute	(40-47	bits)	defines	the	type	of	segment	and	kinds	of	access	to	it.

	S		flag	at	bit	44	specifies	descriptor	type.	If		S		is	0	then	this	segment	is	a	system
segment,	whereas	if		S		is	1	then	this	is	a	code	or	data	segment	(Stack	segments
are	data	segments	which	must	be	read/write	segments).

To	determine	if	the	segment	is	a	code	or	data	segment	we	can	check	its	Ex(bit	43)	Attribute
marked	as	0	in	the	above	diagram.	If	it	is	0,	then	the	segment	is	a	Data	segment	otherwise	it
is	a	code	segment.

A	segment	can	be	of	one	of	the	following	types:

32

First	steps	in	the	kernel	setup	code

26

|											Type	Field								|	Descriptor	Type	|	Description

|-----------------------------|-----------------|------------------

|	Decimal																					|																	|

|													0				E				W			A	|																	|

|	0											0				0				0			0	|	Data												|	Read-Only

|	1											0				0				0			1	|	Data												|	Read-Only,	accessed

|	2											0				0				1			0	|	Data												|	Read/Write

|	3											0				0				1			1	|	Data												|	Read/Write,	accessed

|	4											0				1				0			0	|	Data												|	Read-Only,	expand-down

|	5											0				1				0			1	|	Data												|	Read-Only,	expand-down,	accessed

|	6											0				1				1			0	|	Data												|	Read/Write,	expand-down

|	7											0				1				1			1	|	Data												|	Read/Write,	expand-down,	accessed

|																		C				R			A	|																	|

|	8											1				0				0			0	|	Code												|	Execute-Only

|	9											1				0				0			1	|	Code												|	Execute-Only,	accessed

|	10										1				0				1			0	|	Code												|	Execute/Read

|	11										1				0				1			1	|	Code												|	Execute/Read,	accessed

|	12										1				1				0			0	|	Code												|	Execute-Only,	conforming

|	14										1				1				0			1	|	Code												|	Execute-Only,	conforming,	accessed

|	13										1				1				1			0	|	Code												|	Execute/Read,	conforming

|	15										1				1				1			1	|	Code												|	Execute/Read,	conforming,	accessed

As	we	can	see	the	first	bit(bit	43)	is		0		for	a	data	segment	and		1		for	a	code	segment.	The
next	three	bits(40,	41,	42,	43)	are	either		EWA	(Expansion	Writable	Accessible)	or
CRA(Conforming	Readable	Accessible).

if	E(bit	42)	is	0,	expand	up	other	wise	expand	down.	Read	more	here.
if	W(bit	41)(for	Data	Segments)	is	1,	write	access	is	allowed	otherwise	not.	Note	that
read	access	is	always	allowed	on	data	segments.
A(bit	40)	-	Whether	the	segment	is	accessed	by	processor	or	not.
C(bit	43)	is	conforming	bit(for	code	selectors).	If	C	is	1,	the	segment	code	can	be
executed	from	a	lower	level	privilege	e.g.	user	level.	If	C	is	0,	it	can	only	be	executed
from	the	same	privilege	level.
R(bit	41)(for	code	segments).	If	1	read	access	to	segment	is	allowed	otherwise	not.
Write	access	is	never	allowed	to	code	segments.

1.	 DPL[2-bits]	(Descriptor	Privilege	Level)	is	at	bits	45-46.	It	defines	the	privilege	level	of
the	segment.	It	can	be	0-3	where	0	is	the	most	privileged.

2.	 P	flag(bit	47)	-	indicates	if	the	segment	is	present	in	memory	or	not.	If	P	is	0,	the
segment	will	be	presented	as	invalid	and	the	processor	will	refuse	to	read	this	segment.

3.	 AVL	flag(bit	52)	-	Available	and	reserved	bits.	It	is	ignored	in	Linux.

4.	 L	flag(bit	53)	-	indicates	whether	a	code	segment	contains	native	64-bit	code.	If	1	then
the	code	segment	executes	in	64	bit	mode.

First	steps	in	the	kernel	setup	code

27

http://www.sudleyplace.com/dpmione/expanddown.html

5.	 D/B	flag(bit	54)	-	Default/Big	flag	represents	the	operand	size	i.e	16/32	bits.	If	it	is	set
then	32	bit	otherwise	16.

Segment	registers	contain	segment	selectors	as	in	real	mode.	However,	in	protected	mode,
a	segment	selector	is	handled	differently.	Each	Segment	Descriptor	has	an	associated
Segment	Selector	which	is	a	16-bit	structure:

15														3		2			1		0

|						Index					|	TI	|	RPL	|

Where,

Index	shows	the	index	number	of	the	descriptor	in	the	GDT.
TI(Table	Indicator)	shows	where	to	search	for	the	descriptor.	If	it	is	0	then	search	in	the
Global	Descriptor	Table(GDT)	otherwise	it	will	look	in	Local	Descriptor	Table(LDT).
And	RPL	is	Requester's	Privilege	Level.

Every	segment	register	has	a	visible	and	hidden	part.

Visible	-	Segment	Selector	is	stored	here
Hidden	-	Segment	Descriptor(base,	limit,	attributes,	flags)

The	following	steps	are	needed	to	get	the	physical	address	in	the	protected	mode:

The	segment	selector	must	be	loaded	in	one	of	the	segment	registers
The	CPU	tries	to	find	a	segment	descriptor	by	GDT	address	+	Index	from	selector	and
load	the	descriptor	into	the	hidden	part	of	the	segment	register
Base	address	(from	segment	descriptor)	+	offset	will	be	the	linear	address	of	the
segment	which	is	the	physical	address	(if	paging	is	disabled).

Schematically	it	will	look	like	this:

First	steps	in	the	kernel	setup	code

28

The	algorithm	for	the	transition	from	real	mode	into	protected	mode	is:

Disable	interrupts
Describe	and	load	GDT	with		lgdt		instruction
Set	PE	(Protection	Enable)	bit	in	CR0	(Control	Register	0)
Jump	to	protected	mode	code

We	will	see	the	complete	transition	to	protected	mode	in	the	linux	kernel	in	the	next	part,	but
before	we	can	move	to	protected	mode,	we	need	to	do	some	more	preparations.

Let's	look	at	arch/x86/boot/main.c.	We	can	see	some	routines	there	which	perform	keyboard
initialization,	heap	initialization,	etc...	Let's	take	a	look.

Copying	boot	parameters	into	the	"zeropage"
We	will	start	from	the		main		routine	in	"main.c".	First	function	which	is	called	in		main		is
	copy_boot_params(void)	.	It	copies	the	kernel	setup	header	into	the	field	of	the		boot_params	
structure	which	is	defined	in	the	arch/x86/include/uapi/asm/bootparam.h.

First	steps	in	the	kernel	setup	code

29

https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L30
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L113

The		boot_params		structure	contains	the		struct	setup_header	hdr		field.	This	structure
contains	the	same	fields	as	defined	in	linux	boot	protocol	and	is	filled	by	the	boot	loader	and
also	at	kernel	compile/build	time.		copy_boot_params		does	two	things:

1.	 Copies		hdr		from	header.S	to	the		boot_params		structure	in		setup_header		field

2.	 Updates	pointer	to	the	kernel	command	line	if	the	kernel	was	loaded	with	the	old
command	line	protocol.

Note	that	it	copies		hdr		with		memcpy		function	which	is	defined	in	the	copy.S	source	file.
Let's	have	a	look	inside:

GLOBAL(memcpy)

				pushw			%si

				pushw			%di

				movw				%ax,	%di

				movw				%dx,	%si

				pushw			%cx

				shrw				$2,	%cx

				rep;	movsl

				popw				%cx

				andw				$3,	%cx

				rep;	movsb

				popw				%di

				popw				%si

				retl

ENDPROC(memcpy)

Yeah,	we	just	moved	to	C	code	and	now	assembly	again	:)	First	of	all	we	can	see	that
	memcpy		and	other	routines	which	are	defined	here,	start	and	end	with	the	two	macros:
	GLOBAL		and		ENDPROC	.		GLOBAL		is	described	in	arch/x86/include/asm/linkage.h	which
defines		globl		directive	and	the	label	for	it.		ENDPROC		is	described	in	include/linux/linkage.h
which	marks	the		name		symbol	as	a	function	name	and	ends	with	the	size	of	the		name	
symbol.

Implementation	of		memcpy		is	easy.	At	first,	it	pushes	values	from	the		si		and		di		registers
to	the	stack	to	preserve	their	values	because	they	will	change	during	the		memcpy	.		memcpy	
(and	other	functions	in	copy.S)	use		fastcall		calling	conventions.	So	it	gets	its	incoming
parameters	from	the		ax	,		dx		and		cx		registers.	Calling		memcpy		looks	like	this:

memcpy(&boot_params.hdr,	&hdr,	sizeof	hdr);

So,

	ax		will	contain	the	address	of	the		boot_params.hdr	
	dx		will	contain	the	address	of		hdr	

First	steps	in	the	kernel	setup	code

30

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L281
https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/linkage.h
https://github.com/torvalds/linux/blob/master/include/linux/linkage.h

	cx		will	contain	the	size	of		hdr		in	bytes.

	memcpy		puts	the	address	of		boot_params.hdr		into		di		and	saves	the	size	on	the	stack.
After	this	it	shifts	to	the	right	on	2	size	(or	divide	on	4)	and	copies	from		si		to		di		by	4
bytes.	After	this	we	restore	the	size	of		hdr		again,	align	it	by	4	bytes	and	copy	the	rest	of	the
bytes	from		si		to		di		byte	by	byte	(if	there	is	more).	Restore		si		and		di		values	from	the
stack	in	the	end	and	after	this	copying	is	finished.

Console	initialization
After		hdr		is	copied	into		boot_params.hdr	,	the	next	step	is	console	initialization	by	calling
the		console_init		function	which	is	defined	in	arch/x86/boot/early_serial_console.c.

It	tries	to	find	the		earlyprintk		option	in	the	command	line	and	if	the	search	was	successful,
it	parses	the	port	address	and	baud	rate	of	the	serial	port	and	initializes	the	serial	port.	Value
of		earlyprintk		command	line	option	can	be	one	of	these:

serial,0x3f8,115200
serial,ttyS0,115200
ttyS0,115200

After	serial	port	initialization	we	can	see	the	first	output:

if	(cmdline_find_option_bool("debug"))

				puts("early	console	in	setup	code\n");

The	definition	of		puts		is	in	tty.c.	As	we	can	see	it	prints	character	by	character	in	a	loop	by
calling	the		putchar		function.	Let's	look	into	the		putchar		implementation:

void	__attribute__((section(".inittext")))	putchar(int	ch)

{

				if	(ch	==	'\n')

								putchar('\r');

				bios_putchar(ch);

				if	(early_serial_base	!=	0)

								serial_putchar(ch);

}

	__attribute__((section(".inittext")))		means	that	this	code	will	be	in	the		.inittext	
section.	We	can	find	it	in	the	linker	file	setup.ld.

First	steps	in	the	kernel	setup	code

31

https://github.com/torvalds/linux/blob/master/arch/x86/boot/early_serial_console.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/tty.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/setup.ld#L19

First	of	all,		putchar		checks	for	the		\n		symbol	and	if	it	is	found,	prints		\r		before.	After
that	it	outputs	the	character	on	the	VGA	screen	by	calling	the	BIOS	with	the		0x10		interrupt
call:

static	void	__attribute__((section(".inittext")))	bios_putchar(int	ch)

{

				struct	biosregs	ireg;

				initregs(&ireg);

				ireg.bx	=	0x0007;

				ireg.cx	=	0x0001;

				ireg.ah	=	0x0e;

				ireg.al	=	ch;

				intcall(0x10,	&ireg,	NULL);

}

Here		initregs		takes	the		biosregs		structure	and	first	fills		biosregs		with	zeros	using	the
	memset		function	and	then	fills	it	with	register	values.

				memset(reg,	0,	sizeof	*reg);

				reg->eflags	|=	X86_EFLAGS_CF;

				reg->ds	=	ds();

				reg->es	=	ds();

				reg->fs	=	fs();

				reg->gs	=	gs();

Let's	look	at	the	memset	implementation:

GLOBAL(memset)

				pushw			%di

				movw				%ax,	%di

				movzbl		%dl,	%eax

				imull			$0x01010101,%eax

				pushw			%cx

				shrw				$2,	%cx

				rep;	stosl

				popw				%cx

				andw				$3,	%cx

				rep;	stosb

				popw				%di

				retl

ENDPROC(memset)

As	you	can	read	above,	it	uses	the		fastcall		calling	conventions	like	the		memcpy		function,
which	means	that	the	function	gets	parameters	from		ax	,		dx		and		cx		registers.

First	steps	in	the	kernel	setup	code

32

https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S#L36

Generally		memset		is	like	a	memcpy	implementation.	It	saves	the	value	of	the		di		register
on	the	stack	and	puts	the		ax		value	into		di		which	is	the	address	of	the		biosregs	
structure.	Next	is	the		movzbl		instruction,	which	copies	the		dl		value	to	the	low	2	bytes	of
the		eax		register.	The	remaining	2	high	bytes	of		eax		will	be	filled	with	zeros.

The	next	instruction	multiplies		eax		with		0x01010101	.	It	needs	to	because		memset		will	copy
4	bytes	at	the	same	time.	For	example,	we	need	to	fill	a	structure	with		0x7		with	memset.
	eax		will	contain		0x00000007		value	in	this	case.	So	if	we	multiply		eax		with		0x01010101	,	we
will	get		0x07070707		and	now	we	can	copy	these	4	bytes	into	the	structure.		memset		uses
	rep;	stosl		instructions	for	copying		eax		into		es:di	.

The	rest	of	the		memset		function	does	almost	the	same	as		memcpy	.

After	the		biosregs		structure	is	filled	with		memset	,		bios_putchar		calls	the	0x10	interrupt
which	prints	a	character.	Afterwards	it	checks	if	the	serial	port	was	initialized	or	not	and
writes	a	character	there	with	serial_putchar	and		inb/outb		instructions	if	it	was	set.

Heap	initialization
After	the	stack	and	bss	section	were	prepared	in	header.S	(see	previous	part),	the	kernel
needs	to	initialize	the	heap	with	the		init_heap		function.

First	of	all		init_heap		checks	the		CAN_USE_HEAP		flag	from	the		loadflags		in	the	kernel	setup
header	and	calculates	the	end	of	the	stack	if	this	flag	was	set:

				char	*stack_end;

				if	(boot_params.hdr.loadflags	&	CAN_USE_HEAP)	{

								asm("leal	%P1(%%esp),%0"

												:	"=r"	(stack_end)	:	"i"	(-STACK_SIZE));

or	in	other	words		stack_end	=	esp	-	STACK_SIZE	.

Then	there	is	the		heap_end		calculation:

				heap_end	=	(char	*)((size_t)boot_params.hdr.heap_end_ptr	+	0x200);

which	means		heap_end_ptr		or		_end		+		512	(0x200h).	The	last	check	is	whether		heap_end	
is	greater	than		stack_end	.	If	it	is	then		stack_end		is	assigned	to		heap_end		to	make	them
equal.

Now	the	heap	is	initialized	and	we	can	use	it	using	the		GET_HEAP		method.	We	will	see	how	it
is	used,	how	to	use	it	and	how	the	it	is	implemented	in	the	next	posts.

First	steps	in	the	kernel	setup	code

33

http://www.ctyme.com/intr/rb-0106.htm
https://github.com/torvalds/linux/blob/master/arch/x86/boot/tty.c#L30
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L116
https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L116
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L21
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L321

CPU	validation
The	next	step	as	we	can	see	is	cpu	validation	by		validate_cpu		from	arch/x86/boot/cpu.c.

It	calls	the		check_cpu		function	and	passes	cpu	level	and	required	cpu	level	to	it	and	checks
that	the	kernel	launches	on	the	right	cpu	level.

check_cpu(&cpu_level,	&req_level,	&err_flags);

if	(cpu_level	<	req_level)	{

				...

				return	-1;

}

	check_cpu		checks	the	cpu's	flags,	presence	of	long	mode	in	case	of	x86_64(64-bit)	CPU,
checks	the	processor's	vendor	and	makes	preparation	for	certain	vendors	like	turning	off
SSE+SSE2	for	AMD	if	they	are	missing,	etc.

Memory	detection
The	next	step	is	memory	detection	by	the		detect_memory		function.		detect_memory		basically
provides	a	map	of	available	RAM	to	the	cpu.	It	uses	different	programming	interfaces	for
memory	detection	like		0xe820	,		0xe801		and		0x88	.	We	will	see	only	the	implementation	of
0xE820	here.

Let's	look	into	the		detect_memory_e820		implementation	from	the	arch/x86/boot/memory.c
source	file.	First	of	all,	the		detect_memory_e820		function	initializes	the		biosregs		structure	as
we	saw	above	and	fills	registers	with	special	values	for	the		0xe820		call:

				initregs(&ireg);

				ireg.ax		=	0xe820;

				ireg.cx		=	sizeof	buf;

				ireg.edx	=	SMAP;

				ireg.di		=	(size_t)&buf;

	ax		contains	the	number	of	the	function	(0xe820	in	our	case)
	cx		register	contains	size	of	the	buffer	which	will	contain	data	about	memory
	edx		must	contain	the		SMAP		magic	number
	es:di		must	contain	the	address	of	the	buffer	which	will	contain	memory	data
	ebx		has	to	be	zero.

First	steps	in	the	kernel	setup	code

34

https://github.com/torvalds/linux/blob/master/arch/x86/boot/cpu.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/cpucheck.c#L102
http://en.wikipedia.org/wiki/Long_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/memory.c

Next	is	a	loop	where	data	about	the	memory	will	be	collected.	It	starts	from	the	call	of	the
	0x15		BIOS	interrupt,	which	writes	one	line	from	the	address	allocation	table.	For	getting	the
next	line	we	need	to	call	this	interrupt	again	(which	we	do	in	the	loop).	Before	the	next	call
	ebx		must	contain	the	value	returned	previously:

				intcall(0x15,	&ireg,	&oreg);

				ireg.ebx	=	oreg.ebx;

Ultimately,	it	does	iterations	in	the	loop	to	collect	data	from	the	address	allocation	table	and
writes	this	data	into	the		e820entry		array:

start	of	memory	segment
size	of	memory	segment
type	of	memory	segment	(which	can	be	reserved,	usable	and	etc...).

You	can	see	the	result	of	this	in	the		dmesg		output,	something	like:

[0.000000]	e820:	BIOS-provided	physical	RAM	map:

[0.000000]	BIOS-e820:	[mem	0x0000000000000000-0x000000000009fbff]	usable

[0.000000]	BIOS-e820:	[mem	0x000000000009fc00-0x000000000009ffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000000f0000-0x00000000000fffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x0000000000100000-0x000000003ffdffff]	usable

[0.000000]	BIOS-e820:	[mem	0x000000003ffe0000-0x000000003fffffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000fffc0000-0x00000000ffffffff]	reserved

Keyboard	initialization
The	next	step	is	the	initialization	of	the	keyboard	with	the	call	of	the		keyboard_init()	
function.	At	first		keyboard_init		initializes	registers	using	the		initregs		function	and	calling
the	0x16	interrupt	for	getting	the	keyboard	status.

				initregs(&ireg);

				ireg.ah	=	0x02;					/*	Get	keyboard	status	*/

				intcall(0x16,	&ireg,	&oreg);

				boot_params.kbd_status	=	oreg.al;

After	this	it	calls	0x16	again	to	set	repeat	rate	and	delay.

				ireg.ax	=	0x0305;			/*	Set	keyboard	repeat	rate	*/

				intcall(0x16,	&ireg,	NULL);

First	steps	in	the	kernel	setup	code

35

https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L65
http://www.ctyme.com/intr/rb-1756.htm
http://www.ctyme.com/intr/rb-1757.htm

Querying
The	next	couple	of	steps	are	queries	for	different	parameters.	We	will	not	dive	into	details
about	these	queries,	but	will	get	back	to	it	in	later	parts.	Let's	take	a	short	look	at	these
functions:

The	query_mca	routine	calls	the	0x15	BIOS	interrupt	to	get	the	machine	model	number,	sub-
model	number,	BIOS	revision	level,	and	other	hardware-specific	attributes:

int	query_mca(void)

{

				struct	biosregs	ireg,	oreg;

				u16	len;

				initregs(&ireg);

				ireg.ah	=	0xc0;

				intcall(0x15,	&ireg,	&oreg);

				if	(oreg.eflags	&	X86_EFLAGS_CF)

								return	-1;		/*	No	MCA	present	*/

				set_fs(oreg.es);

				len	=	rdfs16(oreg.bx);

				if	(len	>	sizeof(boot_params.sys_desc_table))

								len	=	sizeof(boot_params.sys_desc_table);

				copy_from_fs(&boot_params.sys_desc_table,	oreg.bx,	len);

				return	0;

}

It	fills	the		ah		register	with		0xc0		and	calls	the		0x15		BIOS	interruption.	After	the	interrupt
execution	it	checks	the	carry	flag	and	if	it	is	set	to	1,	the	BIOS	doesn't	support	MCA.	If	carry
flag	is	set	to	0,		ES:BX		will	contain	a	pointer	to	the	system	information	table,	which	looks	like
this:

First	steps	in	the	kernel	setup	code

36

https://github.com/torvalds/linux/blob/master/arch/x86/boot/mca.c#L18
http://www.ctyme.com/intr/rb-1594.htm
http://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Micro_Channel_architecture

Offset		Size				Description

	00h				WORD				number	of	bytes	following

	02h				BYTE				model	(see	#00515)

	03h				BYTE				submodel	(see	#00515)

	04h				BYTE				BIOS	revision:	0	for	first	release,	1	for	2nd,	etc.

	05h				BYTE				feature	byte	1	(see	#00510)

	06h				BYTE				feature	byte	2	(see	#00511)

	07h				BYTE				feature	byte	3	(see	#00512)

	08h				BYTE				feature	byte	4	(see	#00513)

	09h				BYTE				feature	byte	5	(see	#00514)

---AWARD	BIOS---

	0Ah		N	BYTEs			AWARD	copyright	notice

---Phoenix	BIOS---

	0Ah				BYTE				???	(00h)

	0Bh				BYTE				major	version

	0Ch				BYTE				minor	version	(BCD)

	0Dh		4	BYTEs			ASCIZ	string	"PTL"	(Phoenix	Technologies	Ltd)

---Quadram	Quad386---

	0Ah	17	BYTEs			ASCII	signature	string	"Quadram	Quad386XT"

---Toshiba	(Satellite	Pro	435CDS	at	least)---

	0Ah		7	BYTEs			signature	"TOSHIBA"

	11h				BYTE				???	(8h)

	12h				BYTE				???	(E7h)	product	ID???	(guess)

	13h		3	BYTEs			"JPN"

Next	we	call	the		set_fs		routine	and	pass	the	value	of	the		es		register	to	it.	The
implementation	of		set_fs		is	pretty	simple:

static	inline	void	set_fs(u16	seg)

{

				asm	volatile("movw	%0,%%fs"	:	:	"rm"	(seg));

}

This	function	contains	inline	assembly	which	gets	the	value	of	the		seg		parameter	and	puts
it	into	the		fs		register.	There	are	many	functions	in	boot.h	like		set_fs	,	for	example
	set_gs	,		fs	,		gs		for	reading	a	value	in	it	etc...

At	the	end	of		query_mca		it	just	copies	the	table	pointed	to	by		es:bx		to	the
	boot_params.sys_desc_table	.

The	next	step	is	getting	Intel	SpeedStep	information	by	calling	the		query_ist		function.	First
of	all	it	checks	the	CPU	level	and	if	it	is	correct,	calls		0x15		for	getting	info	and	saves	the
result	to		boot_params	.

The	following	query_apm_bios	function	gets	Advanced	Power	Management	information	from
the	BIOS.		query_apm_bios		calls	the		0x15		BIOS	interruption	too,	but	with		ah		=		0x53		to
check		APM		installation.	After	the		0x15		execution,		query_apm_bios		functions	check	the		PM	

First	steps	in	the	kernel	setup	code

37

https://github.com/torvalds/linux/blob/master/arch/x86/boot/boot.h
http://en.wikipedia.org/wiki/SpeedStep
https://github.com/torvalds/linux/blob/master/arch/x86/boot/apm.c#L21
http://en.wikipedia.org/wiki/Advanced_Power_Management

signature	(it	must	be		0x504d),	carry	flag	(it	must	be	0	if		APM		supported)	and	value	of	the
	cx		register	(if	it's	0x02,	protected	mode	interface	is	supported).

Next	it	calls		0x15		again,	but	with		ax	=	0x5304		for	disconnecting	the		APM		interface	and
connecting	the	32-bit	protected	mode	interface.	In	the	end	it	fills		boot_params.apm_bios_info	
with	values	obtained	from	the	BIOS.

Note	that		query_apm_bios		will	be	executed	only	if		CONFIG_APM		or		CONFIG_APM_MODULE		was
set	in	the	configuration	file:

#if	defined(CONFIG_APM)	||	defined(CONFIG_APM_MODULE)

				query_apm_bios();

#endif

The	last	is	the		query_edd		function,	which	queries		Enhanced	Disk	Drive		information	from	the
BIOS.	Let's	look	into	the		query_edd		implementation.

First	of	all	it	reads	the	edd	option	from	the	kernel's	command	line	and	if	it	was	set	to		off	
then		query_edd		just	returns.

If	EDD	is	enabled,		query_edd		goes	over	BIOS-supported	hard	disks	and	queries	EDD
information	in	the	following	loop:

for	(devno	=	0x80;	devno	<	0x80+EDD_MBR_SIG_MAX;	devno++)	{

				if	(!get_edd_info(devno,	&ei)	&&	boot_params.eddbuf_entries	<	EDDMAXNR)	{

								memcpy(edp,	&ei,	sizeof	ei);

								edp++;

								boot_params.eddbuf_entries++;

				}

				...

				...

				...

where		0x80		is	the	first	hard	drive	and	the	value	of		EDD_MBR_SIG_MAX		macro	is	16.	It	collects
data	into	the	array	of	edd_info	structures.		get_edd_info		checks	that	EDD	is	present	by
invoking	the		0x13		interrupt	with		ah		as		0x41		and	if	EDD	is	present,		get_edd_info		again
calls	the		0x13		interrupt,	but	with		ah		as		0x48		and		si		containing	the	address	of	the	buffer
where	EDD	information	will	be	stored.

Conclusion

First	steps	in	the	kernel	setup	code

38

https://github.com/torvalds/linux/blob/master/arch/x86/boot/edd.c#L122
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt#L1023
https://github.com/torvalds/linux/blob/master/include/uapi/linux/edd.h#L172

This	is	the	end	of	the	second	part	about	Linux	kernel	insides.	In	the	next	part	we	will	see
video	mode	setting	and	the	rest	of	preparations	before	transition	to	protected	mode	and
directly	transitioning	into	it.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	a	PR	to	linux-insides.

Links
Protected	mode
Protected	mode
Long	mode
Nice	explanation	of	CPU	Modes	with	code
How	to	Use	Expand	Down	Segments	on	Intel	386	and	Later	CPUs
earlyprintk	documentation
Kernel	Parameters
Serial	console
Intel	SpeedStep
APM
EDD	specification
TLDP	documentation	for	Linux	Boot	Process	(old)
Previous	Part

First	steps	in	the	kernel	setup	code

39

https://twitter.com/0xAX
https://github.com/0xAX/linux-internals
http://en.wikipedia.org/wiki/Protected_mode
http://wiki.osdev.org/Protected_Mode
http://en.wikipedia.org/wiki/Long_mode
http://www.codeproject.com/Articles/45788/The-Real-Protected-Long-mode-assembly-tutorial-for
http://www.sudleyplace.com/dpmione/expanddown.html
http://lxr.free-electrons.com/source/Documentation/x86/earlyprintk.txt
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/Documentation/serial-console.txt
http://en.wikipedia.org/wiki/SpeedStep
https://en.wikipedia.org/wiki/Advanced_Power_Management
http://www.t13.org/documents/UploadedDocuments/docs2004/d1572r3-EDD3.pdf
http://www.tldp.org/HOWTO/Linux-i386-Boot-Code-HOWTO/setup.html

Kernel	booting	process.	Part	3.

Video	mode	initialization	and	transition	to
protected	mode
This	is	the	third	part	of	the		Kernel	booting	process		series.	In	the	previous	part,	we	stopped
right	before	the	call	of	the		set_video		routine	from	main.c.	In	this	part,	we	will	see:

video	mode	initialization	in	the	kernel	setup	code,
preparation	before	switching	into	protected	mode,
transition	to	protected	mode

NOTE	If	you	don't	know	anything	about	protected	mode,	you	can	find	some	information
about	it	in	the	previous	part.	Also	there	are	a	couple	of	links	which	can	help	you.

As	I	wrote	above,	we	will	start	from	the		set_video		function	which	is	defined	in	the
arch/x86/boot/video.c	source	code	file.	We	can	see	that	it	starts	by	first	getting	the	video
mode	from	the		boot_params.hdr		structure:

u16	mode	=	boot_params.hdr.vid_mode;

which	we	filled	in	the		copy_boot_params		function	(you	can	read	about	it	in	the	previous	post).
	vid_mode		is	an	obligatory	field	which	is	filled	by	the	bootloader.	You	can	find	information
about	it	in	the	kernel	boot	protocol:

Offset				Proto				Name								Meaning

/Size

01FA/2				ALL								vid_mode				Video	mode	control

As	we	can	read	from	the	linux	kernel	boot	protocol:

vga=<mode>

				<mode>	here	is	either	an	integer	(in	C	notation,	either

				decimal,	octal,	or	hexadecimal)	or	one	of	the	strings

				"normal"	(meaning	0xFFFF),	"ext"	(meaning	0xFFFE)	or	"ask"

				(meaning	0xFFFD).		This	value	should	be	entered	into	the

				vid_mode	field,	as	it	is	used	by	the	kernel	before	the	command

				line	is	parsed.

Video	mode	initialization	and	transition	to	protected	mode

40

https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L181
https://github.com/torvalds/linux/blob/master/arch/x86/boot/video.c#L315

So	we	can	add		vga		option	to	the	grub	or	another	bootloader	configuration	file	and	it	will
pass	this	option	to	the	kernel	command	line.	This	option	can	have	different	values	as
mentioned	in	the	description.	For	example,	it	can	be	an	integer	number		0xFFFD		or		ask	.	If
you	pass		ask		to		vga	,	you	will	see	a	menu	like	this:

which	will	ask	to	select	a	video	mode.	We	will	look	at	its	implementation,	but	before	diving
into	the	implementation	we	have	to	look	at	some	other	things.

Kernel	data	types
Earlier	we	saw	definitions	of	different	data	types	like		u16		etc.	in	the	kernel	setup	code.	Let's
look	at	a	couple	of	data	types	provided	by	the	kernel:

Type char short int long u8 u16 u32 u64

Size 1 2 4 8 1 2 4 8

If	you	the	read	source	code	of	the	kernel,	you'll	see	these	very	often	and	so	it	will	be	good	to
remember	them.

Heap	API
After	we	get		vid_mode		from		boot_params.hdr		in	the		set_video		function,	we	can	see	the
call	to	the		RESET_HEAP		function.		RESET_HEAP		is	a	macro	which	is	defined	in	boot.h.	It	is
defined	as:

Video	mode	initialization	and	transition	to	protected	mode

41

https://github.com/torvalds/linux/blob/master/arch/x86/boot/boot.h#L199

#define	RESET_HEAP()	((void	*)(HEAP	=	_end))

If	you	have	read	the	second	part,	you	will	remember	that	we	initialized	the	heap	with	the
	init_heap		function.	We	have	a	couple	of	utility	functions	for	heap	which	are	defined	in
	boot.h	.	They	are:

#define	RESET_HEAP()

As	we	saw	just	above,	it	resets	the	heap	by	setting	the		HEAP		variable	equal	to		_end	,	where
	_end		is	just		extern	char	_end[];	

Next	is	the		GET_HEAP		macro:

#define	GET_HEAP(type,	n)	\

				((type	*)__get_heap(sizeof(type),__alignof__(type),(n)))

for	heap	allocation.	It	calls	the	internal	function		__get_heap		with	3	parameters:

size	of	a	type	in	bytes,	which	need	be	allocated
	__alignof__(type)		shows	how	variables	of	this	type	are	aligned
	n		tells	how	many	items	to	allocate

Implementation	of		__get_heap		is:

static	inline	char	*__get_heap(size_t	s,	size_t	a,	size_t	n)

{

				char	*tmp;

				HEAP	=	(char	*)(((size_t)HEAP+(a-1))	&	~(a-1));

				tmp	=	HEAP;

				HEAP	+=	s*n;

				return	tmp;

}

and	further	we	will	see	its	usage,	something	like:

saved.data	=	GET_HEAP(u16,	saved.x	*	saved.y);

Let's	try	to	understand	how		__get_heap		works.	We	can	see	here	that		HEAP		(which	is	equal
to		_end		after		RESET_HEAP())	is	the	address	of	aligned	memory	according	to	the		a	
parameter.	After	this	we	save	the	memory	address	from		HEAP		to	the		tmp		variable,	move
	HEAP		to	the	end	of	the	allocated	block	and	return		tmp		which	is	the	start	address	of
allocated	memory.

Video	mode	initialization	and	transition	to	protected	mode

42

https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L116

And	the	last	function	is:

static	inline	bool	heap_free(size_t	n)

{

				return	(int)(heap_end	-	HEAP)	>=	(int)n;

}

which	subtracts	value	of	the		HEAP		from	the		heap_end		(we	calculated	it	in	the	previous	part)
and	returns	1	if	there	is	enough	memory	for		n	.

That's	all.	Now	we	have	a	simple	API	for	heap	and	can	setup	video	mode.

Set	up	video	mode
Now	we	can	move	directly	to	video	mode	initialization.	We	stopped	at	the		RESET_HEAP()		call
in	the		set_video		function.	Next	is	the	call	to		store_mode_params		which	stores	video	mode
parameters	in	the		boot_params.screen_info		structure	which	is	defined	in
include/uapi/linux/screen_info.h.

If	we	look	at	the		store_mode_params		function,	we	can	see	that	it	starts	with	the	call	to	the
	store_cursor_position		function.	As	you	can	understand	from	the	function	name,	it	gets
information	about	cursor	and	stores	it.

First	of	all		store_cursor_position		initializes	two	variables	which	have	type		biosregs		with
	AH	=	0x3	,	and	calls		0x10		BIOS	interruption.	After	the	interruption	is	successfully	executed,
it	returns	row	and	column	in	the		DL		and		DH		registers.	Row	and	column	will	be	stored	in
the		orig_x		and		orig_y		fields	from	the		boot_params.screen_info		structure.

After		store_cursor_position		is	executed,	the		store_video_mode		function	will	be	called.	It
just	gets	the	current	video	mode	and	stores	it	in		boot_params.screen_info.orig_video_mode	.

After	this,	it	checks	the	current	video	mode	and	sets	the		video_segment	.	After	the	BIOS
transfers	control	to	the	boot	sector,	the	following	addresses	are	for	video	memory:

0xB000:0x0000					32	Kb					Monochrome	Text	Video	Memory

0xB800:0x0000					32	Kb					Color	Text	Video	Memory

So	we	set	the		video_segment		variable	to		0xB000		if	the	current	video	mode	is	MDA,	HGC,	or
VGA	in	monochrome	mode	and	to		0xB800		if	the	current	video	mode	is	in	color	mode.	After
setting	up	the	address	of	the	video	segment,	font	size	needs	to	be	stored	in
	boot_params.screen_info.orig_video_points		with:

Video	mode	initialization	and	transition	to	protected	mode

43

https://github.com/0xAX/linux/blob/master/include/uapi/linux/screen_info.h

set_fs(0);

font_size	=	rdfs16(0x485);

boot_params.screen_info.orig_video_points	=	font_size;

First	of	all	we	put	0	in	the		FS		register	with	the		set_fs		function.	We	already	saw	functions
like		set_fs		in	the	previous	part.	They	are	all	defined	in	boot.h.	Next	we	read	the	value
which	is	located	at	address		0x485		(this	memory	location	is	used	to	get	the	font	size)	and
save	the	font	size	in		boot_params.screen_info.orig_video_points	.

	x	=	rdfs16(0x44a);

	y	=	(adapter	==	ADAPTER_CGA)	?	25	:	rdfs8(0x484)+1;

Next	we	get	the	amount	of	columns	by	address		0x44a		and	rows	by	address		0x484		and
store	them	in		boot_params.screen_info.orig_video_cols		and
	boot_params.screen_info.orig_video_lines	.	After	this,	execution	of		store_mode_params		is
finished.

Next	we	can	see	the		save_screen		function	which	just	saves	screen	content	to	the	heap.
This	function	collects	all	data	which	we	got	in	the	previous	functions	like	rows	and	columns
amount	etc.	and	stores	it	in	the		saved_screen		structure,	which	is	defined	as:

static	struct	saved_screen	{

				int	x,	y;

				int	curx,	cury;

				u16	*data;

}	saved;

It	then	checks	whether	the	heap	has	free	space	for	it	with:

if	(!heap_free(saved.x*saved.y*sizeof(u16)+512))

								return;

and	allocates	space	in	the	heap	if	it	is	enough	and	stores		saved_screen		in	it.

The	next	call	is		probe_cards(0)		from	arch/x86/boot/video-mode.c.	It	goes	over	all
video_cards	and	collects	the	number	of	modes	provided	by	the	cards.	Here	is	the	interesting
moment,	we	can	see	the	loop:

for	(card	=	video_cards;	card	<	video_cards_end;	card++)	{

		/*	collecting	number	of	modes	here	*/

}

Video	mode	initialization	and	transition	to	protected	mode

44

https://github.com/0xAX/linux/blob/master/arch/x86/boot/boot.h
https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L33

but		video_cards		is	not	declared	anywhere.	Answer	is	simple:	Every	video	mode	presented
in	the	x86	kernel	setup	code	has	definition	like	this:

static	__videocard	video_vga	=	{

				.card_name				=	"VGA",

				.probe								=	vga_probe,

				.set_mode				=	vga_set_mode,

};

where		__videocard		is	a	macro:

#define	__videocard	struct	card_info	__attribute__((used,section(".videocards")))

which	means	that		card_info		structure:

struct	card_info	{

				const	char	*card_name;

				int	(*set_mode)(struct	mode_info	*mode);

				int	(*probe)(void);

				struct	mode_info	*modes;

				int	nmodes;

				int	unsafe;

				u16	xmode_first;

				u16	xmode_n;

};

is	in	the		.videocards		segment.	Let's	look	in	the	arch/x86/boot/setup.ld	linker	script,	where
we	can	find:

				.videocards				:	{

								video_cards	=	.;

								*(.videocards)

								video_cards_end	=	.;

				}

It	means	that		video_cards		is	just	a	memory	address	and	all		card_info		structures	are
placed	in	this	segment.	It	means	that	all		card_info		structures	are	placed	between
	video_cards		and		video_cards_end	,	so	we	can	use	it	in	a	loop	to	go	over	all	of	it.	After
	probe_cards		executes	we	have	all	structures	like		static	__videocard	video_vga		with	filled
	nmodes		(number	of	video	modes).

After		probe_cards		execution	is	finished,	we	move	to	the	main	loop	in	the		set_video	
function.	There	is	an	infinite	loop	which	tries	to	set	up	video	mode	with	the		set_mode	
function	or	prints	a	menu	if	we	passed		vid_mode=ask		to	the	kernel	command	line	or	video

Video	mode	initialization	and	transition	to	protected	mode

45

https://github.com/0xAX/linux/blob/master/arch/x86/boot/setup.ld

mode	is	undefined.

The		set_mode		function	is	defined	in	video-mode.c	and	gets	only	one	parameter,		mode	,
which	is	the	number	of	video	modes	(we	got	it	from	the	menu	or	in	the	start	of		setup_video	,
from	the	kernel	setup	header).

The		set_mode		function	checks	the		mode		and	calls	the		raw_set_mode		function.	The
	raw_set_mode		calls	the		set_mode		function	for	the	selected	card	i.e.		card->set_mode(struct
mode_info*)	.	We	can	get	access	to	this	function	from	the		card_info		structure.	Every	video
mode	defines	this	structure	with	values	filled	depending	upon	the	video	mode	(for	example
for		vga		it	is	the		video_vga.set_mode		function.	See	above	example	of		card_info		structure
for		vga).		video_vga.set_mode		is		vga_set_mode	,	which	checks	the	vga	mode	and	calls	the
respective	function:

static	int	vga_set_mode(struct	mode_info	*mode)

{

				vga_set_basic_mode();

				force_x	=	mode->x;

				force_y	=	mode->y;

				switch	(mode->mode)	{

				case	VIDEO_80x25:

								break;

				case	VIDEO_8POINT:

								vga_set_8font();

								break;

				case	VIDEO_80x43:

								vga_set_80x43();

								break;

				case	VIDEO_80x28:

								vga_set_14font();

								break;

				case	VIDEO_80x30:

								vga_set_80x30();

								break;

				case	VIDEO_80x34:

								vga_set_80x34();

								break;

				case	VIDEO_80x60:

								vga_set_80x60();

								break;

				}

				return	0;

}

Every	function	which	sets	up	video	mode	just	calls	the		0x10		BIOS	interrupt	with	a	certain
value	in	the		AH		register.

Video	mode	initialization	and	transition	to	protected	mode

46

https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L147

After	we	have	set	video	mode,	we	pass	it	to		boot_params.hdr.vid_mode	.

Next		vesa_store_edid		is	called.	This	function	simply	stores	the	EDID	(Extended	Display
Identification	Data)	information	for	kernel	use.	After	this		store_mode_params		is	called	again.
Lastly,	if		do_restore		is	set,	the	screen	is	restored	to	an	earlier	state.

After	this	we	have	set	video	mode	and	now	we	can	switch	to	the	protected	mode.

Last	preparation	before	transition	into
protected	mode
We	can	see	the	last	function	call	-		go_to_protected_mode		-	in	main.c.	As	the	comment	says:
	Do	the	last	things	and	invoke	protected	mode	,	so	let's	see	these	last	things	and	switch	into
protected	mode.

	go_to_protected_mode		is	defined	in	arch/x86/boot/pm.c.	It	contains	some	functions	which
make	the	last	preparations	before	we	can	jump	into	protected	mode,	so	let's	look	at	it	and	try
to	understand	what	they	do	and	how	it	works.

First	is	the	call	to	the		realmode_switch_hook		function	in		go_to_protected_mode	.	This	function
invokes	the	real	mode	switch	hook	if	it	is	present	and	disables	NMI.	Hooks	are	used	if	the
bootloader	runs	in	a	hostile	environment.	You	can	read	more	about	hooks	in	the	boot
protocol	(see	ADVANCED	BOOT	LOADER	HOOKS).

The		realmode_switch		hook	presents	a	pointer	to	the	16-bit	real	mode	far	subroutine	which
disables	non-maskable	interrupts.	After		realmode_switch		hook	(it	isn't	present	for	me)	is
checked,	disabling	of	Non-Maskable	Interrupts(NMI)	occurs:

asm	volatile("cli");

outb(0x80,	0x70);				/*	Disable	NMI	*/

io_delay();

At	first	there	is	an	inline	assembly	instruction	with	a		cli		instruction	which	clears	the
interrupt	flag	(IF).	After	this,	external	interrupts	are	disabled.	The	next	line	disables	NMI
(non-maskable	interrupt).

An	interrupt	is	a	signal	to	the	CPU	which	is	emitted	by	hardware	or	software.	After	getting
the	signal,	the	CPU	suspends	the	current	instruction	sequence,	saves	its	state	and	transfers
control	to	the	interrupt	handler.	After	the	interrupt	handler	has	finished	it's	work,	it	transfers
control	to	the	interrupted	instruction.	Non-maskable	interrupts	(NMI)	are	interrupts	which	are

Video	mode	initialization	and	transition	to	protected	mode

47

https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L184
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pm.c#L104
http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://www.kernel.org/doc/Documentation/x86/boot.txt

always	processed,	independently	of	permission.	It	cannot	be	ignored	and	is	typically	used	to
signal	for	non-recoverable	hardware	errors.	We	will	not	dive	into	details	of	interrupts	now,
but	will	discuss	it	in	the	next	posts.

Let's	get	back	to	the	code.	We	can	see	that	second	line	is	writing		0x80		(disabled	bit)	byte	to
	0x70		(CMOS	Address	register).	After	that,	a	call	to	the		io_delay		function	occurs.
	io_delay		causes	a	small	delay	and	looks	like:

static	inline	void	io_delay(void)

{

				const	u16	DELAY_PORT	=	0x80;

				asm	volatile("outb	%%al,%0"	:	:	"dN"	(DELAY_PORT));

}

Outputting	any	byte	to	the	port		0x80		should	delay	exactly	1	microsecond.	So	we	can	write
any	value	(value	from		AL		register	in	our	case)	to	the		0x80		port.	After	this	delay
	realmode_switch_hook		function	has	finished	execution	and	we	can	move	to	the	next	function.

The	next	function	is		enable_a20	,	which	enables	A20	line.	This	function	is	defined	in
arch/x86/boot/a20.c	and	it	tries	to	enable	the	A20	gate	with	different	methods.	The	first	is	the
	a20_test_short		function	which	checks	if	A20	is	already	enabled	or	not	with	the		a20_test	
function:

static	int	a20_test(int	loops)

{

				int	ok	=	0;

				int	saved,	ctr;

				set_fs(0x0000);

				set_gs(0xffff);

				saved	=	ctr	=	rdfs32(A20_TEST_ADDR);

				while	(loops--)	{

								wrfs32(++ctr,	A20_TEST_ADDR);

								io_delay();				/*	Serialize	and	make	delay	constant	*/

								ok	=	rdgs32(A20_TEST_ADDR+0x10)	^	ctr;

								if	(ok)

												break;

				}

				wrfs32(saved,	A20_TEST_ADDR);

				return	ok;

}

Video	mode	initialization	and	transition	to	protected	mode

48

http://en.wikipedia.org/wiki/A20_line
https://github.com/torvalds/linux/blob/master/arch/x86/boot/a20.c

First	of	all	we	put		0x0000		in	the		FS		register	and		0xffff		in	the		GS		register.	Next	we	read
the	value	in	address		A20_TEST_ADDR		(it	is		0x200)	and	put	this	value	into	the		saved		variable
and		ctr	.

Next	we	write	an	updated		ctr		value	into		fs:gs		with	the		wrfs32		function,	then	delay	for
1ms,	and	then	read	the	value	from	the		GS		register	by	address		A20_TEST_ADDR+0x10	,	if	it's
not	zero	we	already	have	enabled	the	A20	line.	If	A20	is	disabled,	we	try	to	enable	it	with	a
different	method	which	you	can	find	in	the		a20.c	.	For	example	with	call	of		0x15		BIOS
interrupt	with		AH=0x2041		etc.

If	the		enabled_a20		function	finished	with	fail,	print	an	error	message	and	call	function		die	.
You	can	remember	it	from	the	first	source	code	file	where	we	started	-
arch/x86/boot/header.S:

die:

				hlt

				jmp				die

				.size				die,	.-die

After	the	A20	gate	is	successfully	enabled,	the		reset_coprocessor		function	is	called:

outb(0,	0xf0);

outb(0,	0xf1);

This	function	clears	the	Math	Coprocessor	by	writing		0		to		0xf0		and	then	resets	it	by
writing		0		to		0xf1	.

After	this,	the		mask_all_interrupts		function	is	called:

outb(0xff,	0xa1);							/*	Mask	all	interrupts	on	the	secondary	PIC	*/

outb(0xfb,	0x21);							/*	Mask	all	but	cascade	on	the	primary	PIC	*/

This	masks	all	interrupts	on	the	secondary	PIC	(Programmable	Interrupt	Controller)	and
primary	PIC	except	for	IRQ2	on	the	primary	PIC.

And	after	all	of	these	preparations,	we	can	see	the	actual	transition	into	protected	mode.

Set	up	Interrupt	Descriptor	Table
Now	we	set	up	the	Interrupt	Descriptor	table	(IDT).		setup_idt	:

Video	mode	initialization	and	transition	to	protected	mode

49

https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

which	sets	up	the	Interrupt	Descriptor	Table	(describes	interrupt	handlers	and	etc.).	For	now
the	IDT	is	not	installed	(we	will	see	it	later),	but	now	we	just	the	load	IDT	with	the		lidtl	
instruction.		null_idt		contains	address	and	size	of	IDT,	but	now	they	are	just	zero.
	null_idt		is	a		gdt_ptr		structure,	it	as	defined	as:

struct	gdt_ptr	{

				u16	len;

				u32	ptr;

}	__attribute__((packed));

where	we	can	see	the	16-bit	length(len)	of	the	IDT	and	the	32-bit	pointer	to	it	(More	details
about	the	IDT	and	interruptions	will	be	seen	in	the	next	posts).		__attribute__((packed))	
means	that	the	size	of		gdt_ptr		is	the	minimum	required	size.	So	the	size	of	the		gdt_ptr	
will	be	6	bytes	here	or	48	bits.	(Next	we	will	load	the	pointer	to	the		gdt_ptr		to	the		GDTR	
register	and	you	might	remember	from	the	previous	post	that	it	is	48-bits	in	size).

Set	up	Global	Descriptor	Table
Next	is	the	setup	of	the	Global	Descriptor	Table	(GDT).	We	can	see	the		setup_gdt		function
which	sets	up	GDT	(you	can	read	about	it	in	the	Kernel	booting	process.	Part	2.).	There	is	a
definition	of	the		boot_gdt		array	in	this	function,	which	contains	the	definition	of	the	three
segments:

				static	const	u64	boot_gdt[]	__attribute__((aligned(16)))	=	{

								[GDT_ENTRY_BOOT_CS]	=	GDT_ENTRY(0xc09b,	0,	0xfffff),

								[GDT_ENTRY_BOOT_DS]	=	GDT_ENTRY(0xc093,	0,	0xfffff),

								[GDT_ENTRY_BOOT_TSS]	=	GDT_ENTRY(0x0089,	4096,	103),

				};

For	code,	data	and	TSS	(Task	State	Segment).	We	will	not	use	the	task	state	segment	for
now,	it	was	added	there	to	make	Intel	VT	happy	as	we	can	see	in	the	comment	line	(if	you're
interested	you	can	find	commit	which	describes	it	-	here).	Let's	look	at		boot_gdt	.	First	of	all
note	that	it	has	the		__attribute__((aligned(16)))		attribute.	It	means	that	this	structure	will
be	aligned	by	16	bytes.	Let's	look	at	a	simple	example:

Video	mode	initialization	and	transition	to	protected	mode

50

https://github.com/torvalds/linux/commit/88089519f302f1296b4739be45699f06f728ec31

#include	<stdio.h>

struct	aligned	{

				int	a;

}__attribute__((aligned(16)));

struct	nonaligned	{

				int	b;

};

int	main(void)

{

				struct	aligned				a;

				struct	nonaligned	na;

				printf("Not	aligned	-	%zu	\n",	sizeof(na));

				printf("Aligned	-	%zu	\n",	sizeof(a));

				return	0;

}

Technically	a	structure	which	contains	one		int		field	must	be	4	bytes,	but	here		aligned	
structure	will	be	16	bytes:

$	gcc	test.c	-o	test	&&	test

Not	aligned	-	4

Aligned	-	16

	GDT_ENTRY_BOOT_CS		has	index	-	2	here,		GDT_ENTRY_BOOT_DS		is		GDT_ENTRY_BOOT_CS	+	1		and
etc.	It	starts	from	2,	because	first	is	a	mandatory	null	descriptor	(index	-	0)	and	the	second	is
not	used	(index	-	1).

	GDT_ENTRY		is	a	macro	which	takes	flags,	base	and	limit	and	builds	GDT	entry.	For	example
let's	look	at	the	code	segment	entry.		GDT_ENTRY		takes	following	values:

base	-	0
limit	-	0xfffff
flags	-	0xc09b

What	does	this	mean?	The	segment's	base	address	is	0,	and	the	limit	(size	of	segment)	is	-
	0xffff		(1	MB).	Let's	look	at	the	flags.	It	is		0xc09b		and	it	will	be:

1100	0000	1001	1011

in	binary.	Let's	try	to	understand	what	every	bit	means.	We	will	go	through	all	bits	from	left	to
right:

Video	mode	initialization	and	transition	to	protected	mode

51

1	-	(G)	granularity	bit
1	-	(D)	if	0	16-bit	segment;	1	=	32-bit	segment
0	-	(L)	executed	in	64	bit	mode	if	1
0	-	(AVL)	available	for	use	by	system	software
0000	-	4	bit	length	19:16	bits	in	the	descriptor
1	-	(P)	segment	presence	in	memory
00	-	(DPL)	-	privilege	level,	0	is	the	highest	privilege
1	-	(S)	code	or	data	segment,	not	a	system	segment
101	-	segment	type	execute/read/
1	-	accessed	bit

You	can	read	more	about	every	bit	in	the	previous	post	or	in	the	Intel®	64	and	IA-32
Architectures	Software	Developer's	Manuals	3A.

After	this	we	get	the	length	of	the	GDT	with:

gdt.len	=	sizeof(boot_gdt)-1;

We	get	the	size	of		boot_gdt		and	subtract	1	(the	last	valid	address	in	the	GDT).

Next	we	get	a	pointer	to	the	GDT	with:

gdt.ptr	=	(u32)&boot_gdt	+	(ds()	<<	4);

Here	we	just	get	the	address	of		boot_gdt		and	add	it	to	the	address	of	the	data	segment	left-
shifted	by	4	bits	(remember	we're	in	the	real	mode	now).

Lastly	we	execute	the		lgdtl		instruction	to	load	the	GDT	into	the	GDTR	register:

asm	volatile("lgdtl	%0"	:	:	"m"	(gdt));

Actual	transition	into	protected	mode
This	is	the	end	of	the		go_to_protected_mode		function.	We	loaded	IDT,	GDT,	disable
interruptions	and	now	can	switch	the	CPU	into	protected	mode.	The	last	step	is	calling	the
	protected_mode_jump		function	with	two	parameters:

protected_mode_jump(boot_params.hdr.code32_start,	(u32)&boot_params	+	(ds()	<<	4));

which	is	defined	in	arch/x86/boot/pmjump.S.	It	takes	two	parameters:

Video	mode	initialization	and	transition	to	protected	mode

52

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S#L26

address	of	protected	mode	entry	point
address	of		boot_params	

Let's	look	inside		protected_mode_jump	.	As	I	wrote	above,	you	can	find	it	in
	arch/x86/boot/pmjump.S	.	The	first	parameter	will	be	in	the		eax		register	and	second	is	in
	edx	.

First	of	all	we	put	the	address	of		boot_params		in	the		esi		register	and	the	address	of	code
segment	register		cs		(0x1000)	in		bx	.	After	this	we	shift		bx		by	4	bits	and	add	the	address
of	label		2		to	it	(we	will	have	the	physical	address	of	label		2		in	the		bx		after	this)	and	jump
to	label		1	.	Next	we	put	data	segment	and	task	state	segment	in	the		cs		and		di		registers
with:

movw				$__BOOT_DS,	%cx

movw				$__BOOT_TSS,	%di

As	you	can	read	above		GDT_ENTRY_BOOT_CS		has	index	2	and	every	GDT	entry	is	8	byte,	so
	CS		will	be		2	*	8	=	16	,		__BOOT_DS		is	24	etc.

Next	we	set	the		PE		(Protection	Enable)	bit	in	the		CR0		control	register:

movl				%cr0,	%edx

orb				$X86_CR0_PE,	%dl

movl				%edx,	%cr0

and	make	a	long	jump	to	protected	mode:

				.byte				0x66,	0xea

2:				.long				in_pm32

				.word				__BOOT_CS

where

	0x66		is	the	operand-size	prefix	which	allows	us	to	mix	16-bit	and	32-bit	code,
	0xea		-	is	the	jump	opcode,
	in_pm32		is	the	segment	offset
	__BOOT_CS		is	the	code	segment.

After	this	we	are	finally	in	the	protected	mode:

.code32

.section	".text32","ax"

Video	mode	initialization	and	transition	to	protected	mode

53

Let's	look	at	the	first	steps	in	protected	mode.	First	of	all	we	set	up	the	data	segment	with:

movl				%ecx,	%ds

movl				%ecx,	%es

movl				%ecx,	%fs

movl				%ecx,	%gs

movl				%ecx,	%ss

If	you	paid	attention,	you	can	remember	that	we	saved		$__BOOT_DS		in	the		cx		register.	Now
we	fill	it	with	all	segment	registers	besides		cs		(cs		is	already		__BOOT_CS).	Next	we	zero
out	all	general	purpose	registers	besides		eax		with:

xorl				%ecx,	%ecx

xorl				%edx,	%edx

xorl				%ebx,	%ebx

xorl				%ebp,	%ebp

xorl				%edi,	%edi

And	jump	to	the	32-bit	entry	point	in	the	end:

jmpl				*%eax

Remember	that		eax		contains	the	address	of	the	32-bit	entry	(we	passed	it	as	first
parameter	into		protected_mode_jump).

That's	all.	We're	in	the	protected	mode	and	stop	at	it's	entry	point.	We	will	see	what	happens
next	in	the	next	part.

Conclusion
This	is	the	end	of	the	third	part	about	linux	kernel	insides.	In	next	part	we	will	see	first	steps
in	the	protected	mode	and	transition	into	the	long	mode.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes,	please	send	me	a	PR	with	corrections	at
linux-insides.

Links
VGA

Video	mode	initialization	and	transition	to	protected	mode

54

http://en.wikipedia.org/wiki/Long_mode
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals
http://en.wikipedia.org/wiki/Video_Graphics_Array

VESA	BIOS	Extensions
Data	structure	alignment
Non-maskable	interrupt
A20
GCC	designated	inits
GCC	type	attributes
Previous	part

Video	mode	initialization	and	transition	to	protected	mode

55

http://en.wikipedia.org/wiki/VESA_BIOS_Extensions
http://en.wikipedia.org/wiki/Data_structure_alignment
http://en.wikipedia.org/wiki/Non-maskable_interrupt
http://en.wikipedia.org/wiki/A20_line
https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Designated-Inits.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html

Kernel	booting	process.	Part	4.

Transition	to	64-bit	mode
This	is	the	fourth	part	of	the		Kernel	booting	process		where	we	will	see	first	steps	in
protected	mode,	like	checking	that	cpu	supports	long	mode	and	SSE,	paging,	initializes	the
page	tables	and	at	the	end	we	will	discus	the	transition	to	long	mode.

NOTE:	there	will	be	much	assembly	code	in	this	part,	so	if	you	are	not	familiar	with
that,	you	might	want	to	consult	a	book	about	it

In	the	previous	part	we	stopped	at	the	jump	to	the	32-bit	entry	point	in
arch/x86/boot/pmjump.S:

jmpl				*%eax

You	will	recall	that		eax		register	contains	the	address	of	the	32-bit	entry	point.	We	can	read
about	this	in	the	linux	kernel	x86	boot	protocol:

When	using	bzImage,	the	protected-mode	kernel	was	relocated	to	0x100000

Let's	make	sure	that	it	is	true	by	looking	at	the	register	values	at	the	32-bit	entry	point:

eax												0x100000				1048576

ecx												0x0								0

edx												0x0								0

ebx												0x0								0

esp												0x1ff5c				0x1ff5c

ebp												0x0								0x0

esi												0x14470				83056

edi												0x0								0

eip												0x100000				0x100000

eflags									0x46								[PF	ZF]

cs													0x10				16

ss													0x18				24

ds													0x18				24

es													0x18				24

fs													0x18				24

gs													0x18				24

Transition	to	64-bit	mode

56

http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Long_mode
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-3.md
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S
https://www.kernel.org/doc/Documentation/x86/boot.txt

We	can	see	here	that		cs		register	contains	-		0x10		(as	you	will	remember	from	the	previous
part,	this	is	the	second	index	in	the	Global	Descriptor	Table),		eip		register	is		0x100000		and
base	address	of	all	segments	including	the	code	segment	are	zero.	So	we	can	get	the
physical	address,	it	will	be		0:0x100000		or	just		0x100000	,	as	specified	by	the	boot	protocol.
Now	let's	start	with	the	32-bit	entry	point.

32-bit	entry	point
We	can	find	the	definition	of	the	32-bit	entry	point	in	the
arch/x86/boot/compressed/head_64.S	assembly	source	code	file:

				__HEAD

				.code32

ENTRY(startup_32)

....

....

....

ENDPROC(startup_32)

First	of	all	why		compressed		directory?	Actually		bzimage		is	a	gzipped		vmlinux	+	header	+
kernel	setup	code	.	We	saw	the	kernel	setup	code	in	all	of	the	previous	parts.	So,	the	main
goal	of	the		head_64.S		is	to	prepare	for	entering	long	mode,	enter	into	it	and	then
decompress	the	kernel.	We	will	see	all	of	the	steps	up	to	kernel	decompression	in	this	part.

There	were	two	files	in	the		arch/x86/boot/compressed		directory:

head_32.S
head_64.S

but	we	will	see	only		head_64.S		because,	as	you	may	remember,	this	book	is	only		x86_64	
related;		head_32.S		is	not	used	in	our	case.	Let's	look	at
arch/x86/boot/compressed/Makefile.	There	we	can	see	the	following	target:

vmlinux-objs-y	:=	$(obj)/vmlinux.lds	$(obj)/head_$(BITS).o	$(obj)/misc.o	\

				$(obj)/string.o	$(obj)/cmdline.o	\

				$(obj)/piggy.o	$(obj)/cpuflags.o

Note		$(obj)/head_$(BITS).o	.	This	means	that	we	will	select	which	file	to	link	based	on	what
	$(BITS)		is	set	to,	either	head_32.o	or	head_64.o.		$(BITS)		is	defined	elsewhere	in
arch/x86/Makefile	based	on	the	.config	file:

Transition	to	64-bit	mode

57

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_32.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile

ifeq	($(CONFIG_X86_32),y)

								BITS	:=	32

								...

								...

else

								BITS	:=	64

								...

								...

endif

Now	we	know	where	to	start,	so	let's	do	it.

Reload	the	segments	if	needed
As	indicated	above,	we	start	in	the	arch/x86/boot/compressed/head_64.S	assembly	source
code	file.	First	we	see	the	definition	of	the	special	section	attribute	before	the		startup_32	
definition:

				__HEAD

				.code32

ENTRY(startup_32)

The		__HEAD		is	macro	which	is	defined	in	include/linux/init.h	header	file	and	expands	to	the
definition	of	the	following	section:

#define	__HEAD								.section				".head.text","ax"

with		.head.text		name	and		ax		flags.	In	our	case,	these	flags	show	us	that	this	section	is
executable	or	in	other	words	contains	code.	We	can	find	definition	of	this	section	in	the
arch/x86/boot/compressed/vmlinux.lds.S	linker	script:

SECTIONS

{

				.	=	0;

				.head.text	:	{

								_head	=	.	;

								HEAD_TEXT

								_ehead	=	.	;

				}

Transition	to	64-bit	mode

58

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://en.wikipedia.org/wiki/Executable
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/vmlinux.lds.S

If	you	are	not	familiar	with	syntax	of		GNU	LD		linker	scripting	language,	you	can	find	more
information	in	the	documentation.	In	short,	the		.		symbol	is	a	special	variable	of	linker	-
location	counter.	The	value	assigned	to	it	is	an	offset	relative	to	the	offset	of	the	segment.	In
our	case	we	assign	zero	to	location	counter.	This	means	that	that	our	code	is	linked	to	run
from	the		0		offset	in	memory.	Moreover,	we	can	find	this	information	in	comments:

Be	careful	parts	of	head_64.S	assume	startup_32	is	at	address	0.

Ok,	now	we	know	where	we	are,	and	now	is	the	best	time	to	look	inside	the		startup_32	
function.

In	the	beginning	of	the		startup_32		function,	we	can	see	the		cld		instruction	which	clears
the		DF		bit	in	the	flags	register.	When	direction	flag	is	clear,	all	string	operations	like	stos,
scas	and	others	will	increment	the	index	registers		esi		or		edi	.	We	need	to	clear	direction
flag	because	later	we	will	use	strings	operations	for	clearing	space	for	page	tables,	etc.

After	we	have	cleared	the		DF		bit,	next	step	is	the	check	of	the		KEEP_SEGMENTS		flag	from
	loadflags		kernel	setup	header	field.	If	you	remember	we	already	saw		loadflags		in	the
very	first	part	of	this	book.	There	we	checked		CAN_USE_HEAP		flag	to	get	ability	to	use	heap.
Now	we	need	to	check	the		KEEP_SEGMENTS		flag.	This	flags	is	described	in	the	linux	boot
protocol	documentation:

Bit	6	(write):	KEEP_SEGMENTS

		Protocol:	2.07+

		-	If	0,	reload	the	segment	registers	in	the	32bit	entry	point.

		-	If	1,	do	not	reload	the	segment	registers	in	the	32bit	entry	point.

				Assume	that	%cs	%ds	%ss	%es	are	all	set	to	flat	segments	with

				a	base	of	0	(or	the	equivalent	for	their	environment).

So,	if	the		KEEP_SEGMENTS		bit	is	not	set	in	the		loadflags	,	we	need	to	reset		ds	,		ss		and		es	
segment	registers	to	a	flat	segment	with	base		0	.	That	we	do:

				testb	$(1	<<	6),	BP_loadflags(%esi)

				jnz	1f

				cli

				movl				$(__BOOT_DS),	%eax

				movl				%eax,	%ds

				movl				%eax,	%es

				movl				%eax,	%ss

Remember	that	the		__BOOT_DS		is		0x18		(index	of	data	segment	in	the	Global	Descriptor
Table).	If		KEEP_SEGMENTS		is	set,	we	jump	to	the	nearest		1f		label	or	update	segment
registers	with		__BOOT_DS		if	it	is	not	set.	It	is	pretty	easy,	but	here	is	one	interesting	moment.

Transition	to	64-bit	mode

59

https://sourceware.org/binutils/docs/ld/Scripts.html#Scripts
https://en.wikipedia.org/wiki/FLAGS_register
http://x86.renejeschke.de/html/file_module_x86_id_306.html
http://x86.renejeschke.de/html/file_module_x86_id_287.html
https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-1.html
https://www.kernel.org/doc/Documentation/x86/boot.txt
https://en.wikipedia.org/wiki/Global_Descriptor_Table

If	you've	read	the	previous	part,	you	may	remember	that	we	already	updated	these	segment
registers	right	after	we	switched	to	protected	mode	in	arch/x86/boot/pmjump.S.	So	why	do
we	need	to	care	about	values	of	segment	registers	again?	The	answer	is	easy.	The	Linux
kernel	also	has	a	32-bit	boot	protocol	and	if	a	bootloader	uses	it	to	load	the	Linux	kernel	all
code	before	the		startup_32		will	be	missed.	In	this	case,	the		startup_32		will	be	first	entry
point	of	the	Linux	kernel	right	after	bootloader	and	there	are	no	guarantees	that	segment
registers	will	be	in	known	state.

After	we	have	checked	the		KEEP_SEGMENTS		flag	and	put	the	correct	value	to	the	segment
registers,	the	next	step	is	to	calculate	difference	between	where	we	loaded	and	compiled	to
run.	Remember	that		setup.ld.S		contains	following	definition:		.	=	0		at	the	start	of	the
	.head.text		section.	This	means	that	the	code	in	this	section	is	compiled	to	run	from		0	
address.	We	can	see	this	in		objdump		output:

arch/x86/boot/compressed/vmlinux:					file	format	elf64-x86-64

Disassembly	of	section	.head.text:

0000000000000000	<startup_32>:

			0:			fc																						cld

			1:			f6	86	11	02	00	00	40				testb		$0x40,0x211(%rsi)

The		objdump		util	tells	us	that	the	address	of	the		startup_32		is		0	.	But	actually	it	is	not	so.
Our	current	goal	is	to	know	where	actually	we	are.	It	is	pretty	simple	to	do	in	long	mode,
because	it	support		rip		relative	addressing,	but	currently	we	are	in	protected	mode.	We	will
use	common	pattern	to	know	the	address	of	the		startup_32	.	We	need	to	define	a	label	and
make	a	call	to	this	label	and	pop	the	top	of	the	stack	to	a	register:

call	label

label:	pop	%reg

After	this	a	register	will	contain	the	address	of	a	label.	Let's	look	to	the	similar	code	which
search	address	of	the		startup_32		in	the	Linux	kernel:

				leal				(BP_scratch+4)(%esi),	%esp

				call				1f

1:		popl				%ebp

				subl				$1b,	%ebp

As	you	remember	from	the	previous	part,	the		esi		register	contains	the	address	of	the
boot_params	structure	which	was	filled	before	we	moved	to	the	protected	mode.	The
	boot_params		structure	contains	a	special	field		scratch		with	offset		0x1e4	.	These	four	bytes

Transition	to	64-bit	mode

60

https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-3.md
https://en.wikipedia.org/wiki/Protected_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Protected_mode
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L113

field	will	be	temporary	stack	for		call		instruction.	We	are	getting	the	address	of	the
	scratch		field	+	4	bytes	and	putting	it	in	the		esp		register.	We	add		4		bytes	to	the	base	of
the		BP_scratch		field	because,	as	just	described,	it	will	be	a	temporary	stack	and	the	stack
grows	from	top	to	down	in		x86_64		architecture.	So	our	stack	pointer	will	point	to	the	top	of
the	stack.	Next	we	can	see	the	pattern	that	I've	described	above.	We	make	a	call	to	the		1f	
label	and	put	the	address	of	this	label	to	the		ebp		register,	because	we	have	return	address
on	the	top	of	stack	after	the		call		instruction	will	be	executed.	So,	for	now	we	have	an
address	of	the		1f		label	and	now	it	is	easy	to	get	address	of	the		startup_32	.	We	just	need
to	subtract	address	of	label	from	the	address	which	we	got	from	the	stack:

startup_32	(0x0)					+-----------------------+

																					|																							|

																					|																							|

																					|																							|

																					|																							|

																					|																							|

																					|																							|

																					|																							|

																					|																							|

1f	(0x0	+	1f	offset)	+-----------------------+	%ebp	-	real	physical	address

																					|																							|

																					|																							|

																					+-----------------------+

	startup_32		is	linked	to	run	at	address		0x0		and	this	means	that		1f		has	the	address		0x0
+	offset	to	1f	,	approximately		0x21		bytes.	The		ebp		register	contains	the	real	physical
address	of	the		1f		label.	So,	if	we	subtract		1f		from	the		ebp		we	will	get	the	real	physical
address	of	the		startup_32	.	The	Linux	kernel	boot	protocol	describes	that	the	base	of	the
protected	mode	kernel	is		0x100000	.	We	can	verify	this	with	gdb.	Let's	start	the	debugger
and	put	breakpoint	to	the		1f		address,	which	is		0x100021	.	If	this	is	correct	we	will	see
	0x100021		in	the		ebp		register:

Transition	to	64-bit	mode

61

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://en.wikipedia.org/wiki/GNU_Debugger

$	gdb

(gdb)$	target	remote	:1234

Remote	debugging	using	:1234

0x0000fff0	in	??	()

(gdb)$	br	*0x100022

Breakpoint	1	at	0x100022

(gdb)$	c

Continuing.

Breakpoint	1,	0x00100022	in	??	()

(gdb)$	i	r

eax												0x18				0x18

ecx												0x0				0x0

edx												0x0				0x0

ebx												0x0				0x0

esp												0x144a8				0x144a8

ebp												0x100021				0x100021

esi												0x142c0				0x142c0

edi												0x0				0x0

eip												0x100022				0x100022

eflags									0x46				[PF	ZF]

cs													0x10				0x10

ss													0x18				0x18

ds													0x18				0x18

es													0x18				0x18

fs													0x18				0x18

gs													0x18				0x18

If	we	execute	the	next	instruction,		subl	$1b,	%ebp	,	we	will	see:

nexti

...

ebp												0x100000				0x100000

...

Ok,	that's	true.	The	address	of	the		startup_32		is		0x100000	.	After	we	know	the	address	of
the		startup_32		label,	we	can	prepare	for	the	transition	to	long	mode.	Our	next	goal	is	to
setup	the	stack	and	verify	that	the	CPU	supports	long	mode	and	SSE.

Stack	setup	and	CPU	verification
We	could	not	setup	the	stack	while	we	did	not	know	the	address	of	the		startup_32		label.
We	can	imagine	the	stack	as	an	array	and	the	stack	pointer	register		esp		must	point	to	the
end	of	this	array.	Of	course	we	can	define	an	array	in	our	code,	but	we	need	to	know	its
actual	address	to	configure	the	stack	pointer	in	a	correct	way.	Let's	look	at	the	code:

Transition	to	64-bit	mode

62

https://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

				movl				$boot_stack_end,	%eax

				addl				%ebp,	%eax

				movl				%eax,	%esp

The		boot_stack_end		label,	defined	in	the	same	arch/x86/boot/compressed/head_64.S
assembly	source	code	file	and	located	in	the	.bss	section:

				.bss

				.balign	4

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

boot_stack:

				.fill	BOOT_STACK_SIZE,	1,	0

boot_stack_end:

First	of	all,	we	put	the	address	of		boot_stack_end		into	the		eax		register,	so	the		eax	
register	contains	the	address	of		boot_stack_end		where	it	was	linked,	which	is		0x0	+
boot_stack_end	.	To	get	the	real	address	of		boot_stack_end	,	we	need	to	add	the	real	address
of	the		startup_32	.	As	you	remember,	we	have	found	this	address	above	and	put	it	to	the
	ebp		register.	In	the	end,	the	register		eax		will	contain	real	address	of	the		boot_stack_end	
and	we	just	need	to	put	to	the	stack	pointer.

After	we	have	set	up	the	stack,	next	step	is	CPU	verification.	As	we	are	going	to	execute
transition	to	the		long	mode	,	we	need	to	check	that	the	CPU	supports		long	mode		and		SSE	.
We	will	do	it	by	the	call	of	the		verify_cpu		function:

				call				verify_cpu

				testl				%eax,	%eax

				jnz				no_longmode

This	function	defined	in	the	arch/x86/kernel/verify_cpu.S	assembly	file	and	just	contains	a
couple	of	calls	to	the	cpuid	instruction.	This	instruction	is	used	for	getting	information	about
the	processor.	In	our	case	it	checks		long	mode		and		SSE		support	and	returns		0		on
success	or		1		on	fail	in	the		eax		register.

If	the	value	of	the		eax		is	not	zero,	we	jump	to	the		no_longmode		label	which	just	stops	the
CPU	by	the	call	of	the		hlt		instruction	while	no	hardware	interrupt	will	not	happen:

no_longmode:

1:

				hlt

				jmp					1b

Transition	to	64-bit	mode

63

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://en.wikipedia.org/wiki/.bss
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/verify_cpu.S
https://en.wikipedia.org/wiki/CPUID

If	the	value	of	the		eax		register	is	zero,	everything	is	ok	and	we	are	able	to	continue.

Calculate	relocation	address
The	next	step	is	calculating	relocation	address	for	decompression	if	needed.	First	we	need
to	know	what	it	means	for	a	kernel	to	be		relocatable	.	We	already	know	that	the	base
address	of	the	32-bit	entry	point	of	the	Linux	kernel	is		0x100000	,	but	that	is	a	32-bit	entry
point.	The	default	base	address	of	the	Linux	kernel	is	determined	by	the	value	of	the
	CONFIG_PHYSICAL_START		kernel	configuration	option.	Its	default	value	is		0x1000000		or		1	MB	.
The	main	problem	here	is	that	if	the	Linux	kernel	crashes,	a	kernel	developer	must	have	a
	rescue	kernel		for	kdump	which	is	configured	to	load	from	a	different	address.	The	Linux
kernel	provides	special	configuration	option	to	solve	this	problem:		CONFIG_RELOCATABLE	.	As
we	can	read	in	the	documentation	of	the	Linux	kernel:

This	builds	a	kernel	image	that	retains	relocation	information

so	it	can	be	loaded	someplace	besides	the	default	1MB.

Note:	If	CONFIG_RELOCATABLE=y,	then	the	kernel	runs	from	the	address

it	has	been	loaded	at	and	the	compile	time	physical	address

(CONFIG_PHYSICAL_START)	is	used	as	the	minimum	location.

In	simple	terms	this	means	that	the	Linux	kernel	with	the	same	configuration	can	be	booted
from	different	addresses.	Technically,	this	is	done	by	compiling	the	decompressor	as	position
independent	code.	If	we	look	at	arch/x86/boot/compressed/Makefile,	we	will	see	that	the
decompressor	is	indeed	compiled	with	the		-fPIC		flag:

KBUILD_CFLAGS	+=	-fno-strict-aliasing	-fPIC

When	we	are	using	position-independent	code	an	address	is	obtained	by	adding	the
address	field	of	the	command	and	the	value	of	the	program	counter.	We	can	load	code
which	uses	such	addressing	from	any	address.	That's	why	we	had	to	get	the	real	physical
address	of		startup_32	.	Now	let's	get	back	to	the	Linux	kernel	code.	Our	current	goal	is	to
calculate	an	address	where	we	can	relocate	the	kernel	for	decompression.	Calculation	of
this	address	depends	on		CONFIG_RELOCATABLE		kernel	configuration	option.	Let's	look	at	the
code:

Transition	to	64-bit	mode

64

https://www.kernel.org/doc/Documentation/kdump/kdump.txt
https://en.wikipedia.org/wiki/Position-independent_code
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/Makefile

#ifdef	CONFIG_RELOCATABLE

				movl				%ebp,	%ebx

				movl				BP_kernel_alignment(%esi),	%eax

				decl				%eax

				addl				%eax,	%ebx

				notl				%eax

				andl				%eax,	%ebx

				cmpl				$LOAD_PHYSICAL_ADDR,	%ebx

				jge				1f

#endif

				movl				$LOAD_PHYSICAL_ADDR,	%ebx

1:

				addl				$z_extract_offset,	%ebx

Remember	that	the	value	of	the		ebp		register	is	the	physical	address	of	the		startup_32	
label.	If	the		CONFIG_RELOCATABLE		kernel	configuration	option	is	enabled	during	kernel
configuration,	we	put	this	address	in	the		ebx		register,	align	it	to	a	multiple	of		2MB		and
compare	it	with	the		LOAD_PHYSICAL_ADDR		value.	The		LOAD_PHYSICAL_ADDR		macro	is	defined	in
the	arch/x86/include/asm/boot.h	header	file	and	it	looks	like	this:

#define	LOAD_PHYSICAL_ADDR	((CONFIG_PHYSICAL_START	\

																+	(CONFIG_PHYSICAL_ALIGN	-	1))	\

																&	~(CONFIG_PHYSICAL_ALIGN	-	1))

As	we	can	see	it	just	expands	to	the	aligned		CONFIG_PHYSICAL_ALIGN		value	which	represents
the	physical	address	of	where	to	load	the	kernel.	After	comparison	of	the
	LOAD_PHYSICAL_ADDR		and	value	of	the		ebx		register,	we	add	the	offset	from	the		startup_32	
where	to	decompress	the	compressed	kernel	image.	If	the		CONFIG_RELOCATABLE		option	is	not
enabled	during	kernel	configuration,	we	just	put	the	default	address	where	to	load	kernel	and
add		z_extract_offset		to	it.

After	all	of	these	calculations	we	will	have		ebp		which	contains	the	address	where	we
loaded	it	and		ebx		set	to	the	address	of	where	kernel	will	be	moved	after	decompression.

Preparation	before	entering	long	mode
When	we	have	the	base	address	where	we	will	relocate	the	compressed	kernel	image,	we
need	to	do	one	last	step	before	we	can	transition	to	64-bit	mode.	First	we	need	to	update	the
Global	Descriptor	Table:

				leal				gdt(%ebp),	%eax

				movl				%eax,	gdt+2(%ebp)

				lgdt				gdt(%ebp)

Transition	to	64-bit	mode

65

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/boot.h
https://en.wikipedia.org/wiki/Global_Descriptor_Table

Here	we	put	the	base	address	from		ebp		register	with		gdt		offset	into	the		eax		register.
Next	we	put	this	address	into		ebp		register	with	offset		gdt+2		and	load	the		Global
Descriptor	Table		with	the		lgdt		instruction.	To	understand	the	magic	with		gdt		offsets	we
need	to	look	at	the	definition	of	the		Global	Descriptor	Table	.	We	can	find	its	definition	in	the
same	source	code	file:

				.data

gdt:

				.word				gdt_end	-	gdt

				.long				gdt

				.word				0

				.quad				0x0000000000000000				/*	NULL	descriptor	*/

				.quad				0x00af9a000000ffff				/*	__KERNEL_CS	*/

				.quad				0x00cf92000000ffff				/*	__KERNEL_DS	*/

				.quad				0x0080890000000000				/*	TS	descriptor	*/

				.quad			0x0000000000000000				/*	TS	continued	*/

gdt_end:

We	can	see	that	it	is	located	in	the		.data		section	and	contains	five	descriptors:		null	
descriptor,	kernel	code	segment,	kernel	data	segment	and	two	task	descriptors.	We	already
loaded	the		Global	Descriptor	Table		in	the	previous	part,	and	now	we're	doing	almost	the
same	here,	but	descriptors	with		CS.L	=	1		and		CS.D	=	0		for	execution	in		64		bit	mode.	As
we	can	see,	the	definition	of	the		gdt		starts	from	two	bytes:		gdt_end	-	gdt		which
represents	last	byte	in	the		gdt		table	or	table	limit.	The	next	four	bytes	contains	base
address	of	the		gdt	.	Remember	that	the		Global	Descriptor	Table		is	stored	in	the		48-bits
GDTR		which	consists	of	two	parts:

size(16-bit)	of	global	descriptor	table;
address(32-bit)	of	the	global	descriptor	table.

So,	we	put	address	of	the		gdt		to	the		eax		register	and	then	we	put	it	to	the		.long	gdt		or
	gdt+2		in	our	assembly	code.	From	now	we	have	formed	structure	for	the		GDTR		register
and	can	load	the		Global	Descriptor	Table		with	the		lgtd		instruction.

After	we	have	loaded	the		Global	Descriptor	Table	,	we	must	enable	PAE	mode	by	putting
the	value	of	the		cr4		register	into		eax	,	setting	5	bit	in	it	and	loading	it	again	into		cr4	:

				movl				%cr4,	%eax

				orl				$X86_CR4_PAE,	%eax

				movl				%eax,	%cr4

Now	we	are	almost	finished	with	all	preparations	before	we	can	move	into	64-bit	mode.	The
last	step	is	to	build	page	tables,	but	before	that,	here	is	some	information	about	long	mode.

Transition	to	64-bit	mode

66

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-3.md
http://en.wikipedia.org/wiki/Physical_Address_Extension

Long	mode
Long	mode	is	the	native	mode	for	x86_64	processors.	First	let's	look	at	some	differences
between		x86_64		and	the		x86	.

The		64-bit		mode	provides	features	such	as:

New	8	general	purpose	registers	from		r8		to		r15		+	all	general	purpose	registers	are
64-bit	now;
64-bit	instruction	pointer	-		RIP	;
New	operating	mode	-	Long	mode;
64-Bit	Addresses	and	Operands;
RIP	Relative	Addressing	(we	will	see	an	example	of	it	in	the	next	parts).

Long	mode	is	an	extension	of	legacy	protected	mode.	It	consists	of	two	sub-modes:

64-bit	mode;
compatibility	mode.

To	switch	into		64-bit		mode	we	need	to	do	following	things:

Enable	PAE;
Build	page	tables	and	load	the	address	of	the	top	level	page	table	into	the		cr3	
register;
Enable		EFER.LME	;
Enable	paging.

We	already	enabled		PAE		by	setting	the		PAE		bit	in	the		cr4		control	register.	Our	next	goal
is	to	build	the	structure	for	paging.	We	will	see	this	in	next	paragraph.

Early	page	table	initialization
So,	we	already	know	that	before	we	can	move	into		64-bit		mode,	we	need	to	build	page
tables,	so,	let's	look	at	the	building	of	early		4G		boot	page	tables.

NOTE:	I	will	not	describe	the	theory	of	virtual	memory	here.	If	you	need	to	know	more
about	it,	see	links	at	the	end	of	this	part.

The	Linux	kernel	uses		4-level		paging,	and	we	generally	build	6	page	tables:

One		PML4		or		Page	Map	Level	4		table	with	one	entry;
One		PDP		or		Page	Directory	Pointer		table	with	four	entries;
Four	Page	Directory	tables	with	a	total	of		2048		entries.

Transition	to	64-bit	mode

67

https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Physical_Address_Extension
https://en.wikipedia.org/wiki/Paging

Let's	look	at	the	implementation	of	this.	First	of	all	we	clear	the	buffer	for	the	page	tables	in
memory.	Every	table	is		4096		bytes,	so	we	need	clear		24		kilobyte	buffer:

				leal				pgtable(%ebx),	%edi

				xorl				%eax,	%eax

				movl				$((4096*6)/4),	%ecx

				rep				stosl

We	put	the	address	of		pgtable		plus		ebx		(remember	that		ebx		contains	the	address	to
relocate	the	kernel	for	decompression)	in	the		edi		register,	clear	the		eax		register	and	set
the		ecx		register	to		6144	.	The		rep	stosl		instruction	will	write	the	value	of	the		eax		to
	edi	,	increase	value	of	the		edi		register	by		4		and	decrease	the	value	of	the		ecx		register
by		1	.	This	operation	will	be	repeated	while	the	value	of	the		ecx		register	is	greater	than
zero.	That's	why	we	put		6144		in		ecx	.

	pgtable		is	defined	at	the	end	of	arch/x86/boot/compressed/head_64.S	assembly	file	and	is:

				.section	".pgtable","a",@nobits

				.balign	4096

pgtable:

				.fill	6*4096,	1,	0

As	we	can	see,	it	is	located	in	the		.pgtable		section	and	its	size	is		24		kilobytes.

After	we	have	got	buffer	for	the		pgtable		structure,	we	can	start	to	build	the	top	level	page
table	-		PML4		-	with:

				leal				pgtable	+	0(%ebx),	%edi

				leal				0x1007	(%edi),	%eax

				movl				%eax,	0(%edi)

Here	again,	we	put	the	address	of	the		pgtable		relative	to		ebx		or	in	other	words	relative	to
address	of	the		startup_32		to	the		edi		register.	Next	we	put	this	address	with	offset
	0x1007		in	the		eax		register.	The		0x1007		is		4096		bytes	which	is	the	size	of	the		PML4		plus
	7	.	The		7		here	represents	flags	of	the		PML4		entry.	In	our	case,	these	flags	are
	PRESENT+RW+USER	.	In	the	end	we	just	write	first	the	address	of	the	first		PDP		entry	to	the
	PML4	.

In	the	next	step	we	will	build	four		Page	Directory		entries	in	the		Page	Directory	Pointer	
table	with	the	same		PRESENT+RW+USE		flags:

Transition	to	64-bit	mode

68

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S

				leal				pgtable	+	0x1000(%ebx),	%edi

				leal				0x1007(%edi),	%eax

				movl				$4,	%ecx

1:		movl				%eax,	0x00(%edi)

				addl				$0x00001000,	%eax

				addl				$8,	%edi

				decl				%ecx

				jnz				1b

We	put	the	base	address	of	the	page	directory	pointer	which	is		4096		or		0x1000		offset	from
the		pgtable		table	in		edi		and	the	address	of	the	first	page	directory	pointer	entry	in		eax	
register.	Put		4		in	the		ecx		register,	it	will	be	a	counter	in	the	following	loop	and	write	the
address	of	the	first	page	directory	pointer	table	entry	to	the		edi		register.	After	this		edi		will
contain	the	address	of	the	first	page	directory	pointer	entry	with	flags		0x7	.	Next	we	just
calculate	the	address	of	following	page	directory	pointer	entries	where	each	entry	is		8	
bytes,	and	write	their	addresses	to		eax	.	The	last	step	of	building	paging	structure	is	the
building	of	the		2048		page	table	entries	with		2-MByte		pages:

				leal				pgtable	+	0x2000(%ebx),	%edi

				movl				$0x00000183,	%eax

				movl				$2048,	%ecx

1:		movl				%eax,	0(%edi)

				addl				$0x00200000,	%eax

				addl				$8,	%edi

				decl				%ecx

				jnz				1b

Here	we	do	almost	the	same	as	in	the	previous	example,	all	entries	will	be	with	flags	-
	$0x00000183		-		PRESENT	+	WRITE	+	MBZ	.	In	the	end	we	will	have		2048		pages	with		2-MByte	
page	or:

>>>	2048	*	0x00200000

4294967296

	4G		page	table.	We	just	finished	to	build	our	early	page	table	structure	which	maps		4	
gigabytes	of	memory	and	now	we	can	put	the	address	of	the	high-level	page	table	-		PML4		-
in		cr3		control	register:

				leal				pgtable(%ebx),	%eax

				movl				%eax,	%cr3

That's	all.	All	preparation	are	finished	and	now	we	can	see	transition	to	the	long	mode.

Transition	to	64-bit	mode

69

Transition	to	the	64-bit	mode
First	of	all	we	need	to	set	the		EFER.LME		flag	in	the	MSR	to		0xC0000080	:

				movl				$MSR_EFER,	%ecx

				rdmsr

				btsl				$_EFER_LME,	%eax

				wrmsr

Here	we	put	the		MSR_EFER		flag	(which	is	defined	in	arch/x86/include/uapi/asm/msr-index.h)
in	the		ecx		register	and	call		rdmsr		instruction	which	reads	the	MSR	register.	After		rdmsr	
executes,	we	will	have	the	resulting	data	in		edx:eax		which	depends	on	the		ecx		value.	We
check	the		EFER_LME		bit	with	the		btsl		instruction	and	write	data	from		eax		to	the		MSR	
register	with	the		wrmsr		instruction.

In	the	next	step	we	push	the	address	of	the	kernel	segment	code	to	the	stack	(we	defined	it
in	the	GDT)	and	put	the	address	of	the		startup_64		routine	in		eax	.

				pushl				$__KERNEL_CS

				leal				startup_64(%ebp),	%eax

After	this	we	push	this	address	to	the	stack	and	enable	paging	by	setting		PG		and		PE		bits
in	the		cr0		register:

				movl				$(X86_CR0_PG	|	X86_CR0_PE),	%eax

				movl				%eax,	%cr0

and	execute:

lret

instruction.	Remember	that	we	pushed	the	address	of	the		startup_64		function	to	the	stack
in	the	previous	step,	and	after	the		lret		instruction,	the	CPU	extracts	the	address	of	it	and
jumps	there.

After	all	of	these	steps	we're	finally	in	64-bit	mode:

Transition	to	64-bit	mode

70

http://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/msr-index.h#L7
http://en.wikipedia.org/wiki/Model-specific_register

				.code64

				.org	0x200

ENTRY(startup_64)

....

....

....

That's	all!

Conclusion
This	is	the	end	of	the	fourth	part	linux	kernel	booting	process.	If	you	have	questions	or
suggestions,	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	an	issue.

In	the	next	part	we	will	see	kernel	decompression	and	many	more.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Protected	mode
Intel®	64	and	IA-32	Architectures	Software	Developer’s	Manual	3A
GNU	linker
SSE
Paging
Model	specific	register
.fill	instruction
Previous	part
Paging	on	osdev.org
Paging	Systems
x86	Paging	Tutorial

Transition	to	64-bit	mode

71

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-internals
http://en.wikipedia.org/wiki/Protected_mode
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.eecs.umich.edu/courses/eecs373/readings/Linker.pdf
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Model-specific_register
http://www.chemie.fu-berlin.de/chemnet/use/info/gas/gas_7.html
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-3.md
http://wiki.osdev.org/Paging
https://www.cs.rutgers.edu/~pxk/416/notes/09a-paging.html
http://www.cirosantilli.com/x86-paging/

Kernel	booting	process.	Part	5.

Kernel	decompression
This	is	the	fifth	part	of	the		Kernel	booting	process		series.	We	saw	transition	to	the	64-bit
mode	in	the	previous	part	and	we	will	continue	from	this	point	in	this	part.	We	will	see	the
last	steps	before	we	jump	to	the	kernel	code	as	preparation	for	kernel	decompression,
relocation	and	directly	kernel	decompression.	So...	let's	start	to	dive	in	the	kernel	code
again.

Preparation	before	kernel	decompression
We	stopped	right	before	the	jump	on	the	64-bit	entry	point	-		startup_64		which	is	located	in
the	arch/x86/boot/compressed/head_64.S	source	code	file.	We	already	saw	the	jump	to	the
	startup_64		in	the		startup_32	:

				pushl				$__KERNEL_CS

				leal				startup_64(%ebp),	%eax

				...

				...

				...

				pushl				%eax

				...

				...

				...

				lret

in	the	previous	part,		startup_64		starts	to	work.	Since	we	loaded	the	new	Global	Descriptor
Table	and	there	was	CPU	transition	in	other	mode	(64-bit	mode	in	our	case),	we	can	see	the
setup	of	the	data	segments:

				.code64

				.org	0x200

ENTRY(startup_64)

				xorl				%eax,	%eax

				movl				%eax,	%ds

				movl				%eax,	%es

				movl				%eax,	%ss

				movl				%eax,	%fs

				movl				%eax,	%gs

Kernel	decompression

72

https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md#transition-to-the-long-mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S

in	the	beginning	of	the		startup_64	.	All	segment	registers	besides		cs		now	point	to	the		ds	
which	is		0x18		(if	you	don't	understand	why	it	is		0x18	,	read	the	previous	part).

The	next	step	is	computation	of	difference	between	where	the	kernel	was	compiled	and
where	it	was	loaded:

#ifdef	CONFIG_RELOCATABLE

				leaq				startup_32(%rip),	%rbp

				movl				BP_kernel_alignment(%rsi),	%eax

				decl				%eax

				addq				%rax,	%rbp

				notq				%rax

				andq				%rax,	%rbp

				cmpq				$LOAD_PHYSICAL_ADDR,	%rbp

				jge				1f

#endif

				movq				$LOAD_PHYSICAL_ADDR,	%rbp

1:

				leaq				z_extract_offset(%rbp),	%rbx

	rbp		contains	the	decompressed	kernel	start	address	and	after	this	code	executes		rbx	
register	will	contain	address	to	relocate	the	kernel	code	for	decompression.	We	already	saw
code	like	this	in	the		startup_32		(you	can	read	about	it	in	the	previous	part	-	Calculate
relocation	address),	but	we	need	to	do	this	calculation	again	because	the	bootloader	can
use	64-bit	boot	protocol	and		startup_32		just	will	not	be	executed	in	this	case.

In	the	next	step	we	can	see	setup	of	the	stack	pointer	and	resetting	of	the	flags	register:

				leaq				boot_stack_end(%rbx),	%rsp

				pushq				$0

				popfq

As	you	can	see	above,	the		rbx		register	contains	the	start	address	of	the	kernel
decompressor	code	and	we	just	put	this	address	with		boot_stack_end		offset	to	the		rsp	
register	which	represents	pointer	to	the	top	of	the	stack.	After	this	step,	the	stack	will	be
correct.	You	can	find	definition	of	the		boot_stack_end		in	the	end	of
arch/x86/boot/compressed/head_64.S	assembly	source	code	file:

				.bss

				.balign	4

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

boot_stack:

				.fill	BOOT_STACK_SIZE,	1,	0

boot_stack_end:

Kernel	decompression

73

https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md#calculate-relocation-address
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S

It	located	in	the	end	of	the		.bss		section,	right	before	the		.pgtable	.	If	you	will	look	into
arch/x86/boot/compressed/vmlinux.lds.S	linker	script,	you	will	find	Definition	of	the		.bss	
and		.pgtable		there.

As	we	set	the	stack,	now	we	can	copy	the	compressed	kernel	to	the	address	that	we	got
above,	when	we	calculated	the	relocation	address	of	the	decompressed	kernel.	Before
details,	let's	look	at	this	assembly	code:

				pushq				%rsi

				leaq				(_bss-8)(%rip),	%rsi

				leaq				(_bss-8)(%rbx),	%rdi

				movq				$_bss,	%rcx

				shrq				$3,	%rcx

				std

				rep				movsq

				cld

				popq				%rsi

First	of	all	we	push		rsi		to	the	stack.	We	need	preserve	the	value	of		rsi	,	because	this
register	now	stores	a	pointer	to	the		boot_params		which	is	real	mode	structure	that	contains
booting	related	data	(you	must	remember	this	structure,	we	filled	it	in	the	start	of	kernel
setup).	In	the	end	of	this	code	we'll	restore	the	pointer	to	the		boot_params		into		rsi		again.

The	next	two		leaq		instructions	calculates	effective	addresses	of	the		rip		and		rbx		with
	_bss	-	8		offset	and	put	it	to	the		rsi		and		rdi	.	Why	do	we	calculate	these	addresses?
Actually	the	compressed	kernel	image	is	located	between	this	copying	code	(from
	startup_32		to	the	current	code)	and	the	decompression	code.	You	can	verify	this	by	looking
at	the	linker	script	-	arch/x86/boot/compressed/vmlinux.lds.S:

				.	=	0;

				.head.text	:	{

								_head	=	.	;

								HEAD_TEXT

								_ehead	=	.	;

				}

				.rodata..compressed	:	{

								*(.rodata..compressed)

				}

				.text	:				{

								_text	=	.;					/*	Text	*/

								*(.text)

								(.text.)

								_etext	=	.	;

				}

Kernel	decompression

74

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/vmlinux.lds.S

Note	that		.head.text		section	contains		startup_32	.	You	may	remember	it	from	the	previous
part:

				__HEAD

				.code32

ENTRY(startup_32)

...

...

...

The		.text		section	contains	decompression	code:

				.text

relocated:

...

...

...

/*

	*	Do	the	decompression,	and	jump	to	the	new	kernel..

	*/

...

And		.rodata..compressed		contains	the	compressed	kernel	image.	So		rsi		will	contain	the
absolute	address	of		_bss	-	8	,	and		rdi		will	contain	the	relocation	relative	address	of		_bss
-	8	.	As	we	store	these	addresses	in	registers,	we	put	the	address	of		_bss		in	the		rcx	
register.	As	you	can	see	in	the		vmlinux.lds.S		linker	script,	it's	located	at	the	end	of	all
sections	with	the	setup/kernel	code.	Now	we	can	start	to	copy	data	from		rsi		to		rdi	,		8	
bytes	at	the	time,	with	the		movsq		instruction.

Note	that	there	is	an		std		instruction	before	data	copying:	it	sets	the		DF		flag,	which	means
that		rsi		and		rdi		will	be	decremented.	In	other	words,	we	will	copy	the	bytes	backwards.
At	the	end,	we	clear	the		DF		flag	with	the		cld		instruction,	and	restore		boot_params	
structure	to		rsi	.

Now	we	have	the	address	of	the		.text		section	address	after	relocation,	and	we	can	jump
to	it:

				leaq				relocated(%rbx),	%rax

				jmp				*%rax

Last	preparation	before	kernel	decompression

Kernel	decompression

75

In	the	previous	paragraph	we	saw	that	the		.text		section	starts	with	the		relocated		label.
The	first	thing	it	does	is	clearing	the		bss		section	with:

				xorl				%eax,	%eax

				leaq				_bss(%rip),	%rdi

				leaq				_ebss(%rip),	%rcx

				subq				%rdi,	%rcx

				shrq				$3,	%rcx

				rep				stosq

We	need	to	initialize	the		.bss		section,	because	we'll	soon	jump	to	C	code.	Here	we	just
clear		eax	,	put	the	address	of		_bss		in		rdi		and		_ebss		in		rcx	,	and	fill	it	with	zeros	with
the		rep	stosq		instruction.

At	the	end,	we	can	see	the	call	to	the		decompress_kernel		function:

				pushq				%rsi

				movq				$z_run_size,	%r9

				pushq				%r9

				movq				%rsi,	%rdi

				leaq				boot_heap(%rip),	%rsi

				leaq				input_data(%rip),	%rdx

				movl				$z_input_len,	%ecx

				movq				%rbp,	%r8

				movq				$z_output_len,	%r9

				call				decompress_kernel

				popq				%r9

				popq				%rsi

Again	we	set		rdi		to	a	pointer	to	the		boot_params		structure	and	call		decompress_kernel	
from	arch/x86/boot/compressed/misc.c	with	seven	arguments:

	rmode		-	pointer	to	the	boot_params	structure	which	is	filled	by	bootloader	or	during
early	kernel	initialization;
	heap		-	pointer	to	the		boot_heap		which	represents	start	address	of	the	early	boot	heap;
	input_data		-	pointer	to	the	start	of	the	compressed	kernel	or	in	other	words	pointer	to
the		arch/x86/boot/compressed/vmlinux.bin.bz2	;
	input_len		-	size	of	the	compressed	kernel;
	output		-	start	address	of	the	future	decompressed	kernel;
	output_len		-	size	of	decompressed	kernel;
	run_size		-	amount	of	space	needed	to	run	the	kernel	including		.bss		and		.brk	
sections.

All	arguments	will	be	passed	through	the	registers	according	to	System	V	Application	Binary
Interface.	We've	finished	all	preparation	and	can	now	look	at	the	kernel	decompression.

Kernel	decompression

76

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/master//arch/x86/include/uapi/asm/bootparam.h#L114
http://www.x86-64.org/documentation/abi.pdf

Kernel	decompression
As	we	saw	in	previous	paragraph,	the		decompress_kernel		function	is	defined	in	the
arch/x86/boot/compressed/misc.c	source	code	file	and	takes	seven	arguments.	This	function
starts	with	the	video/console	initialization	that	we	already	saw	in	the	previous	parts.	We	need
to	do	this	again	because	we	don't	know	if	we	started	in	real	mode	or	a	bootloader	was	used,
or	whether	the	bootloader	used	the	32	or	64-bit	boot	protocol.

After	the	first	initialization	steps,	we	store	pointers	to	the	start	of	the	free	memory	and	to	the
end	of	it:

free_mem_ptr					=	heap;

free_mem_end_ptr	=	heap	+	BOOT_HEAP_SIZE;

where	the		heap		is	the	second	parameter	of	the		decompress_kernel		function	which	we	got	in
the	arch/x86/boot/compressed/head_64.S:

leaq				boot_heap(%rip),	%rsi

As	you	saw	above,	the		boot_heap		is	defined	as:

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

where	the		BOOT_HEAP_SIZE		is	macro	which	expands	to		0x8000		(0x400000		in	a	case	of
	bzip2		kernel)	and	represents	the	size	of	the	heap.

After	heap	pointers	initialization,	the	next	step	is	the	call	of	the		choose_kernel_location	
function	from	arch/x86/boot/compressed/aslr.c	source	code	file.	As	we	can	guess	from	the
function	name,	it	chooses	the	memory	location	where	the	kernel	image	will	be
decompressed.	It	may	look	weird	that	we	need	to	find	or	even		choose		location	where	to
decompress	the	compressed	kernel	image,	but	the	Linux	kernel	supports	kASLR	which
allows	decompression	of	the	kernel	into	a	random	address,	for	security	reasons.	Let's	open
the	arch/x86/boot/compressed/aslr.c	source	code	file	and	look	at		choose_kernel_location	.

First,		choose_kernel_location		tries	to	find	the		kaslr		option	in	the	Linux	kernel	command
line	if		CONFIG_HIBERNATION		is	set,	and		nokaslr		otherwise:

Kernel	decompression

77

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/misc.c
https://en.wikipedia.org/wiki/Real_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/aslr.c#L298
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/aslr.c#L298

#ifdef	CONFIG_HIBERNATION

				if	(!cmdline_find_option_bool("kaslr"))	{

								debug_putstr("KASLR	disabled	by	default...\n");

								goto	out;

				}

#else

				if	(cmdline_find_option_bool("nokaslr"))	{

								debug_putstr("KASLR	disabled	by	cmdline...\n");

								goto	out;

				}

#endif

If	the		CONFIG_HIBERNATION		kernel	configuration	option	is	enabled	during	kernel	configuration
and	there	is	no		kaslr		option	in	the	Linux	kernel	command	line,	it	prints		KASLR	disabled	by
default...		and	jumps	to	the		out		label:

out:

				return	(unsigned	char	*)choice;

which	just	returns	the		output		parameter	which	we	passed	to	the		choose_kernel_location	,
unchanged.	If	the		CONFIG_HIBERNATION		kernel	configuration	option	is	disabled	and	the
	nokaslr		option	is	in	the	kernel	command	line,	we	jump	to		out		again.

For	now,	let's	assume	the	kernel	was	configured	with	randomization	enabled	and	try	to
understand	what		kASLR		is.	We	can	find	information	about	it	in	the	documentation:

kaslr/nokaslr	[X86]

Enable/disable	kernel	and	module	base	offset	ASLR

(Address	Space	Layout	Randomization)	if	built	into

the	kernel.	When	CONFIG_HIBERNATION	is	selected,

kASLR	is	disabled	by	default.	When	kASLR	is	enabled,

hibernation	will	be	disabled.

It	means	that	we	can	pass	the		kaslr		option	to	the	kernel's	command	line	and	get	a	random
address	for	the	decompressed	kernel	(you	can	read	more	about	ASLR	here).	So,	our	current
goal	is	to	find	random	address	where	we	can		safely		to	decompress	the	Linux	kernel.	I
repeat:		safely	.	What	does	it	mean	in	this	context?	You	may	remember	that	besides	the
code	of	decompressor	and	directly	the	kernel	image,	there	are	some	unsafe	places	in
memory.	For	example,	the	initrd	image	is	in	memory	too,	and	we	must	not	overlap	it	with	the
decompressed	kernel.

Kernel	decompression

78

https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Initrd

The	next	function	will	help	us	to	find	a	safe	place	where	we	can	decompress	kernel.	This
function	is		mem_avoid_init	.	It	defined	in	the	same	source	code	file,	and	takes	four
arguments	that	we	already	saw	in	the		decompress_kernel		function:

	input_data		-	pointer	to	the	start	of	the	compressed	kernel,	or	in	other	words,	the
pointer	to		arch/x86/boot/compressed/vmlinux.bin.bz2	;
	input_len		-	the	size	of	the	compressed	kernel;
	output		-	the	start	address	of	the	future	decompressed	kernel;
	output_len		-	the	size	of	decompressed	kernel.

The	main	point	of	this	function	is	to	fill	array	of	the		mem_vector		structures:

#define	MEM_AVOID_MAX	5

static	struct	mem_vector	mem_avoid[MEM_AVOID_MAX];

where	the		mem_vector		structure	contains	information	about	unsafe	memory	regions:

struct	mem_vector	{

				unsigned	long	start;

				unsigned	long	size;

};

The	implementation	of	the		mem_avoid_init		is	pretty	simple.	Let's	look	on	the	part	of	this
function:

				...

				...

				...

				initrd_start		=	(u64)real_mode->ext_ramdisk_image	<<	32;

				initrd_start	|=	real_mode->hdr.ramdisk_image;

				initrd_size		=	(u64)real_mode->ext_ramdisk_size	<<	32;

				initrd_size	|=	real_mode->hdr.ramdisk_size;

				mem_avoid[1].start	=	initrd_start;

				mem_avoid[1].size	=	initrd_size;

				...

				...

				...

Here	we	can	see	calculation	of	the	initrd	start	address	and	size.	The		ext_ramdisk_image		is
the	high		32-bits		of	the		ramdisk_image		field	from	the	setup	header,	and		ext_ramdisk_size	
is	the	high	32-bits	of	the		ramdisk_size		field	from	the	boot	protocol:

Kernel	decompression

79

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/aslr.c
http://en.wikipedia.org/wiki/Initrd
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt

Offset				Proto				Name								Meaning

/Size

...

...

...

0218/4				2.00+				ramdisk_image				initrd	load	address	(set	by	boot	loader)

021C/4				2.00+				ramdisk_size				initrd	size	(set	by	boot	loader)

...

And		ext_ramdisk_image		and		ext_ramdisk_size		can	be	found	in	the
Documentation/x86/zero-page.txt:

Offset				Proto				Name								Meaning

/Size

...

...

...

0C0/004				ALL				ext_ramdisk_image	ramdisk_image	high	32bits

0C4/004				ALL				ext_ramdisk_size		ramdisk_size	high	32bits

...

So	we're	taking		ext_ramdisk_image		and		ext_ramdisk_size	,	shifting	them	left	on		32		(now
they	will	contain	low	32-bits	in	the	high	32-bit	bits)	and	getting	start	address	of	the		initrd	
and	size	of	it.	After	this	we	store	these	values	in	the		mem_avoid		array.

The	next	step	after	we've	collected	all	unsafe	memory	regions	in	the		mem_avoid		array	will	be
searching	for	a	random	address	that	does	not	overlap	with	the	unsafe	regions,	using	the
	find_random_addr		function.	First	of	all	we	can	see	the	alignment	of	the	output	address	in	the
	find_random_addr		function:

minimum	=	ALIGN(minimum,	CONFIG_PHYSICAL_ALIGN);

You	can	remember		CONFIG_PHYSICAL_ALIGN		configuration	option	from	the	previous	part.	This
option	provides	the	value	to	which	kernel	should	be	aligned	and	it	is		0x200000		by	default.
Once	we	have	the	aligned	output	address,	we	go	through	the	memory	regions	which	we	got
with	the	help	of	the	BIOS	e820	service	and	collect	regions	suitable	for	the	decompressed
kernel	image:

for	(i	=	0;	i	<	real_mode->e820_entries;	i++)	{

				process_e820_entry(&real_mode->e820_map[i],	minimum,	size);

}

Kernel	decompression

80

https://github.com/torvalds/linux/blob/master/Documentation/x86/zero-page.txt
https://en.wikipedia.org/wiki/E820

Recall	that	we	collected		e820_entries		in	the	second	part	of	the	Kernel	booting	process	part
2.	The		process_e820_entry		function	does	some	checks	that	an		e820		memory	region	is	not
	non-RAM	,	that	the	start	address	of	the	memory	region	is	not	bigger	than	maximum	allowed
	aslr		offset,	and	that	the	memory	region	is	above	the	minimum	load	location:

struct	mem_vector	region,	img;

if	(entry->type	!=	E820_RAM)

				return;

if	(entry->addr	>=	CONFIG_RANDOMIZE_BASE_MAX_OFFSET)

				return;

if	(entry->addr	+	entry->size	<	minimum)

				return;

After	this,	we	store	an		e820		memory	region	start	address	and	the	size	in	the		mem_vector	
structure	(we	saw	definition	of	this	structure	above):

region.start	=	entry->addr;

region.size	=	entry->size;

As	we	store	these	values,	we	align	the		region.start		as	we	did	it	in	the		find_random_addr	
function	and	check	that	we	didn't	get	an	address	that	is	outside	the	original	memory	region:

region.start	=	ALIGN(region.start,	CONFIG_PHYSICAL_ALIGN);

if	(region.start	>	entry->addr	+	entry->size)

				return;

In	the	next	step,	we	reduce	the	size	of	the	memory	region	to	not	include	rejected	regions	at
the	start,	and	ensure	that	the	last	address	in	the	memory	region	is	smaller	than
	CONFIG_RANDOMIZE_BASE_MAX_OFFSET	,	so	that	the	end	of	the	kernel	image	will	be	less	than	the
maximum		aslr		offset:

region.size	-=	region.start	-	entry->addr;

if	(region.start	+	region.size	>	CONFIG_RANDOMIZE_BASE_MAX_OFFSET)

								region.size	=	CONFIG_RANDOMIZE_BASE_MAX_OFFSET	-	region.start;

Finally,	we	go	through	all	unsafe	memory	regions	and	check	that	the	region	does	not	overlap
unsafe	areas,	such	as	kernel	command	line,	initrd,	etc...:

Kernel	decompression

81

https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-2.md#memory-detection

for	(img.start	=	region.start,	img.size	=	image_size	;

									mem_contains(®ion,	&img)	;

									img.start	+=	CONFIG_PHYSICAL_ALIGN)	{

								if	(mem_avoid_overlap(&img))

												continue;

								slots_append(img.start);

				}

If	the	memory	region	does	not	overlap	unsafe	regions	we	call	the		slots_append		function
with	the	start	address	of	the	region.		slots_append		function	just	collects	start	addresses	of
memory	regions	to	the		slots		array:

slots[slot_max++]	=	addr;

which	is	defined	as:

static	unsigned	long	slots[CONFIG_RANDOMIZE_BASE_MAX_OFFSET	/

															CONFIG_PHYSICAL_ALIGN];

static	unsigned	long	slot_max;

After		process_e820_entry		is	done,	we	will	have	an	array	of	addresses	that	are	safe	for	the
decompressed	kernel.	Then	we	call		slots_fetch_random		function	to	get	a	random	item	from
this	array:

if	(slot_max	==	0)

				return	0;

return	slots[get_random_long()	%	slot_max];

where		get_random_long		function	checks	different	CPU	flags	as		X86_FEATURE_RDRAND		or
	X86_FEATURE_TSC		and	chooses	a	method	for	getting	random	number	(it	can	be	the	RDRAND
instruction,	the	time	stamp	counter,	the	programmable	interval	timer,	etc...).	After	retrieving
the	random	address,	execution	of	the		choose_kernel_location		is	finished.

Now	let's	back	to	misc.c.	After	getting	the	address	for	the	kernel	image,	there	need	to	be
some	checks	to	be	sure	that	the	retrieved	random	address	is	correctly	aligned	and	address
is	not	wrong.

After	all	these	checks	we	will	see	the	familiar	message:

Decompressing	Linux...

Kernel	decompression

82

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/misc.c#L404

and	call	the		__decompress		function	which	will	decompress	the	kernel.	The		__decompress	
function	depends	on	what	decompression	algorithm	was	chosen	during	kernel	compilation:

#ifdef	CONFIG_KERNEL_GZIP

#include	"../../../../lib/decompress_inflate.c"

#endif

#ifdef	CONFIG_KERNEL_BZIP2

#include	"../../../../lib/decompress_bunzip2.c"

#endif

#ifdef	CONFIG_KERNEL_LZMA

#include	"../../../../lib/decompress_unlzma.c"

#endif

#ifdef	CONFIG_KERNEL_XZ

#include	"../../../../lib/decompress_unxz.c"

#endif

#ifdef	CONFIG_KERNEL_LZO

#include	"../../../../lib/decompress_unlzo.c"

#endif

#ifdef	CONFIG_KERNEL_LZ4

#include	"../../../../lib/decompress_unlz4.c"

#endif

After	kernel	is	decompressed,	the	last	two	functions	are		parse_elf		and
	handle_relocations	.	The	main	point	of	these	functions	is	to	move	the	uncompressed	kernel
image	to	the	correct	memory	place.	The	fact	is	that	the	decompression	will	decompress	in-
place,	and	we	still	need	to	move	kernel	to	the	correct	address.	As	we	already	know,	the
kernel	image	is	an	ELF	executable,	so	the	main	goal	of	the		parse_elf		function	is	to	move
loadable	segments	to	the	correct	address.	We	can	see	loadable	segments	in	the	output	of
the		readelf		program:

Kernel	decompression

83

https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

readelf	-l	vmlinux

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x1000000

There	are	5	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		LOAD											0x0000000000200000	0xffffffff81000000	0x0000000001000000

																	0x0000000000893000	0x0000000000893000		R	E				200000

		LOAD											0x0000000000a93000	0xffffffff81893000	0x0000000001893000

																	0x000000000016d000	0x000000000016d000		RW					200000

		LOAD											0x0000000000c00000	0x0000000000000000	0x0000000001a00000

																	0x00000000000152d8	0x00000000000152d8		RW					200000

		LOAD											0x0000000000c16000	0xffffffff81a16000	0x0000000001a16000

																	0x0000000000138000	0x000000000029b000		RWE				200000

The	goal	of	the		parse_elf		function	is	to	load	these	segments	to	the		output		address	we
got	from	the		choose_kernel_location		function.	This	function	starts	with	checking	the	ELF
signature:

Elf64_Ehdr	ehdr;

Elf64_Phdr	*phdrs,	*phdr;

memcpy(&ehdr,	output,	sizeof(ehdr));

if	(ehdr.e_ident[EI_MAG0]	!=	ELFMAG0	||

			ehdr.e_ident[EI_MAG1]	!=	ELFMAG1	||

			ehdr.e_ident[EI_MAG2]	!=	ELFMAG2	||

			ehdr.e_ident[EI_MAG3]	!=	ELFMAG3)	{

			error("Kernel	is	not	a	valid	ELF	file");

			return;

}

and	if	it's	not	valid,	it	prints	an	error	message	and	halts.	If	we	got	a	valid		ELF		file,	we	go
through	all	program	headers	from	the	given		ELF		file	and	copy	all	loadable	segments	with
correct	address	to	the	output	buffer:

Kernel	decompression

84

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

				for	(i	=	0;	i	<	ehdr.e_phnum;	i++)	{

								phdr	=	&phdrs[i];

								switch	(phdr->p_type)	{

								case	PT_LOAD:

#ifdef	CONFIG_RELOCATABLE

												dest	=	output;

												dest	+=	(phdr->p_paddr	-	LOAD_PHYSICAL_ADDR);

#else

												dest	=	(void	*)(phdr->p_paddr);

#endif

												memcpy(dest,

																			output	+	phdr->p_offset,

																			phdr->p_filesz);

												break;

								default:	/*	Ignore	other	PT_*	*/	break;

								}

				}

That's	all.	From	now	on,	all	loadable	segments	are	in	the	correct	place.	The	last
	handle_relocations		function	adjusts	addresses	in	the	kernel	image,	and	is	called	only	if	the
	kASLR		was	enabled	during	kernel	configuration.

After	the	kernel	is	relocated,	we	return	back	from	the		decompress_kernel		to
arch/x86/boot/compressed/head_64.S.	The	address	of	the	kernel	will	be	in	the		rax		register
and	we	jump	to	it:

jmp				*%rax

That's	all.	Now	we	are	in	the	kernel!

Conclusion
This	is	the	end	of	the	fifth	and	the	last	part	about	linux	kernel	booting	process.	We	will	not
see	posts	about	kernel	booting	anymore	(maybe	updates	to	this	and	previous	posts),	but
there	will	be	many	posts	about	other	kernel	internals.

Next	chapter	will	be	about	kernel	initialization	and	we	will	see	the	first	steps	in	the	Linux
kernel	initialization	code.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	in	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Kernel	decompression

85

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals

Links
address	space	layout	randomization
initrd
long	mode
bzip2
RDdRand	instruction
Time	Stamp	Counter
Programmable	Interval	Timers
Previous	part

Kernel	decompression

86

https://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Long_mode
http://www.bzip.org/
http://en.wikipedia.org/wiki/RdRand
http://en.wikipedia.org/wiki/Time_Stamp_Counter
http://en.wikipedia.org/wiki/Intel_8253
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md

Kernel	initialization	process
You	will	find	here	a	couple	of	posts	which	describe	the	full	cycle	of	kernel	initialization	from
its	first	step	after	the	kernel	has	been	decompressed	to	the	start	of	the	first	process	run	by
the	kernel	itself.

Note	That	there	will	not	be	a	description	of	the	all	kernel	initialization	steps.	Here	will	be	only
generic	kernel	part,	without	interrupts	handling,	ACPI,	and	many	other	parts.	All	parts	which	I
have	missed,	will	be	described	in	other	chapters.

First	steps	after	kernel	decompression	-	describes	first	steps	in	the	kernel.
Early	interrupt	and	exception	handling	-	describes	early	interrupts	initialization	and	early
page	fault	handler.
Last	preparations	before	the	kernel	entry	point	-	describes	the	last	preparations	before
the	call	of	the		start_kernel	.
Kernel	entry	point	-	describes	first	steps	in	the	kernel	generic	code.
Continue	of	architecture-specific	initializations	-	describes	architecture-specific
initialization.
Architecture-specific	initializations,	again...	-	describes	continue	of	the	architecture-
specific	initialization	process.
The	End	of	the	architecture-specific	initializations,	almost...	-	describes	the	end	of	the
	setup_arch		related	stuff.
Scheduler	initialization	-	describes	preparation	before	scheduler	initialization	and
initialization	of	it.
RCU	initialization	-	describes	the	initialization	of	the	RCU.
End	of	the	initialization	-	the	last	part	about	linux	kernel	initialization.

Initialization

87

https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-1.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-2.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-3.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-4.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-5.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-6.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-7.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-8.md
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-9.md
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-10.md

Kernel	initialization.	Part	1.

First	steps	in	the	kernel	code
The	previous	post	was	a	last	part	of	the	Linux	kernel	booting	process	chapter	and	now	we
are	starting	to	dive	into	initialization	process	of	the	Linux	kernel.	After	the	image	of	the	Linux
kernel	is	decompressed	and	placed	in	a	correct	place	in	memory,	it	starts	to	work.	All
previous	parts	describe	the	work	of	the	Linux	kernel	setup	code	which	does	preparation
before	the	first	bytes	of	the	Linux	kernel	code	will	be	executed.	From	now	we	are	in	the
kernel	and	all	parts	of	this	chapter	will	be	devoted	to	the	initialization	process	of	the	kernel
before	it	will	launch	process	with	pid		1	.	There	are	many	things	to	do	before	the	kernel	will
start	first		init		process.	Hope	we	will	see	all	of	the	preparations	before	kernel	will	start	in
this	big	chapter.	We	will	start	from	the	kernel	entry	point,	which	is	located	in	the
arch/x86/kernel/head_64.S	and	and	will	move	further	and	further.	We	will	see	first
preparations	like	early	page	tables	initialization,	switch	to	a	new	descriptor	in	kernel	space
and	many	many	more,	before	we	will	see	the		start_kernel		function	from	the	init/main.c	will
be	called.

In	the	last	part	of	the	previous	chapter	we	stopped	at	the	jmp	instruction	from	the
arch/x86/boot/compressed/head_64.S	assembly	source	code	file:

jmp				*%rax

At	this	moment	the		rax		register	contains	address	of	the	Linux	kernel	entry	point	which	that
was	obtained	as	a	result	of	the	call	of	the		decompress_kernel		function	from	the
arch/x86/boot/compressed/misc.c	source	code	file.	So,	our	last	instruction	in	the	kernel
setup	code	is	a	jump	on	the	kernel	entry	point.	We	already	know	where	is	defined	the	entry
point	of	the	linux	kernel,	so	we	are	able	to	start	to	learn	what	does	the	Linux	kernel	does
after	the	start.

First	steps	in	the	kernel
Okay,	we	got	the	address	of	the	decompressed	kernel	image	from	the		decompress_kernel	
function	into		rax		register	and	just	jumped	there.	As	we	already	know	the	entry	point	of	the
decompressed	kernel	image	starts	in	the	arch/x86/kernel/head_64.S	assembly	source	code
file	and	at	the	beginning	of	it,	we	can	see	following	definitions:

First	steps	in	the	kernel

88

https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html
https://0xax.gitbooks.io/linux-insides/content/Booting/index.html
https://en.wikipedia.org/wiki/Process_identifier
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c#L489
https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html
https://0xax.gitbooks.io/linux-insides/content/Booting/index.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S

				__HEAD

				.code64

				.globl	startup_64

startup_64:

				...

				...

				...

We	can	see	definition	of	the		startup_64		routine	that	is	defined	in	the		__HEAD		section,
which	is	just	a	macro	which	expands	to	the	definition	of	executable		.head.text		section:

#define	__HEAD								.section				".head.text","ax"

We	can	see	definition	of	this	section	in	the	arch/x86/kernel/vmlinux.lds.S	linker	script:

.text	:	AT(ADDR(.text)	-	LOAD_OFFSET)	{

				_text	=	.;

				...

				...

				...

}	:text	=	0x9090

Besides	the	definition	of	the		.text		section,	we	can	understand	default	virtual	and	physical
addresses	from	the	linker	script.	Note	that	address	of	the		_text		is	location	counter	which	is
defined	as:

.	=	__START_KERNEL;

for	the	x86_64.	The	definition	of	the		__START_KERNEL		macro	is	located	in	the
arch/x86/include/asm/page_types.h	header	file	and	represented	by	the	sum	of	the	base
virtual	address	of	the	kernel	mapping	and	physical	start:

#define	__START_KERNEL				(__START_KERNEL_map	+	__PHYSICAL_START)

#define	__PHYSICAL_START		ALIGN(CONFIG_PHYSICAL_START,	CONFIG_PHYSICAL_ALIGN)

Or	in	other	words:

Base	physical	address	of	the	Linux	kernel	-		0x1000000	;
Base	virtual	address	of	the	Linux	kernel	-		0xffffffff81000000	.

Now	we	know	default	physical	and	virtual	addresses	of	the		startup_64		routine,	but	to	know
actual	addresses	we	must	to	calculate	it	with	the	following	code:

First	steps	in	the	kernel

89

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S#L93
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_types.h

				leaq				_text(%rip),	%rbp

				subq				$_text	-	__START_KERNEL_map,	%rbp

Yes,	it	defined	as		0x1000000	,	but	it	may	be	different,	for	example	if	kASLR	is	enabled.	So
our	current	goal	is	to	calculate	delta	between		0x1000000		and	where	we	actually	loaded.
Here	we	just	put	the		rip-relative		address	to	the		rbp		register	and	then	subtract		$_text	-
__START_KERNEL_map		from	it.	We	know	that	compiled	virtual	address	of	the		_text		is
	0xffffffff81000000		and	the	physical	address	of	it	is		0x1000000	.	The		__START_KERNEL_map	
macro	expands	to	the		0xffffffff80000000		address,	so	at	the	second	line	of	the	assembly
code,	we	will	get	following	expression:

rbp	=	0x1000000	-	(0xffffffff81000000	-	0xffffffff80000000)

So,	after	the	calculation,	the		rbp		will	contain		0		which	represents	difference	between
addresses	where	we	actually	loaded	and	where	the	code	was	compiled.	In	our	case		zero	
means	that	the	Linux	kernel	was	loaded	by	default	address	and	the	kASLR	was	disabled.

After	we	got	the	address	of	the		startup_64	,	we	need	to	do	a	check	that	this	address	is
correctly	aligned.	We	will	do	it	with	the	following	code:

				testl				$~PMD_PAGE_MASK,	%ebp

				jnz				bad_address

Here	we	just	compare	low	part	of	the		rbp		register	with	the	complemented	value	of	the
	PMD_PAGE_MASK	.	The		PMD_PAGE_MASK		indicates	the	mask	for		Page	middle	directory		(read
paging	about	it)	and	defined	as:

#define	PMD_PAGE_MASK											(~(PMD_PAGE_SIZE-1))

#define	PMD_PAGE_SIZE											(_AC(1,	UL)	<<	PMD_SHIFT)

#define	PMD_SHIFT							21

As	we	can	easily	calculate,		PMD_PAGE_SIZE		is		2		megabytes.	Here	we	use	standard	formula
for	checking	alignment	and	if		text		address	is	not	aligned	for		2		megabytes,	we	jump	to
	bad_address		label.

After	this	we	check	address	that	it	is	not	too	large	by	the	checking	of	highest		18		bits:

				leaq				_text(%rip),	%rax

				shrq				$MAX_PHYSMEM_BITS,	%rax

				jnz				bad_address

First	steps	in	the	kernel

90

https://en.wikipedia.org/wiki/Address_space_layout_randomization#Linux
https://en.wikipedia.org/wiki/Address_space_layout_randomization#Linux
http://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html

The	address	must	not	be	greater	than		46	-bits:

#define	MAX_PHYSMEM_BITS							46

Okay,	we	did	some	early	checks	and	now	we	can	move	on.

Fix	base	addresses	of	page	tables
The	first	step	before	we	start	to	setup	identity	paging	is	to	fixup	following	addresses:

				addq				%rbp,	early_level4_pgt	+	(L4_START_KERNEL*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(510*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(511*8)(%rip)

				addq				%rbp,	level2_fixmap_pgt	+	(506*8)(%rip)

All	of		early_level4_pgt	,		level3_kernel_pgt		and	other	address	may	be	wrong	if	the
	startup_64		is	not	equal	to	default		0x1000000		address.	The		rbp		register	contains	the	delta
address	so	we	add	to	the	certain	entries	of	the		early_level4_pgt	,	the		level3_kernel_pgt	
and	the		level2_fixmap_pgt	.	Let's	try	to	understand	what	these	labels	mean.	First	of	all	let's
look	at	their	definition:

NEXT_PAGE(early_level4_pgt)

				.fill				511,8,0

				.quad				level3_kernel_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

NEXT_PAGE(level3_kernel_pgt)

				.fill				L3_START_KERNEL,8,0

				.quad				level2_kernel_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.quad				level2_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

NEXT_PAGE(level2_kernel_pgt)

				PMDS(0,	__PAGE_KERNEL_LARGE_EXEC,

								KERNEL_IMAGE_SIZE/PMD_SIZE)

NEXT_PAGE(level2_fixmap_pgt)

				.fill				506,8,0

				.quad				level1_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

				.fill				5,8,0

NEXT_PAGE(level1_fixmap_pgt)

				.fill				512,8,0

First	steps	in	the	kernel

91

Looks	hard,	but	it	isn't.	First	of	all	let's	look	at	the		early_level4_pgt	.	It	starts	with	the	(4096	-
8)	bytes	of	zeros,	it	means	that	we	don't	use	the	first		511		entries.	And	after	this	we	can	see
one		level3_kernel_pgt		entry.	Note	that	we	subtract		__START_KERNEL_map	+	_PAGE_TABLE		from
it.	As	we	know		__START_KERNEL_map		is	a	base	virtual	address	of	the	kernel	text,	so	if	we
subtract		__START_KERNEL_map	,	we	will	get	physical	address	of	the		level3_kernel_pgt	.	Now
let's	look	at		_PAGE_TABLE	,	it	is	just	page	entry	access	rights:

#define	_PAGE_TABLE					(_PAGE_PRESENT	|	_PAGE_RW	|	_PAGE_USER	|	\

																									_PAGE_ACCESSED	|	_PAGE_DIRTY)

You	can	read	more	about	it	in	the	paging	part.

The		level3_kernel_pgt		-	stores	two	entries	which	map	kernel	space.	At	the	start	of	it's
definition,	we	can	see	that	it	is	filled	with	zeros		L3_START_KERNEL		or		510		times.	Here	the
	L3_START_KERNEL		is	the	index	in	the	page	upper	directory	which	contains
	__START_KERNEL_map		address	and	it	equals		510	.	After	this,	we	can	see	the	definition	of	the
two		level3_kernel_pgt		entries:		level2_kernel_pgt		and		level2_fixmap_pgt	.	First	is	simple,
it	is	page	table	entry	which	contains	pointer	to	the	page	middle	directory	which	maps	kernel
space	and	it	has:

#define	_KERNPG_TABLE			(_PAGE_PRESENT	|	_PAGE_RW	|	_PAGE_ACCESSED	|	\

																									_PAGE_DIRTY)

access	rights.	The	second	-		level2_fixmap_pgt		is	a	virtual	addresses	which	can	refer	to	any
physical	addresses	even	under	kernel	space.	They	represented	by	the	one
	level2_fixmap_pgt		entry	and		10		megabytes	hole	for	the	vsyscalls	mapping.	The	next
	level2_kernel_pgt		calls	the		PDMS		macro	which	creates		512		megabytes	from	the
	__START_KERNEL_map		for	kernel		.text		(after	these		512		megabytes	will	be	modules	memory
space).

Now,	after	we	saw	definitions	of	these	symbols,	let's	get	back	to	the	code	which	is	described
at	the	beginning	of	the	section.	Remember	that	the		rbp		register	contains	delta	between	the
address	of	the		startup_64		symbol	which	was	got	during	kernel	linking	and	the	actual
address.	So,	for	this	moment,	we	just	need	to	add	add	this	delta	to	the	base	address	of
some	page	table	entries,	that	they'll	have	correct	addresses.	In	our	case	these	entries	are:

				addq				%rbp,	early_level4_pgt	+	(L4_START_KERNEL*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(510*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(511*8)(%rip)

				addq				%rbp,	level2_fixmap_pgt	+	(506*8)(%rip)

First	steps	in	the	kernel

92

http://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html
https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Linker_%28computing%29

or	the	last	entry	of	the		early_level4_pgt		which	is	the		level3_kernel_pgt	,	last	two	entries	of
the		level3_kernel_pgt		which	are	the		level2_kernel_pgt		and	the		level2_fixmap_pgt		and
five	hundreds	seventh	entry	of	the		level2_fixmap_pgt		which	is		level1_fixmap_pgt		page
directory.

After	all	of	this	we	will	have:

early_level4_pgt[511]	->	level3_kernel_pgt[0]

level3_kernel_pgt[510]	->	level2_kernel_pgt[0]

level3_kernel_pgt[511]	->	level2_fixmap_pgt[0]

level2_kernel_pgt[0]			->	512	MB	kernel	mapping

level2_fixmap_pgt[507]	->	level1_fixmap_pgt

Note	that	we	didn't	fixup	base	address	of	the		early_level4_pgt		and	some	of	other	page
table	directories,	because	we	will	see	this	during	of	building/filling	of	structures	for	these
page	tables.	As	we	corrected	base	addresses	of	the	page	tables,	we	can	start	to	build	it.

Identity	mapping	setup
Now	we	can	see	the	set	up	of	identity	mapping	of	early	page	tables.	In	Identity	Mapped
Paging,	virtual	addresses	are	mapped	to	physical	addresses	that	have	the	same	value,		1	:
1	.	Let's	look	at	it	in	detail.	First	of	all	we	get	the		rip-relative		address	of	the		_text		and
	_early_level4_pgt		and	put	they	into		rdi		and		rbx		registers:

				leaq				_text(%rip),	%rdi

				leaq				early_level4_pgt(%rip),	%rbx

After	this	we	store	address	of	the		_text		in	the		rax		and	get	the	index	of	the	page	global
directory	entry	which	stores		_text		address,	by	shifting		_text		address	on	the
	PGDIR_SHIFT	:

				movq				%rdi,	%rax

				shrq				$PGDIR_SHIFT,	%rax

				leaq				(4096	+	_KERNPG_TABLE)(%rbx),	%rdx

				movq				%rdx,	0(%rbx,%rax,8)

				movq				%rdx,	8(%rbx,%rax,8)

where		PGDIR_SHIFT		is		39	.		PGDIR_SHFT		indicates	the	mask	for	page	global	directory	bits	in
a	virtual	address.	There	are	macro	for	all	types	of	page	directories:

First	steps	in	the	kernel

93

#define	PGDIR_SHIFT					39

#define	PUD_SHIFT							30

#define	PMD_SHIFT							21

After	this	we	put	the	address	of	the	first		level3_kernel_pgt		in	the		rdx		with	the
	_KERNPG_TABLE		access	rights	(see	above)	and	fill	the		early_level4_pgt		with	the	2
	level3_kernel_pgt		entries.

After	this	we	add		4096		(size	of	the		early_level4_pgt)	to	the		rdx		(it	now	contains	the
address	of	the	first	entry	of	the		level3_kernel_pgt)	and	put		rdi		(it	now	contains	physical
address	of	the		_text)	to	the		rax	.	And	after	this	we	write	addresses	of	the	two	page	upper
directory	entries	to	the		level3_kernel_pgt	:

				addq				$4096,	%rdx

				movq				%rdi,	%rax

				shrq				$PUD_SHIFT,	%rax

				andl				$(PTRS_PER_PUD-1),	%eax

				movq				%rdx,	4096(%rbx,%rax,8)

				incl				%eax

				andl				$(PTRS_PER_PUD-1),	%eax

				movq				%rdx,	4096(%rbx,%rax,8)

In	the	next	step	we	write	addresses	of	the	page	middle	directory	entries	to	the
	level2_kernel_pgt		and	the	last	step	is	correcting	of	the	kernel	text+data	virtual	addresses:

				leaq				level2_kernel_pgt(%rip),	%rdi

				leaq				4096(%rdi),	%r8

1:				testq				$1,	0(%rdi)

				jz				2f

				addq				%rbp,	0(%rdi)

2:				addq				$8,	%rdi

				cmp				%r8,	%rdi

				jne				1b

Here	we	put	the	address	of	the		level2_kernel_pgt		to	the		rdi		and	address	of	the	page
table	entry	to	the		r8		register.	Next	we	check	the	present	bit	in	the		level2_kernel_pgt		and
if	it	is	zero	we're	moving	to	the	next	page	by	adding	8	bytes	to		rdi		which	contains	address
of	the		level2_kernel_pgt	.	After	this	we	compare	it	with		r8		(contains	address	of	the	page
table	entry)	and	go	back	to	label		1		or	move	forward.

In	the	next	step	we	correct		phys_base		physical	address	with		rbp		(contains	physical
address	of	the		_text),	put	physical	address	of	the		early_level4_pgt		and	jump	to	label		1	:

First	steps	in	the	kernel

94

				addq				%rbp,	phys_base(%rip)

				movq				$(early_level4_pgt	-	__START_KERNEL_map),	%rax

				jmp	1f

where		phys_base		matches	the	first	entry	of	the		level2_kernel_pgt		which	is		512		MB	kernel
mapping.

Last	preparation	before	jump	at	the	kernel
entry	point
After	that	we	jump	to	the	label		1		we	enable		PAE	,		PGE		(Paging	Global	Extension)	and	put
the	physical	address	of	the		phys_base		(see	above)	to	the		rax		register	and	fill		cr3		register
with	it:

1:

				movl				$(X86_CR4_PAE	|	X86_CR4_PGE),	%ecx

				movq				%rcx,	%cr4

				addq				phys_base(%rip),	%rax

				movq				%rax,	%cr3

In	the	next	step	we	check	that	CPU	supports	NX	bit	with:

				movl				$0x80000001,	%eax

				cpuid

				movl				%edx,%edi

We	put		0x80000001		value	to	the		eax		and	execute		cpuid		instruction	for	getting	the
extended	processor	info	and	feature	bits.	The	result	will	be	in	the		edx		register	which	we	put
to	the		edi	.

Now	we	put		0xc0000080		or		MSR_EFER		to	the		ecx		and	call		rdmsr		instruction	for	the	reading
model	specific	register.

				movl				$MSR_EFER,	%ecx

				rdmsr

The	result	will	be	in	the		edx:eax	.	General	view	of	the		EFER		is	following:

First	steps	in	the	kernel

95

http://en.wikipedia.org/wiki/NX_bit

63																																																																														32

	--

|																																																																															|

|																																Reserved	MBZ																																			|

|																																																																															|

	--

31																												16		15						14						13			12		11			10		9		8	7		1			0

	--

|																														|	T	|							|							|				|			|			|			|			|			|			|

|	Reserved	MBZ																	|	C	|	FFXSR	|	LMSLE	|SVME|NXE|LMA|MBZ|LME|RAZ|SCE|

|																														|	E	|							|							|				|			|			|			|			|			|			|

	--

We	will	not	see	all	fields	in	details	here,	but	we	will	learn	about	this	and	other		MSRs		in	a
special	part	about	it.	As	we	read		EFER		to	the		edx:eax	,	we	check		_EFER_SCE		or	zero	bit
which	is		System	Call	Extensions		with		btsl		instruction	and	set	it	to	one.	By	the	setting
	SCE		bit	we	enable		SYSCALL		and		SYSRET		instructions.	In	the	next	step	we	check	20th	bit	in
the		edi	,	remember	that	this	register	stores	result	of	the		cpuid		(see	above).	If		20		bit	is
set	(NX		bit)	we	just	write		EFER_SCE		to	the	model	specific	register.

				btsl				$_EFER_SCE,	%eax

				btl								$20,%edi

				jnc					1f

				btsl				$_EFER_NX,	%eax

				btsq				$_PAGE_BIT_NX,early_pmd_flags(%rip)

1:				wrmsr

If	the	NX	bit	is	supported	we	enable		_EFER_NX		and	write	it	too,	with	the		wrmsr		instruction.
After	the	NX	bit	is	set,	we	set	some	bits	in	the		cr0		control	register,	namely:

	X86_CR0_PE		-	system	is	in	protected	mode;
	X86_CR0_MP		-	controls	interaction	of	WAIT/FWAIT	instructions	with	TS	flag	in	CR0;
	X86_CR0_ET		-	on	the	386,	it	allowed	to	specify	whether	the	external	math	coprocessor
was	an	80287	or	80387;
	X86_CR0_NE		-	enable	internal	x87	floating	point	error	reporting	when	set,	else	enables
PC	style	x87	error	detection;
	X86_CR0_WP		-	when	set,	the	CPU	can't	write	to	read-only	pages	when	privilege	level	is
0;
	X86_CR0_AM		-	alignment	check	enabled	if	AM	set,	AC	flag	(in	EFLAGS	register)	set,	and
privilege	level	is	3;
	X86_CR0_PG		-	enable	paging.

by	the	execution	following	assembly	code:

First	steps	in	the	kernel

96

https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Control_register

#define	CR0_STATE				(X86_CR0_PE	|	X86_CR0_MP	|	X86_CR0_ET	|	\

													X86_CR0_NE	|	X86_CR0_WP	|	X86_CR0_AM	|	\

													X86_CR0_PG)

movl				$CR0_STATE,	%eax

movq				%rax,	%cr0

We	already	know	that	to	run	any	code,	and	even	more	C	code	from	assembly,	we	need	to
setup	a	stack.	As	always,	we	are	doing	it	by	the	setting	of	stack	pointer	to	a	correct	place	in
memory	and	resetting	flags	register	after	this:

movq	stack_start(%rip),	%rsp

pushq	$0

popfq

The	most	interesting	thing	here	is	the		stack_start	.	It	defined	in	the	same	source	code	file
and	looks	like:

GLOBAL(stack_start)

.quad		init_thread_union+THREAD_SIZE-8

The		GLOBAL		is	already	familiar	to	us	from.	It	defined	in	the	arch/x86/include/asm/linkage.h
header	file	expands	to	the		global		symbol	definition:

#define	GLOBAL(name)				\

									.globl	name;											\

									name:

The		THREAD_SIZE		macro	is	defined	in	the	arch/x86/include/asm/page_64_types.h	header	file
and	depends	on	value	of	the		KASAN_STACK_ORDER		macro:

#define	THREAD_SIZE_ORDER							(2	+	KASAN_STACK_ORDER)

#define	THREAD_SIZE		(PAGE_SIZE	<<	THREAD_SIZE_ORDER)

We	consider	when	the	kasan	is	disabled	and	the		PAGE_SIZE		is		4096		bytes.	So	the
	THREAD_SIZE		will	expands	to		16		kilobytes	and	represents	size	of	the	stack	of	a	thread.	Why
is		thread	?	You	may	already	know	that	each	process	may	have	parent	processes	and	child
processes.	Actually,	a	parent	process	and	child	process	differ	in	stack.	A	new	kernel	stack	is
allocated	for	a	new	process.	In	the	Linux	kernel	this	stack	is	represented	by	the	union	with
the		thread_info		structure.

And	as	we	can	see	the		init_thread_union		is	represented	by	the		thread_union	,	which
defined	as:

First	steps	in	the	kernel

97

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/linkage.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_64_types.h
http://lxr.free-electrons.com/source/Documentation/kasan.txt
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Parent_process
https://en.wikipedia.org/wiki/Child_process
https://en.wikipedia.org/wiki/Union_type#C.2FC.2B.2B

union	thread_union	{

									struct	thread_info	thread_info;

									unsigned	long	stack[THREAD_SIZE/sizeof(long)];

};

and		init_thread_union		looks	like:

union	thread_union	init_thread_union	__init_task_data	=

				{	INIT_THREAD_INFO(init_task)	};

Where	the		INIT_THREAD_INFO		macro	takes		task_struct		structure	which	represents	process
descriptor	in	the	Linux	kernel	and	does	some	basic	initialization	of	the	given		task_struct	
structure:

#define	INIT_THREAD_INFO(tsk)								\

{																																															\

				.task								=	&tsk,																									\

				.flags								=	0,																												\

				.cpu								=	0,																												\

				.addr_limit				=	KERNEL_DS,																				\

}

So,	the		thread_union		contains	low-level	information	about	a	process	and	process's	stack
and	placed	in	the	bottom	of	stack:

+-----------------------+

|																							|

|																							|

|																							|

|					Kernel	stack						|

|																							|

|																							|

|																							|

|-----------------------|

|																							|

|		struct	thread_info			|

|																							|

+-----------------------+

Note	that	we	reserve		8		bytes	at	the	to	of	stack.	This	is	necessary	to	guarantee	illegal
access	of	the	next	page	memory.

After	the	early	boot	stack	is	set,	to	update	the	Global	Descriptor	Table	with		lgdt		instruction:

lgdt				early_gdt_descr(%rip)

First	steps	in	the	kernel

98

https://en.wikipedia.org/wiki/Global_Descriptor_Table

where	the		early_gdt_descr		is	defined	as:

early_gdt_descr:

				.word				GDT_ENTRIES*8-1

early_gdt_descr_base:

				.quad				INIT_PER_CPU_VAR(gdt_page)

We	need	to	reload		Global	Descriptor	Table		because	now	kernel	works	in	the	low
userspace	addresses,	but	soon	kernel	will	work	in	it's	own	space.	Now	let's	look	at	the
definition	of		early_gdt_descr	.	Global	Descriptor	Table	contains		32		entries:

#define	GDT_ENTRIES	32

for	kernel	code,	data,	thread	local	storage	segments	and	etc...	it's	simple.	Now	let's	look	at
the		early_gdt_descr_base	.	First	of		gdt_page		defined	as:

struct	gdt_page	{

				struct	desc_struct	gdt[GDT_ENTRIES];

}	__attribute__((aligned(PAGE_SIZE)));

in	the	arch/x86/include/asm/desc.h.	It	contains	one	field		gdt		which	is	array	of	the
	desc_struct		structure	which	is	defined	as:

struct	desc_struct	{

									union	{

																	struct	{

																									unsigned	int	a;

																									unsigned	int	b;

																	};

																	struct	{

																									u16	limit0;

																									u16	base0;

																									unsigned	base1:	8,	type:	4,	s:	1,	dpl:	2,	p:	1;

																									unsigned	limit:	4,	avl:	1,	l:	1,	d:	1,	g:	1,	base2:	8;

																	};

									};

	}	__attribute__((packed));

and	presents	familiar	to	us		GDT		descriptor.	Also	we	can	note	that		gdt_page		structure
aligned	to		PAGE_SIZE		which	is		4096		bytes.	It	means	that		gdt		will	occupy	one	page.	Now
let's	try	to	understand	what	is		INIT_PER_CPU_VAR	.		INIT_PER_CPU_VAR		is	a	macro	which
defined	in	the	arch/x86/include/asm/percpu.h	and	just	concats		init_per_cpu__		with	the
given	parameter:

First	steps	in	the	kernel

99

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/percpu.h

#define	INIT_PER_CPU_VAR(var)	init_per_cpu__##var

After	the		INIT_PER_CPU_VAR		macro	will	be	expanded,	we	will	have		init_per_cpu__gdt_page	.
We	can	see	in	the	linker	script:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(gdt_page);

As	we	got		init_per_cpu__gdt_page		in		INIT_PER_CPU_VAR		and		INIT_PER_CPU		macro	from
linker	script	will	be	expanded	we	will	get	offset	from	the		__per_cpu_load	.	After	this
calculations,	we	will	have	correct	base	address	of	the	new	GDT.

Generally	per-CPU	variables	is	a	2.6	kernel	feature.	You	can	understand	what	it	is	from	its
name.	When	we	create		per-CPU		variable,	each	CPU	will	have	will	have	its	own	copy	of	this
variable.	Here	we	creating		gdt_page		per-CPU	variable.	There	are	many	advantages	for
variables	of	this	type,	like	there	are	no	locks,	because	each	CPU	works	with	its	own	copy	of
variable	and	etc...	So	every	core	on	multiprocessor	will	have	its	own		GDT		table	and	every
entry	in	the	table	will	represent	a	memory	segment	which	can	be	accessed	from	the	thread
which	ran	on	the	core.	You	can	read	in	details	about		per-CPU		variables	in	the	Theory/per-
cpu	post.

As	we	loaded	new	Global	Descriptor	Table,	we	reload	segments	as	we	did	it	every	time:

				xorl	%eax,%eax

				movl	%eax,%ds

				movl	%eax,%ss

				movl	%eax,%es

				movl	%eax,%fs

				movl	%eax,%gs

After	all	of	these	steps	we	set	up		gs		register	that	it	post	to	the		irqstack		which	represents
special	stack	where	interrupts	will	be	handled	on:

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

where		MSR_GS_BASE		is:

#define	MSR_GS_BASE													0xc0000101

First	steps	in	the	kernel

100

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Interrupt

We	need	to	put		MSR_GS_BASE		to	the		ecx		register	and	load	data	from	the		eax		and		edx	
(which	are	point	to	the		initial_gs)	with		wrmsr		instruction.	We	don't	use		cs	,		fs	,		ds	
and		ss		segment	registers	for	addressing	in	the	64-bit	mode,	but		fs		and		gs		registers	can
be	used.		fs		and		gs		have	a	hidden	part	(as	we	saw	it	in	the	real	mode	for		cs)	and	this
part	contains	descriptor	which	mapped	to	Model	Specific	Registers.	So	we	can	see	above
	0xc0000101		is	a		gs.base		MSR	address.	When	a	system	call	or	interrupt	occurred,	there	is
no	kernel	stack	at	the	entry	point,	so	the	value	of	the		MSR_GS_BASE		will	store	address	of	the
interrupt	stack.

In	the	next	step	we	put	the	address	of	the	real	mode	bootparam	structure	to	the		rdi	
(remember		rsi		holds	pointer	to	this	structure	from	the	start)	and	jump	to	the	C	code	with:

				movq				initial_code(%rip),%rax

				pushq				$0

				pushq				$__KERNEL_CS

				pushq				%rax

				lretq

Here	we	put	the	address	of	the		initial_code		to	the		rax		and	push	fake	address,
	__KERNEL_CS		and	the	address	of	the		initial_code		to	the	stack.	After	this	we	can	see
	lretq		instruction	which	means	that	after	it	return	address	will	be	extracted	from	stack	(now
there	is	address	of	the		initial_code)	and	jump	there.		initial_code		is	defined	in	the	same
source	code	file	and	looks:

				.balign				8

				GLOBAL(initial_code)

				.quad				x86_64_start_kernel

				...

				...

				...

As	we	can	see		initial_code		contains	address	of	the		x86_64_start_kernel	,	which	is
defined	in	the	arch/x86/kerne/head64.c	and	looks	like	this:

asmlinkage	__visible	void	__init	x86_64_start_kernel(char	*	real_mode_data)	{

				...

				...

				...

}

It	has	one	argument	is	a		real_mode_data		(remember	that	we	passed	address	of	the	real
mode	data	to	the		rdi		register	previously).

This	is	first	C	code	in	the	kernel!

First	steps	in	the	kernel

101

https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c

Next	to	start_kernel
We	need	to	see	last	preparations	before	we	can	see	"kernel	entry	point"	-	start_kernel
function	from	the	init/main.c.

First	of	all	we	can	see	some	checks	in	the		x86_64_start_kernel		function:

BUILD_BUG_ON(MODULES_VADDR	<	__START_KERNEL_map);

BUILD_BUG_ON(MODULES_VADDR	-	__START_KERNEL_map	<	KERNEL_IMAGE_SIZE);

BUILD_BUG_ON(MODULES_LEN	+	KERNEL_IMAGE_SIZE	>	2*PUD_SIZE);

BUILD_BUG_ON((__START_KERNEL_map	&	~PMD_MASK)	!=	0);

BUILD_BUG_ON((MODULES_VADDR	&	~PMD_MASK)	!=	0);

BUILD_BUG_ON(!(MODULES_VADDR	>	__START_KERNEL));

BUILD_BUG_ON(!(((MODULES_END	-	1)	&	PGDIR_MASK)	==	(__START_KERNEL	&	PGDIR_MASK)));

BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses)	<=	MODULES_END);

There	are	checks	for	different	things	like	virtual	addresses	of	modules	space	is	not	fewer
than	base	address	of	the	kernel	text	-		__STAT_KERNEL_map	,	that	kernel	text	with	modules	is
not	less	than	image	of	the	kernel	and	etc...		BUILD_BUG_ON		is	a	macro	which	looks	as:

#define	BUILD_BUG_ON(condition)	((void)sizeof(char[1	-	2*!!(condition)]))

Let's	try	to	understand	how	this	trick	works.	Let's	take	for	example	first	condition:
	MODULES_VADDR	<	__START_KERNEL_map	.		!!conditions		is	the	same	that		condition	!=	0	.	So	it
means	if		MODULES_VADDR	<	__START_KERNEL_map		is	true,	we	will	get		1		in	the		!!(condition)		or
zero	if	not.	After		2*!!(condition)		we	will	get	or		2		or		0	.	In	the	end	of	calculations	we	can
get	two	different	behaviors:

We	will	have	compilation	error,	because	try	to	get	size	of	the	char	array	with	negative
index	(as	can	be	in	our	case,	because		MODULES_VADDR		can't	be	less	than
	__START_KERNEL_map		will	be	in	our	case);
No	compilation	errors.

That's	all.	So	interesting	C	trick	for	getting	compile	error	which	depends	on	some	constants.

In	the	next	step	we	can	see	call	of	the		cr4_init_shadow		function	which	stores	shadow	copy
of	the		cr4		per	cpu.	Context	switches	can	change	bits	in	the		cr4		so	we	need	to	store		cr4	
for	each	CPU.	And	after	this	we	can	see	call	of	the		reset_early_page_tables		function	where
we	resets	all	page	global	directory	entries	and	write	new	pointer	to	the	PGT	in		cr3	:

First	steps	in	the	kernel

102

https://github.com/torvalds/linux/blob/master/init/main.c#L489

for	(i	=	0;	i	<	PTRS_PER_PGD-1;	i++)

				early_level4_pgt[i].pgd	=	0;

next_early_pgt	=	0;

write_cr3(__pa_nodebug(early_level4_pgt));

Soon	we	will	build	new	page	tables.	Here	we	can	see	that	we	go	through	all	Page	Global
Directory	Entries	(PTRS_PER_PGD		is		512)	in	the	loop	and	make	it	zero.	After	this	we	set
	next_early_pgt		to	zero	(we	will	see	details	about	it	in	the	next	post)	and	write	physical
address	of	the		early_level4_pgt		to	the		cr3	.		__pa_nodebug		is	a	macro	which	will	be
expanded	to:

((unsigned	long)(x)	-	__START_KERNEL_map	+	phys_base)

After	this	we	clear		_bss		from	the		__bss_stop		to		__bss_start		and	the	next	step	will	be
setup	of	the	early		IDT		handlers,	but	it's	big	concept	so	we	will	see	it	in	the	next	part.

Conclusion
This	is	the	end	of	the	first	part	about	linux	kernel	initialization.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

In	the	next	part	we	will	see	initialization	of	the	early	interruption	handlers,	kernel	space
memory	mapping	and	a	lot	more.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Model	Specific	Register
Paging
Previous	part	-	Kernel	decompression
NX
ASLR

First	steps	in	the	kernel

103

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Model-specific_register
http://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Address_space_layout_randomization

First	steps	in	the	kernel

104

Kernel	initialization.	Part	2.

Early	interrupt	and	exception	handling
In	the	previous	part	we	stopped	before	setting	of	early	interrupt	handlers.	At	this	moment	we
are	in	the	decompressed	Linux	kernel,	we	have	basic	paging	structure	for	early	boot	and	our
current	goal	is	to	finish	early	preparation	before	the	main	kernel	code	will	start	to	work.

We	already	started	to	do	this	preparation	in	the	previous	first	part	of	this	chapter.	We
continue	in	this	part	and	will	know	more	about	interrupt	and	exception	handling.

Remember	that	we	stopped	before	following	loop:

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handler_array[i]);

from	the	arch/x86/kernel/head64.c	source	code	file.	But	before	we	started	to	sort	out	this
code,	we	need	to	know	about	interrupts	and	handlers.

Some	theory
An	interrupt	is	an	event	caused	by	software	or	hardware	to	the	CPU.	For	example	a	user
have	pressed	a	key	on	keyboard.	On	interrupt,	CPU	stops	the	current	task	and	transfer
control	to	the	special	routine	which	is	called	-	interrupt	handler.	An	interrupt	handler	handles
and	interrupt	and	transfer	control	back	to	the	previously	stopped	task.	We	can	split	interrupts
on	three	types:

Software	interrupts	-	when	a	software	signals	CPU	that	it	needs	kernel	attention.	These
interrupts	are	generally	used	for	system	calls;
Hardware	interrupts	-	when	a	hardware	event	happens,	for	example	button	is	pressed
on	a	keyboard;
Exceptions	-	interrupts	generated	by	CPU,	when	the	CPU	detects	error,	for	example
division	by	zero	or	accessing	a	memory	page	which	is	not	in	RAM.

Every	interrupt	and	exception	is	assigned	a	unique	number	which	called	-		vector	number	.
	Vector	number		can	be	any	number	from		0		to		255	.	There	is	common	practice	to	use	first
	32		vector	numbers	for	exceptions,	and	vector	numbers	from		32		to		255		are	used	for
user-defined	interrupts.	We	can	see	it	in	the	code	above	-		NUM_EXCEPTION_VECTORS	,	which
defined	as:

Early	interrupts	handler

105

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://en.wikipedia.org/wiki/Page_table
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://en.wikipedia.org/wiki/Interrupt_handler

#define	NUM_EXCEPTION_VECTORS	32

CPU	uses	vector	number	as	an	index	in	the		Interrupt	Descriptor	Table		(we	will	see
description	of	it	soon).	CPU	catch	interrupts	from	the	APIC	or	through	it's	pins.	Following
table	shows		0-31		exceptions:

--

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																			|

--

|0					|	#DE				|Divide	Error								|Fault|NO								|DIV	and	IDIV																			

							|

|---

|1					|	#DB				|Reserved												|F/T		|NO								|																															

							|

|---

|2					|	---				|NMI																	|INT		|NO								|external	NMI																			

							|

|---

|3					|	#BP				|Breakpoint										|Trap	|NO								|INT	3																										

							|

|---

|4					|	#OF				|Overflow												|Trap	|NO								|INTO		instruction														

							|

|---

|5					|	#BR				|Bound	Range	Exceeded|Fault|NO								|BOUND	instruction														

							|

|---

|6					|	#UD				|Invalid	Opcode						|Fault|NO								|UD2	instruction																

							|

|---

|7					|	#NM				|Device	Not	Available|Fault|NO								|Floating	point	or	[F]WAIT						

							|

|---

|8					|	#DF				|Double	Fault								|Abort|YES							|Ant	instrctions	which	can	gener

ate	NMI|

|---

|9					|	---				|Reserved												|Fault|NO								|																															

							|

|---

Early	interrupts	handler

106

http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

|10				|	#TS				|Invalid	TSS									|Fault|YES							|Task	switch	or	TSS	access						

							|

|---

|11				|	#NP				|Segment	Not	Present	|Fault|NO								|Accessing	segment	register					

							|

|---

|12				|	#SS				|Stack-Segment	Fault	|Fault|YES							|Stack	operations															

							|

|---

|13				|	#GP				|General	Protection		|Fault|YES							|Memory	reference															

							|

|---

|14				|	#PF				|Page	fault										|Fault|YES							|Memory	reference															

							|

|---

|15				|	---				|Reserved												|					|NO								|																															

							|

|---

|16				|	#MF				|x87	FPU	fp	error				|Fault|NO								|Floating	point	or	[F]Wait						

							|

|---

|17				|	#AC				|Alignment	Check					|Fault|YES							|Data	reference																	

							|

|---

|18				|	#MC				|Machine	Check							|Abort|NO								|																															

							|

|---

|19				|	#XM				|SIMD	fp	exception			|Fault|NO								|SSE[2,3]	instructions										

							|

|---

|20				|	#VE				|Virtualization	exc.	|Fault|NO								|EPT	violations																	

							|

|---

|21-31	|	---				|Reserved												|INT		|NO								|External	interrupts												

							|

--

Early	interrupts	handler

107

To	react	on	interrupt	CPU	uses	special	structure	-	Interrupt	Descriptor	Table	or	IDT.	IDT	is	an
array	of	8-byte	descriptors	like	Global	Descriptor	Table,	but	IDT	entries	are	called		gates	.
CPU	multiplies	vector	number	on	8	to	find	index	of	the	IDT	entry.	But	in	64-bit	mode	IDT	is
an	array	of	16-byte	descriptors	and	CPU	multiplies	vector	number	on	16	to	find	index	of	the
entry	in	the	IDT.	We	remember	from	the	previous	part	that	CPU	uses	special		GDTR		register
to	locate	Global	Descriptor	Table,	so	CPU	uses	special	register		IDTR		for	Interrupt
Descriptor	Table	and		lidt		instruction	for	loading	base	address	of	the	table	into	this
register.

64-bit	mode	IDT	entry	has	following	structure:

127																																																																													96

	--

|																																																																															|

|																																Reserved																																							|

|																																																																															|

	--

95																																																																														64

	--

|																																																																															|

|																															Offset	63..32																																			|

|																																																																															|

	--

63																															48	47						46		44			42				39													34				32

	--

|																																		|							|		D		|			|					|						|			|			|					|

|							Offset	31..16														|			P			|		P		|	0	|Type	|0	0	0	|	0	|	0	|	IST	|

|																																		|							|		L		|			|					|						|			|			|					|

	--

31																																			15	16																																						0

	--

|																																						|																																								|

|										Segment	Selector												|																	Offset	15..0											|

|																																						|																																								|

	--

Where:

	Offset		-	is	offset	to	entry	point	of	an	interrupt	handler;
	DPL		-	Descriptor	Privilege	Level;
	P		-	Segment	Present	flag;
	Segment	selector		-	a	code	segment	selector	in	GDT	or	LDT
	IST		-	provides	ability	to	switch	to	a	new	stack	for	interrupts	handling.

And	the	last		Type		field	describes	type	of	the		IDT		entry.	There	are	three	different	kinds	of
handlers	for	interrupts:

Early	interrupts	handler

108

Task	descriptor
Interrupt	descriptor
Trap	descriptor

Interrupt	and	trap	descriptors	contain	a	far	pointer	to	the	entry	point	of	the	interrupt	handler.
Only	one	difference	between	these	types	is	how	CPU	handles		IF		flag.	If	interrupt	handler
was	accessed	through	interrupt	gate,	CPU	clear	the		IF		flag	to	prevent	other	interrupts
while	current	interrupt	handler	executes.	After	that	current	interrupt	handler	executes,	CPU
sets	the		IF		flag	again	with		iret		instruction.

Other	bits	in	the	interrupt	gate	reserved	and	must	be	0.	Now	let's	look	how	CPU	handles
interrupts:

CPU	save	flags	register,		CS	,	and	instruction	pointer	on	the	stack.
If	interrupt	causes	an	error	code	(like		#PF		for	example),	CPU	saves	an	error	on	the
stack	after	instruction	pointer;
After	interrupt	handler	executed,		iret		instruction	used	to	return	from	it.

Now	let's	back	to	code.

Fill	and	load	IDT
We	stopped	at	the	following	point:

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handler_array[i]);

Here	we	call		set_intr_gate		in	the	loop,	which	takes	two	parameters:

Number	of	an	interrupt	or		vector	number	;
Address	of	the	idt	handler.

and	inserts	an	interrupt	gate	to	the		IDT		table	which	is	represented	by	the		&idt_descr	
array.	First	of	all	let's	look	on	the		early_idt_handler_array		array.	It	is	an	array	which	is
defined	in	the	arch/x86/include/asm/segment.h	header	file	contains	addresses	of	the	first
	32		exception	handlers:

#define	EARLY_IDT_HANDLER_SIZE			9

#define	NUM_EXCEPTION_VECTORS				32

extern	const	char	early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZ

E];

Early	interrupts	handler

109

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/segment.h

The		early_idt_handler_array		is		288		bytes	array	which	contains	address	of	exception	entry
points	every	nine	bytes.	Every	nine	bytes	of	this	array	consist	of	two	bytes	optional
instruction	for	pushing	dummy	error	code	if	an	exception	does	not	provide	it,	two	bytes
instruction	for	pushing	vector	number	to	the	stack	and	five	bytes	of		jump		to	the	common
exception	handler	code.

As	we	can	see,	We're	filling	only	first	32		IDT		entries	in	the	loop,	because	all	of	the	early
setup	runs	with	interrupts	disabled,	so	there	is	no	need	to	set	up	interrupt	handlers	for
vectors	greater	than		32	.	The		early_idt_handler_array		array	contains	generic	idt	handlers
and	we	can	find	its	definition	in	the	arch/x86/kernel/head_64.S	assembly	file.	For	now	we	will
skip	it,	but	will	look	it	soon.	Before	this	we	will	look	on	the	implementation	of	the
	set_intr_gate		macro.

The		set_intr_gate		macro	is	defined	in	the	arch/x86/include/asm/desc.h	header	file	and
looks:

#define	set_intr_gate(n,	addr)																									\

									do	{																																																												\

																	BUG_ON((unsigned)n	>	0xFF);																													\

																	_set_gate(n,	GATE_INTERRUPT,	(void	*)addr,	0,	0,								\

																											__KERNEL_CS);																																	\

																	_trace_set_gate(n,	GATE_INTERRUPT,	(void	*)trace_##addr,\

																																	0,	0,	__KERNEL_CS);																					\

									}	while	(0)

First	of	all	it	checks	with	that	passed	interrupt	number	is	not	greater	than		255		with		BUG_ON	
macro.	We	need	to	do	this	check	because	we	can	have	only		256		interrupts.	After	this,	it
make	a	call	of	the		_set_gate		function	which	writes	address	of	an	interrupt	gate	to	the		IDT	:

static	inline	void	_set_gate(int	gate,	unsigned	type,	void	*addr,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

									gate_desc	s;

									pack_gate(&s,	type,	(unsigned	long)addr,	dpl,	ist,	seg);

									write_idt_entry(idt_table,	gate,	&s);

									write_trace_idt_entry(gate,	&s);

}

At	the	start	of		_set_gate		function	we	can	see	call	of	the		pack_gate		function	which	fills
	gate_desc		structure	with	the	given	values:

Early	interrupts	handler

110

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h

static	inline	void	pack_gate(gate_desc	*gate,	unsigned	type,	unsigned	long	func,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate->offset_low								=	PTR_LOW(func);

								gate->segment											=	__KERNEL_CS;

								gate->ist															=	ist;

								gate->p																	=	1;

								gate->dpl															=	dpl;

								gate->zero0													=	0;

								gate->zero1													=	0;

								gate->type														=	type;

								gate->offset_middle					=	PTR_MIDDLE(func);

								gate->offset_high							=	PTR_HIGH(func);

}

As	I	mentioned	above,	we	fill	gate	descriptor	in	this	function.	We	fill	three	parts	of	the
address	of	the	interrupt	handler	with	the	address	which	we	got	in	the	main	loop	(address	of
the	interrupt	handler	entry	point).	We	are	using	three	following	macros	to	split	address	on
three	parts:

#define	PTR_LOW(x)	((unsigned	long	long)(x)	&	0xFFFF)

#define	PTR_MIDDLE(x)	(((unsigned	long	long)(x)	>>	16)	&	0xFFFF)

#define	PTR_HIGH(x)	((unsigned	long	long)(x)	>>	32)

With	the	first		PTR_LOW		macro	we	get	the	first		2		bytes	of	the	address,	with	the	second
	PTR_MIDDLE		we	get	the	second		2		bytes	of	the	address	and	with	the	third		PTR_HIGH		macro
we	get	the	last		4		bytes	of	the	address.	Next	we	setup	the	segment	selector	for	interrupt
handler,	it	will	be	our	kernel	code	segment	-		__KERNEL_CS	.	In	the	next	step	we	fill		Interrupt
Stack	Table		and		Descriptor	Privilege	Level		(highest	privilege	level)	with	zeros.	And	we
set		GAT_INTERRUPT		type	in	the	end.

Now	we	have	filled	IDT	entry	and	we	can	call		native_write_idt_entry		function	which	just
copies	filled		IDT		entry	to	the		IDT	:

static	inline	void	native_write_idt_entry(gate_desc	*idt,	int	entry,	const	gate_desc	*

gate)

{

								memcpy(&idt[entry],	gate,	sizeof(*gate));

}

After	that	main	loop	will	finished,	we	will	have	filled		idt_table		array	of		gate_desc	
structures	and	we	can	load		Interrupt	Descriptor	table		with	the	call	of	the:

load_idt((const	struct	desc_ptr	*)&idt_descr);

Early	interrupts	handler

111

Where		idt_descr		is:

struct	desc_ptr	idt_descr	=	{	NR_VECTORS	*	16	-	1,	(unsigned	long)	idt_table	};

and		load_idt		just	executes		lidt		instruction:

asm	volatile("lidt	%0"::"m"	(*dtr));

You	can	note	that	there	are	calls	of	the		_trace_*		functions	in	the		_set_gate		and	other
functions.	These	functions	fills		IDT		gates	in	the	same	manner	that		_set_gate		but	with	one
difference.	These	functions	use		trace_idt_table		the		Interrupt	Descriptor	Table		instead	of
	idt_table		for	tracepoints	(we	will	cover	this	theme	in	the	another	part).

Okay,	now	we	have	filled	and	loaded		Interrupt	Descriptor	Table	,	we	know	how	the	CPU
acts	during	an	interrupt.	So	now	time	to	deal	with	interrupts	handlers.

Early	interrupts	handlers
As	you	can	read	above,	we	filled		IDT		with	the	address	of	the		early_idt_handler_array	.	We
can	find	it	in	the	arch/x86/kernel/head_64.S	assembly	file:

				.globl	early_idt_handler_array

early_idt_handlers:

				i	=	0

				.rept	NUM_EXCEPTION_VECTORS

				.if	(EXCEPTION_ERRCODE_MASK	>>	i)	&	1

				pushq	$0

				.endif

				pushq	$i

				jmp	early_idt_handler_common

				i	=	i	+	1

				.fill	early_idt_handler_array	+	i*EARLY_IDT_HANDLER_SIZE	-	.,	1,	0xcc

				.endr

We	can	see	here,	interrupt	handlers	generation	for	the	first		32		exceptions.	We	check	here,
if	exception	has	an	error	code	then	we	do	nothing,	if	exception	does	not	return	error	code,
we	push	zero	to	the	stack.	We	do	it	for	that	would	stack	was	uniform.	After	that	we	push
exception	number	on	the	stack	and	jump	on	the		early_idt_handler_array		which	is	generic
interrupt	handler	for	now.	As	we	may	see	above,	every	nine	bytes	of	the
	early_idt_handler_array		array	consists	from	optional	push	of	an	error	code,	push	of		vector
number		and	jump	instruction.	We	can	see	it	in	the	output	of	the		objdump		util:

Early	interrupts	handler

112

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S

$	objdump	-D	vmlinux

...

...

...

ffffffff81fe5000	<early_idt_handler_array>:

ffffffff81fe5000:							6a	00																			pushq		$0x0

ffffffff81fe5002:							6a	00																			pushq		$0x0

ffffffff81fe5004:							e9	17	01	00	00										jmpq			ffffffff81fe5120	<early_idt_han

dler_common>

ffffffff81fe5009:							6a	00																			pushq		$0x0

ffffffff81fe500b:							6a	01																			pushq		$0x1

ffffffff81fe500d:							e9	0e	01	00	00										jmpq			ffffffff81fe5120	<early_idt_han

dler_common>

ffffffff81fe5012:							6a	00																			pushq		$0x0

ffffffff81fe5014:							6a	02																			pushq		$0x2

...

...

...

As	i	wrote	above,	CPU	pushes	flag	register,		CS		and		RIP		on	the	stack.	So	before
	early_idt_handler		will	be	executed,	stack	will	contain	following	data:

|--------------------|

|	%rflags												|

|	%cs																|

|	%rip															|

|	rsp	-->	error	code	|

|--------------------|

Now	let's	look	on	the		early_idt_handler_common		implementation.	It	locates	in	the	same
arch/x86/kernel/head_64.S	assembly	file	and	first	of	all	we	can	see	check	for	NMI.	We	don't
need	to	handle	it,	so	just	ignore	it	in	the		early_idt_handler_common	:

				cmpl	$2,(%rsp)

				je	.Lis_nmi

where		is_nmi	:

is_nmi:

				addq	$16,%rsp

				INTERRUPT_RETURN

drops	an	error	code	and	vector	number	from	the	stack	and	call		INTERRUPT_RETURN		which	is
just	expands	to	the		iretq		instruction.	As	we	checked	the	vector	number	and	it	is	not		NMI	,
we	check		early_recursion_flag		to	prevent	recursion	in	the		early_idt_handler_common		and	if

Early	interrupts	handler

113

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S#L343
http://en.wikipedia.org/wiki/Non-maskable_interrupt

it's	correct	we	save	general	registers	on	the	stack:

				pushq	%rax

				pushq	%rcx

				pushq	%rdx

				pushq	%rsi

				pushq	%rdi

				pushq	%r8

				pushq	%r9

				pushq	%r10

				pushq	%r11

We	need	to	do	it	to	prevent	wrong	values	of	registers	when	we	return	from	the	interrupt
handler.	After	this	we	check	segment	selector	in	the	stack:

				cmpl	$__KERNEL_CS,96(%rsp)

				jne	11f

which	must	be	equal	to	the	kernel	code	segment	and	if	it	is	not	we	jump	on	label		11		which
prints		PANIC		message	and	makes	stack	dump.

After	the	code	segment	was	checked,	we	check	the	vector	number,	and	if	it	is		#PF		or	Page
Fault,	we	put	value	from	the		cr2		to	the		rdi		register	and	call		early_make_pgtable		(well
see	it	soon):

				cmpl	$14,72(%rsp)

				jnz	10f

				GET_CR2_INTO(%rdi)

				call	early_make_pgtable

				andl	%eax,%eax

				jz	20f

If	vector	number	is	not		#PF	,	we	restore	general	purpose	registers	from	the	stack:

				popq	%r11

				popq	%r10

				popq	%r9

				popq	%r8

				popq	%rdi

				popq	%rsi

				popq	%rdx

				popq	%rcx

				popq	%rax

and	exit	from	the	handler	with		iret	.

Early	interrupts	handler

114

https://en.wikipedia.org/wiki/Page_fault

It	is	the	end	of	the	first	interrupt	handler.	Note	that	it	is	very	early	interrupt	handler,	so	it
handles	only	Page	Fault	now.	We	will	see	handlers	for	the	other	interrupts,	but	now	let's	look
on	the	page	fault	handler.

Page	fault	handling
In	the	previous	paragraph	we	saw	first	early	interrupt	handler	which	checks	interrupt	number
for	page	fault	and	calls		early_make_pgtable		for	building	new	page	tables	if	it	is.	We	need	to
have		#PF		handler	in	this	step	because	there	are	plans	to	add	ability	to	load	kernel	above
	4G		and	make	access	to		boot_params		structure	above	the	4G.

You	can	find	implementation	of	the		early_make_pgtable		in	the	arch/x86/kernel/head64.c	and
takes	one	parameter	-	address	from	the		cr2		register,	which	caused	Page	Fault.	Let's	look
on	it:

int	__init	early_make_pgtable(unsigned	long	address)

{

				unsigned	long	physaddr	=	address	-	__PAGE_OFFSET;

				unsigned	long	i;

				pgdval_t	pgd,	*pgd_p;

				pudval_t	pud,	*pud_p;

				pmdval_t	pmd,	*pmd_p;

				...

				...

				...

}

It	starts	from	the	definition	of	some	variables	which	have		*val_t		types.	All	of	these	types
are	just:

typedef	unsigned	long			pgdval_t;

Also	we	will	operate	with	the		*_t		(not	val)	types,	for	example		pgd_t		and	etc...	All	of	these
types	defined	in	the	arch/x86/include/asm/pgtable_types.h	and	represent	structures	like	this:

typedef	struct	{	pgdval_t	pgd;	}	pgd_t;

For	example,

extern	pgd_t	early_level4_pgt[PTRS_PER_PGD];

Early	interrupts	handler

115

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgtable_types.h

Here		early_level4_pgt		presents	early	top-level	page	table	directory	which	consists	of	an
array	of		pgd_t		types	and		pgd		points	to	low-level	page	entries.

After	we	made	the	check	that	we	have	no	invalid	address,	we're	getting	the	address	of	the
Page	Global	Directory	entry	which	contains		#PF		address	and	put	it's	value	to	the		pgd	
variable:

pgd_p	=	&early_level4_pgt[pgd_index(address)].pgd;

pgd	=	*pgd_p;

In	the	next	step	we	check		pgd	,	if	it	contains	correct	page	global	directory	entry	we	put
physical	address	of	the	page	global	directory	entry	and	put	it	to	the		pud_p		with:

pud_p	=	(pudval_t	*)((pgd	&	PTE_PFN_MASK)	+	__START_KERNEL_map	-	phys_base);

where		PTE_PFN_MASK		is	a	macro:

#define	PTE_PFN_MASK												((pteval_t)PHYSICAL_PAGE_MASK)

which	expands	to:

(~(PAGE_SIZE-1))	&	((1	<<	46)	-	1)

or

0b11

which	is	46	bits	to	mask	page	frame.

If		pgd		does	not	contain	correct	address	we	check	that		next_early_pgt		is	not	greater	than
	EARLY_DYNAMIC_PAGE_TABLES		which	is		64		and	present	a	fixed	number	of	buffers	to	set	up
new	page	tables	on	demand.	If		next_early_pgt		is	greater	than		EARLY_DYNAMIC_PAGE_TABLES	
we	reset	page	tables	and	start	again.	If		next_early_pgt		is	less	than
	EARLY_DYNAMIC_PAGE_TABLES	,	we	create	new	page	upper	directory	pointer	which	points	to	the
current	dynamic	page	table	and	writes	it's	physical	address	with	the		_KERPG_TABLE		access
rights	to	the	page	global	directory:

Early	interrupts	handler

116

if	(next_early_pgt	>=	EARLY_DYNAMIC_PAGE_TABLES)	{

				reset_early_page_tables();

				goto	again;

}

pud_p	=	(pudval_t	*)early_dynamic_pgts[next_early_pgt++];

for	(i	=	0;	i	<	PTRS_PER_PUD;	i++)

				pud_p[i]	=	0;

*pgd_p	=	(pgdval_t)pud_p	-	__START_KERNEL_map	+	phys_base	+	_KERNPG_TABLE;

After	this	we	fix	up	address	of	the	page	upper	directory	with:

pud_p	+=	pud_index(address);

pud	=	*pud_p;

In	the	next	step	we	do	the	same	actions	as	we	did	before,	but	with	the	page	middle	directory.
In	the	end	we	fix	address	of	the	page	middle	directory	which	contains	maps	kernel	text+data
virtual	addresses:

pmd	=	(physaddr	&	PMD_MASK)	+	early_pmd_flags;

pmd_p[pmd_index(address)]	=	pmd;

After	page	fault	handler	finished	it's	work	and	as	result	our		early_level4_pgt		contains
entries	which	point	to	the	valid	addresses.

Conclusion
This	is	the	end	of	the	second	part	about	linux	kernel	insides.	If	you	have	questions	or
suggestions,	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.	In	the	next	part	we
will	see	all	steps	before	kernel	entry	point	-		start_kernel		function.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
GNU	assembly	.rept
APIC
NMI
Page	table
Interrupt	handler

Early	interrupts	handler

117

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://sourceware.org/binutils/docs-2.23/as/Rept.html
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Interrupt_handler

Page	Fault,
Previous	part

Early	interrupts	handler

118

https://en.wikipedia.org/wiki/Page_fault
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html

Kernel	initialization.	Part	3.

Last	preparations	before	the	kernel	entry	point
This	is	the	third	part	of	the	Linux	kernel	initialization	process	series.	In	the	previous	part	we
saw	early	interrupt	and	exception	handling	and	will	continue	to	dive	into	the	linux	kernel
initialization	process	in	the	current	part.	Our	next	point	is	'kernel	entry	point'	-		start_kernel	
function	from	the	init/main.c	source	code	file.	Yes,	technically	it	is	not	kernel's	entry	point	but
the	start	of	the	generic	kernel	code	which	does	not	depend	on	certain	architecture.	But
before	we	call	the		start_kernel		function,	we	must	do	some	preparations.	So	let's	continue.

boot_params	again
In	the	previous	part	we	stopped	at	setting	Interrupt	Descriptor	Table	and	loading	it	in	the
	IDTR		register.	At	the	next	step	after	this	we	can	see	a	call	of	the		copy_bootdata		function:

copy_bootdata(__va(real_mode_data));

This	function	takes	one	argument	-	virtual	address	of	the		real_mode_data	.	Remember	that
we	passed	the	address	of	the		boot_params		structure	from
arch/x86/include/uapi/asm/bootparam.h	to	the		x86_64_start_kernel		function	as	first
argument	in	arch/x86/kernel/head_64.S:

				/*	rsi	is	pointer	to	real	mode	structure	with	interesting	info.

							pass	it	to	C	*/

				movq				%rsi,	%rdi

Now	let's	look	at		__va		macro.	This	macro	defined	in	init/main.c:

#define	__va(x)																	((void	*)((unsigned	long)(x)+PAGE_OFFSET))

where		PAGE_OFFSET		is		__PAGE_OFFSET		which	is		0xffff880000000000		and	the	base	virtual
address	of	the	direct	mapping	of	all	physical	memory.	So	we're	getting	virtual	address	of	the
	boot_params		structure	and	pass	it	to	the		copy_bootdata		function,	where	we	copy
	real_mod_data		to	the		boot_params		which	is	declared	in	the	arch/x86/kernel/setup.h

Last	preparations	before	the	kernel	entry	point

119

https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-2.md
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L114
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.h

extern	struct	boot_params	boot_params;

Let's	look	at	the		copy_boot_data		implementation:

static	void	__init	copy_bootdata(char	*real_mode_data)

{

				char	*	command_line;

				unsigned	long	cmd_line_ptr;

				memcpy(&boot_params,	real_mode_data,	sizeof	boot_params);

				sanitize_boot_params(&boot_params);

				cmd_line_ptr	=	get_cmd_line_ptr();

				if	(cmd_line_ptr)	{

								command_line	=	__va(cmd_line_ptr);

								memcpy(boot_command_line,	command_line,	COMMAND_LINE_SIZE);

				}

}

First	of	all,	note	that	this	function	is	declared	with		__init		prefix.	It	means	that	this	function
will	be	used	only	during	the	initialization	and	used	memory	will	be	freed.

We	can	see	declaration	of	two	variables	for	the	kernel	command	line	and	copying
	real_mode_data		to	the		boot_params		with	the		memcpy		function.	The	next	call	of	the
	sanitize_boot_params		function	which	fills	some	fields	of	the		boot_params		structure	like
	ext_ramdisk_image		and	etc...	if	bootloaders	which	fail	to	initialize	unknown	fields	in
	boot_params		to	zero.	After	this	we're	getting	address	of	the	command	line	with	the	call	of
the		get_cmd_line_ptr		function:

unsigned	long	cmd_line_ptr	=	boot_params.hdr.cmd_line_ptr;

cmd_line_ptr	|=	(u64)boot_params.ext_cmd_line_ptr	<<	32;

return	cmd_line_ptr;

which	gets	the	64-bit	address	of	the	command	line	from	the	kernel	boot	header	and	returns
it.	In	the	last	step	we	check		cmd_line_ptr	,	getting	its	virtual	address	and	copy	it	to	the
	boot_command_line		which	is	just	an	array	of	bytes:

extern	char	__initdata	boot_command_line[];

After	this	we	will	have	copied	kernel	command	line	and		boot_params		structure.	In	the	next
step	we	can	see	call	of	the		load_ucode_bsp		function	which	loads	processor	microcode,	but
we	will	not	see	it	here.

Last	preparations	before	the	kernel	entry	point

120

After	microcode	was	loaded	we	can	see	the	check	of	the		console_loglevel		and	the
	early_printk		function	which	prints		Kernel	Alive		string.	But	you'll	never	see	this	output
because		early_printk		is	not	initialized	yet.	It	is	a	minor	bug	in	the	kernel	and	i	sent	the
patch	-	commit	and	you	will	see	it	in	the	mainline	soon.	So	you	can	skip	this	code.

Move	on	init	pages
In	the	next	step,	as	we	have	copied		boot_params		structure,	we	need	to	move	from	the	early
page	tables	to	the	page	tables	for	initialization	process.	We	already	set	early	page	tables	for
switchover,	you	can	read	about	it	in	the	previous	part	and	dropped	all	it	in	the
	reset_early_page_tables		function	(you	can	read	about	it	in	the	previous	part	too)	and	kept
only	kernel	high	mapping.	After	this	we	call:

				clear_page(init_level4_pgt);

function	and	pass		init_level4_pgt		which	also	defined	in	the	arch/x86/kernel/head_64.S
and	looks:

NEXT_PAGE(init_level4_pgt)

				.quad			level3_ident_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.org				init_level4_pgt	+	L4_PAGE_OFFSET*8,	0

				.quad			level3_ident_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.org				init_level4_pgt	+	L4_START_KERNEL*8,	0

				.quad			level3_kernel_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

which	maps	first	2	gigabytes	and	512	megabytes	for	the	kernel	code,	data	and	bss.
	clear_page		function	defined	in	the	arch/x86/lib/clear_page_64.S	let's	look	on	this	function:

Last	preparations	before	the	kernel	entry	point

121

http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=91d8f0416f3989e248d3a3d3efb821eda10a85d2
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/lib/clear_page_64.S

ENTRY(clear_page)

				CFI_STARTPROC

				xorl	%eax,%eax

				movl	$4096/64,%ecx

				.p2align	4

				.Lloop:

				decl				%ecx

#define	PUT(x)	movq	%rax,x*8(%rdi)

				movq	%rax,(%rdi)

				PUT(1)

				PUT(2)

				PUT(3)

				PUT(4)

				PUT(5)

				PUT(6)

				PUT(7)

				leaq	64(%rdi),%rdi

				jnz				.Lloop

				nop

				ret

				CFI_ENDPROC

				.Lclear_page_end:

				ENDPROC(clear_page)

As	you	can	understand	from	the	function	name	it	clears	or	fills	with	zeros	page	tables.	First
of	all	note	that	this	function	starts	with	the		CFI_STARTPROC		and		CFI_ENDPROC		which	are
expands	to	GNU	assembly	directives:

#define	CFI_STARTPROC											.cfi_startproc

#define	CFI_ENDPROC													.cfi_endproc

and	used	for	debugging.	After		CFI_STARTPROC		macro	we	zero	out		eax		register	and	put	64	to
the		ecx		(it	will	be	a	counter).	Next	we	can	see	loop	which	starts	with	the		.Lloop		label	and
it	starts	from	the		ecx		decrement.	After	it	we	put	zero	from	the		rax		register	to	the		rdi	
which	contains	the	base	address	of	the		init_level4_pgt		now	and	do	the	same	procedure
seven	times	but	every	time	move		rdi		offset	on	8.	After	this	we	will	have	first	64	bytes	of	the
	init_level4_pgt		filled	with	zeros.	In	the	next	step	we	put	the	address	of	the
	init_level4_pgt		with	64-bytes	offset	to	the		rdi		again	and	repeat	all	operations	until		ecx	
reaches	zero.	In	the	end	we	will	have		init_level4_pgt		filled	with	zeros.

As	we	have		init_level4_pgt		filled	with	zeros,	we	set	the	last		init_level4_pgt		entry	to
kernel	high	mapping	with	the:

init_level4_pgt[511]	=	early_level4_pgt[511];

Last	preparations	before	the	kernel	entry	point

122

Remember	that	we	dropped	all		early_level4_pgt		entries	in	the		reset_early_page_table	
function	and	kept	only	kernel	high	mapping	there.

The	last	step	in	the		x86_64_start_kernel		function	is	the	call	of	the:

x86_64_start_reservations(real_mode_data);

function	with	the		real_mode_data		as	argument.	The		x86_64_start_reservations		function
defined	in	the	same	source	code	file	as	the		x86_64_start_kernel		function	and	looks:

void	__init	x86_64_start_reservations(char	*real_mode_data)

{

				if	(!boot_params.hdr.version)

								copy_bootdata(__va(real_mode_data));

				reserve_ebda_region();

				start_kernel();

}

You	can	see	that	it	is	the	last	function	before	we	are	in	the	kernel	entry	point	-		start_kernel	
function.	Let's	look	what	it	does	and	how	it	works.

Last	step	before	kernel	entry	point
First	of	all	we	can	see	in	the		x86_64_start_reservations		function	the	check	for
	boot_params.hdr.version	:

if	(!boot_params.hdr.version)

				copy_bootdata(__va(real_mode_data));

and	if	it	is	zero	we	call		copy_bootdata		function	again	with	the	virtual	address	of	the
	real_mode_data		(read	about	about	it's	implementation).

In	the	next	step	we	can	see	the	call	of	the		reserve_ebda_region		function	which	defined	in
the	arch/x86/kernel/head.c.	This	function	reserves	memory	block	for	the		EBDA		or	Extended
BIOS	Data	Area.	The	Extended	BIOS	Data	Area	located	in	the	top	of	conventional	memory
and	contains	data	about	ports,	disk	parameters	and	etc...

Let's	look	on	the		reserve_ebda_region		function.	It	starts	from	the	checking	is
paravirtualization	enabled	or	not:

Last	preparations	before	the	kernel	entry	point

123

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head.c

if	(paravirt_enabled())

				return;

we	exit	from	the		reserve_ebda_region		function	if	paravirtualization	is	enabled	because	if	it
enabled	the	extended	bios	data	area	is	absent.	In	the	next	step	we	need	to	get	the	end	of
the	low	memory:

lowmem	=	*(unsigned	short	*)__va(BIOS_LOWMEM_KILOBYTES);

lowmem	<<=	10;

We're	getting	the	virtual	address	of	the	BIOS	low	memory	in	kilobytes	and	convert	it	to	bytes
with	shifting	it	on	10	(multiply	on	1024	in	other	words).	After	this	we	need	to	get	the	address
of	the	extended	BIOS	data	are	with	the:

ebda_addr	=	get_bios_ebda();

where		get_bios_ebda		function	defined	in	the	arch/x86/include/asm/bios_ebda.h	and	looks
like:

static	inline	unsigned	int	get_bios_ebda(void)

{

				unsigned	int	address	=	*(unsigned	short	*)phys_to_virt(0x40E);

				address	<<=	4;

				return	address;

}

Let's	try	to	understand	how	it	works.	Here	we	can	see	that	we	converting	physical	address
	0x40E		to	the	virtual,	where		0x0040:0x000e		is	the	segment	which	contains	base	address	of
the	extended	BIOS	data	area.	Don't	worry	that	we	are	using		phys_to_virt		function	for
converting	a	physical	address	to	virtual	address.	You	can	note	that	previously	we	have	used
	__va		macro	for	the	same	point,	but		phys_to_virt		is	the	same:

static	inline	void	*phys_to_virt(phys_addr_t	address)

{

									return	__va(address);

}

only	with	one	difference:	we	pass	argument	with	the		phys_addr_t		which	depends	on
	CONFIG_PHYS_ADDR_T_64BIT	:

Last	preparations	before	the	kernel	entry	point

124

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bios_ebda.h

#ifdef	CONFIG_PHYS_ADDR_T_64BIT

				typedef	u64	phys_addr_t;

#else

				typedef	u32	phys_addr_t;

#endif

This	configuration	option	is	enabled	by		CONFIG_PHYS_ADDR_T_64BIT	.	After	that	we	got	virtual
address	of	the	segment	which	stores	the	base	address	of	the	extended	BIOS	data	area,	we
shift	it	on	4	and	return.	After	this		ebda_addr		variables	contains	the	base	address	of	the
extended	BIOS	data	area.

In	the	next	step	we	check	that	address	of	the	extended	BIOS	data	area	and	low	memory	is
not	less	than		INSANE_CUTOFF		macro

if	(ebda_addr	<	INSANE_CUTOFF)

				ebda_addr	=	LOWMEM_CAP;

if	(lowmem	<	INSANE_CUTOFF)

				lowmem	=	LOWMEM_CAP;

which	is:

#define	INSANE_CUTOFF								0x20000U

or	128	kilobytes.	In	the	last	step	we	get	lower	part	in	the	low	memory	and	extended	bios
data	area	and	call		memblock_reserve		function	which	will	reserve	memory	region	for
extended	bios	data	between	low	memory	and	one	megabyte	mark:

lowmem	=	min(lowmem,	ebda_addr);

lowmem	=	min(lowmem,	LOWMEM_CAP);

memblock_reserve(lowmem,	0x100000	-	lowmem);

	memblock_reserve		function	is	defined	at	mm/block.c	and	takes	two	parameters:

base	physical	address;
region	size.

and	reserves	memory	region	for	the	given	base	address	and	size.		memblock_reserve		is	the
first	function	in	this	book	from	linux	kernel	memory	manager	framework.	We	will	take	a
closer	look	on	memory	manager	soon,	but	now	let's	look	at	its	implementation.

Last	preparations	before	the	kernel	entry	point

125

https://github.com/torvalds/linux/blob/master/mm/block.c

First	touch	of	the	linux	kernel	memory
manager	framework
In	the	previous	paragraph	we	stopped	at	the	call	of	the		memblock_reserve		function	and	as	i
sad	before	it	is	the	first	function	from	the	memory	manager	framework.	Let's	try	to
understand	how	it	works.		memblock_reserve		function	just	calls:

memblock_reserve_region(base,	size,	MAX_NUMNODES,	0);

function	and	passes	4	parameters	there:

physical	base	address	of	the	memory	region;
size	of	the	memory	region;
maximum	number	of	numa	nodes;
flags.

At	the	start	of	the		memblock_reserve_region		body	we	can	see	definition	of	the
	memblock_type		structure:

struct	memblock_type	*_rgn	=	&memblock.reserved;

which	presents	the	type	of	the	memory	block	and	looks:

struct	memblock_type	{

									unsigned	long	cnt;

									unsigned	long	max;

									phys_addr_t	total_size;

									struct	memblock_region	*regions;

};

As	we	need	to	reserve	memory	block	for	extended	bios	data	area,	the	type	of	the	current
memory	region	is	reserved	where		memblock		structure	is:

struct	memblock	{

									bool	bottom_up;

									phys_addr_t	current_limit;

									struct	memblock_type	memory;

									struct	memblock_type	reserved;

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

									struct	memblock_type	physmem;

#endif

};

Last	preparations	before	the	kernel	entry	point

126

and	describes	generic	memory	block.	You	can	see	that	we	initialize		_rgn		by	assigning	it	to
the	address	of	the		memblock.reserved	.		memblock		is	the	global	variable	which	looks:

struct	memblock	memblock	__initdata_memblock	=	{

				.memory.regions								=	memblock_memory_init_regions,

				.memory.cnt								=	1,

				.memory.max								=	INIT_MEMBLOCK_REGIONS,

				.reserved.regions				=	memblock_reserved_init_regions,

				.reserved.cnt								=	1,

				.reserved.max								=	INIT_MEMBLOCK_REGIONS,

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

				.physmem.regions				=	memblock_physmem_init_regions,

				.physmem.cnt								=	1,

				.physmem.max								=	INIT_PHYSMEM_REGIONS,

#endif

				.bottom_up								=	false,

				.current_limit								=	MEMBLOCK_ALLOC_ANYWHERE,

};

We	will	not	dive	into	detail	of	this	variable,	but	we	will	see	all	details	about	it	in	the	parts
about	memory	manager.	Just	note	that		memblock		variable	defined	with	the
	__initdata_memblock		which	is:

#define	__initdata_memblock	__meminitdata

and		__meminit_data		is:

#define	__meminitdata				__section(.meminit.data)

From	this	we	can	conclude	that	all	memory	blocks	will	be	in	the		.meminit.data		section.
After	we	defined		_rgn		we	print	information	about	it	with		memblock_dbg		macros.	You	can
enable	it	by	passing		memblock=debug		to	the	kernel	command	line.

After	debugging	lines	were	printed	next	is	the	call	of	the	following	function:

memblock_add_range(_rgn,	base,	size,	nid,	flags);

which	adds	new	memory	block	region	into	the		.meminit.data		section.	As	we	do	not	initialize
	_rgn		but	it	just	contains		&memblock.reserved	,	we	just	fill	passed		_rgn		with	the	base
address	of	the	extended	BIOS	data	area	region,	size	of	this	region	and	flags:

Last	preparations	before	the	kernel	entry	point

127

if	(type->regions[0].size	==	0)	{

				WARN_ON(type->cnt	!=	1	||	type->total_size);

				type->regions[0].base	=	base;

				type->regions[0].size	=	size;

				type->regions[0].flags	=	flags;

				memblock_set_region_node(&type->regions[0],	nid);

				type->total_size	=	size;

				return	0;

}

After	we	filled	our	region	we	can	see	the	call	of	the		memblock_set_region_node		function	with
two	parameters:

address	of	the	filled	memory	region;
NUMA	node	id.

where	our	regions	represented	by	the		memblock_region		structure:

struct	memblock_region	{

				phys_addr_t	base;

				phys_addr_t	size;

				unsigned	long	flags;

#ifdef	CONFIG_HAVE_MEMBLOCK_NODE_MAP

				int	nid;

#endif

};

NUMA	node	id	depends	on		MAX_NUMNODES		macro	which	is	defined	in	the
include/linux/numa.h:

#define	MAX_NUMNODES				(1	<<	NODES_SHIFT)

where		NODES_SHIFT		depends	on		CONFIG_NODES_SHIFT		configuration	parameter	and	defined
as:

#ifdef	CONFIG_NODES_SHIFT

		#define	NODES_SHIFT					CONFIG_NODES_SHIFT

#else

		#define	NODES_SHIFT					0

#endif

	memblick_set_region_node		function	just	fills		nid		field	from		memblock_region		with	the	given
value:

Last	preparations	before	the	kernel	entry	point

128

https://github.com/torvalds/linux/blob/master/include/linux/numa.h

static	inline	void	memblock_set_region_node(struct	memblock_region	*r,	int	nid)

{

									r->nid	=	nid;

}

After	this	we	will	have	first	reserved		memblock		for	the	extended	bios	data	area	in	the
	.meminit.data		section.		reserve_ebda_region		function	finished	its	work	on	this	step	and	we
can	go	back	to	the	arch/x86/kernel/head64.c.

We	finished	all	preparations	before	the	kernel	entry	point!	The	last	step	in	the
	x86_64_start_reservations		function	is	the	call	of	the:

start_kernel()

function	from	init/main.c	file.

That's	all	for	this	part.

Conclusion
It	is	the	end	of	the	third	part	about	linux	kernel	insides.	In	next	part	we	will	see	the	first
initialization	steps	in	the	kernel	entry	point	-		start_kernel		function.	It	will	be	the	first	step
before	we	will	see	launch	of	the	first		init		process.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
BIOS	data	area
What	is	in	the	extended	BIOS	data	area	on	a	PC?
Previous	part

Last	preparations	before	the	kernel	entry	point

129

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://stanislavs.org/helppc/bios_data_area.html
http://www.kryslix.com/nsfaq/Q.6.html
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-2.md

Kernel	initialization.	Part	4.

Kernel	entry	point
If	you	have	read	the	previous	part	-	Last	preparations	before	the	kernel	entry	point,	you	can
remember	that	we	finished	all	pre-initialization	stuff	and	stopped	right	before	the	call	to	the
	start_kernel		function	from	the	init/main.c.	The		start_kernel		is	the	entry	of	the	generic
and	architecture	independent	kernel	code,	although	we	will	return	to	the		arch/		folder	many
times.	If	you	look	inside	of	the		start_kernel		function,	you	will	see	that	this	function	is	very
big.	For	this	moment	it	contains	about		86		calls	of	functions.	Yes,	it's	very	big	and	of	course
this	part	will	not	cover	all	the	processes	that	occur	in	this	function.	In	the	current	part	we	will
only	start	to	do	it.	This	part	and	all	the	next	which	will	be	in	the	Kernel	initialization	process
chapter	will	cover	it.

The	main	purpose	of	the		start_kernel		to	finish	kernel	initialization	process	and	launch	the
first		init		process.	Before	the	first	process	will	be	started,	the		start_kernel		must	do	many
things	such	as:	to	enable	lock	validator,	to	initialize	processor	id,	to	enable	early	cgroups
subsystem,	to	setup	per-cpu	areas,	to	initialize	different	caches	in	vfs,	to	initialize	memory
manager,	rcu,	vmalloc,	scheduler,	IRQs,	ACPI	and	many	many	more.	Only	after	these	steps
will	we	see	the	launch	of	the	first		init		process	in	the	last	part	of	this	chapter.	So	much
kernel	code	awaits	us,	let's	start.

NOTE:	All	parts	from	this	big	chapter		Linux	Kernel	initialization	process		will	not
cover	anything	about	debugging.	There	will	be	a	separate	chapter	about	kernel
debugging	tips.

A	little	about	function	attributes
As	I	wrote	above,	the		start_kernel		function	is	defined	in	the	init/main.c.	This	function
defined	with	the		__init		attribute	and	as	you	already	may	know	from	other	parts,	all
functions	which	are	defined	with	this	attribute	are	necessary	during	kernel	initialization.

#define	__init						__section(.init.text)	__cold	notrace

After	the	initialization	process	have	finished,	the	kernel	will	release	these	sections	with	a	call
to	the		free_initmem		function.	Note	also	that		__init		is	defined	with	two	attributes:		__cold	
and		notrace	.	The	purpose	of	the	first		cold		attribute	is	to	mark	that	the	function	is	rarely

Kernel	entry	point

130

https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-3.md
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/0xAX/linux-insides/blob/master/Initialization/README.md
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/init/main.c

used	and	the	compiler	must	optimize	this	function	for	size.	The	second		notrace		is	defined
as:

#define	notrace	__attribute__((no_instrument_function))

where		no_instrument_function		says	to	the	compiler	not	to	generate	profiling	function	calls.

In	the	definition	of	the		start_kernel		function,	you	can	also	see	the		__visible		attribute
which	expands	to	the:

#define	__visible	__attribute__((externally_visible))

where		externally_visible		tells	to	the	compiler	that	something	uses	this	function	or	variable,
to	prevent	marking	this	function/variable	as		unusable	.	You	can	find	the	definition	of	this	and
other	macro	attributes	in	include/linux/init.h.

First	steps	in	the	start_kernel
At	the	beginning	of	the		start_kernel		you	can	see	the	definition	of	these	two	variables:

char	*command_line;

char	*after_dashes;

The	first	represents	a	pointer	to	the	kernel	command	line	and	the	second	will	contain	the
result	of	the		parse_args		function	which	parses	an	input	string	with	parameters	in	the	form
	name=value	,	looking	for	specific	keywords	and	invoking	the	right	handlers.	We	will	not	go
into	the	details	related	with	these	two	variables	at	this	time,	but	will	see	it	in	the	next	parts.	In
the	next	step	we	can	see	a	call	to	the:

lockdep_init();

function.		lockdep_init		initializes	lock	validator.	Its	implementation	is	pretty	simple,	it	just
initializes	two	list_head	hashes	and	sets	the		lockdep_initialized		global	variable	to		1	.
Lock	validator	detects	circular	lock	dependencies	and	is	called	when	any	spinlock	or	mutex
is	acquired.

The	next	function	is		set_task_stack_end_magic		which	takes	address	of	the		init_task		and
sets		STACK_END_MAGIC		(0x57AC6E9D)	as	canary	for	it.		init_task		represents	the	initial	task
structure:

Kernel	entry	point

131

https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/0xAX/linux-insides/blob/master/DataStructures/dlist.md
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/Mutual_exclusion

struct	task_struct	init_task	=	INIT_TASK(init_task);

where		task_struct		stores	all	the	information	about	a	process.	I	will	not	explain	this
structure	in	this	book	because	it's	very	big.	You	can	find	its	definition	in
include/linux/sched.h.	At	this	moment		task_struct		contains	more	than		100		fields!
Although	you	will	not	see	the	explanation	of	the		task_struct		in	this	book,	we	will	use	it	very
often	since	it	is	the	fundamental	structure	which	describes	the		process		in	the	Linux	kernel.	I
will	describe	the	meaning	of	the	fields	of	this	structure	as	we	meet	them	in	practice.

You	can	see	the	definition	of	the		init_task		and	it	initialized	by	the		INIT_TASK		macro.	This
macro	is	from	include/linux/init_task.h	and	it	just	fills	the		init_task		with	the	values	for	the
first	process.	For	example	it	sets:

init	process	state	to	zero	or		runnable	.	A	runnable	process	is	one	which	is	waiting	only
for	a	CPU	to	run	on;
init	process	flags	-		PF_KTHREAD		which	means	-	kernel	thread;
a	list	of	runnable	task;
process	address	space;
init	process	stack	to	the		&init_thread_info		which	is		init_thread_union.thread_info	
and		initthread_union		has	type	-		thread_union		which	contains		thread_info		and
process	stack:

union	thread_union	{

				struct	thread_info	thread_info;

				unsigned	long	stack[THREAD_SIZE/sizeof(long)];

};

Every	process	has	its	own	stack	and	it	is	16	kilobytes	or	4	page	frames.	in		x86_64	.	We	can
note	that	it	is	defined	as	array	of		unsigned	long	.	The	next	field	of	the		thread_union		is	-
	thread_info		defined	as:

struct	thread_info	{

								struct	task_struct						*task;

								struct	exec_domain						*exec_domain;

								__u32																			flags;	

								__u32																			status;

								__u32																			cpu;

								int																					saved_preempt_count;

								mm_segment_t												addr_limit;

								struct	restart_block				restart_block;

								void	__user													*sysenter_return;

								unsigned	int												sig_on_uaccess_error:1;

								unsigned	int												uaccess_err:1;

};

Kernel	entry	point

132

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L1278
https://github.com/torvalds/linux/blob/master/include/linux/init_task.h

and	occupies	52	bytes.	The		thread_info		structure	contains	architecture-specific	information
on	the	thread.	We	know	that	on		x86_64		the	stack	grows	down	and
	thread_union.thread_info		is	stored	at	the	bottom	of	the	stack	in	our	case.	So	the	process
stack	is	16	kilobytes	and		thread_info		is	at	the	bottom.	The	remaining	thread_size	will	be
	16	kilobytes	-	62	bytes	=	16332	bytes	.	Note	that		thread_union		represented	as	the	union
and	not	structure,	it	means	that		thread_info		and	stack	share	the	memory	space.

Schematically	it	can	be	represented	as	follows:

+-----------------------+

|																							|

|																							|

|								stack										|

|																							|

|_______________________|

|										|												|

|										|												|

|										|												|

|__________↓____________|													+--------------------+

|																							|													|																				|

|						thread_info						|<----------->|					task_struct				|

|																							|													|																				|

+-----------------------+													+--------------------+

http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-
process-binds-in-union-construct

So	the		INIT_TASK		macro	fills	these		task_struct's		fields	and	many	many	more.	As	I
already	wrote	above,	I	will	not	describe	all	the	fields	and	values	in	the		INIT_TASK		macro	but
we	will	see	them	soon.

Now	let's	go	back	to	the		set_task_stack_end_magic		function.	This	function	defined	in	the
kernel/fork.c	and	sets	a	canary	to	the		init		process	stack	to	prevent	stack	overflow.

void	set_task_stack_end_magic(struct	task_struct	*tsk)

{

				unsigned	long	*stackend;

				stackend	=	end_of_stack(tsk);

				stackend	=	STACK_END_MAGIC;	/	for	overflow	detection	*/

}

Its	implementation	is	simple.		set_task_stack_end_magic		gets	the	end	of	the	stack	for	the
given		task_struct		with	the		end_of_stack		function.	The	end	of	a	process	stack	depends	on
the		CONFIG_STACK_GROWSUP		configuration	option.	As	we	learn	in		x86_64		architecture,	the
stack	grows	down.	So	the	end	of	the	process	stack	will	be:

Kernel	entry	point

133

http://en.wikipedia.org/wiki/Union_type
http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-process-binds-in-union-construct
https://github.com/torvalds/linux/blob/master/kernel/fork.c#L297
http://en.wikipedia.org/wiki/Stack_buffer_overflow

(unsigned	long	*)(task_thread_info(p)	+	1);

where		task_thread_info		just	returns	the	stack	which	we	filled	with	the		INIT_TASK		macro:

#define	task_thread_info(task)		((struct	thread_info	*)(task)->stack)

As	we	got	the	end	of	the	init	process	stack,	we	write		STACK_END_MAGIC		there.	After		canary		is
set,	we	can	check	it	like	this:

if	(*end_of_stack(task)	!=	STACK_END_MAGIC)	{

								//

								//	handle	stack	overflow	here

								//

}

The	next	function	after	the		set_task_stack_end_magic		is		smp_setup_processor_id	.	This
function	has	an	empty	body	for		x86_64	:

void	__init	__weak	smp_setup_processor_id(void)

{

}

as	it	not	implemented	for	all	architectures,	but	some	such	as	s390	and	arm64.

The	next	function	in		start_kernel		is		debug_objects_early_init	.	Implementation	of	this
function	is	almost	the	same	as		lockdep_init	,	but	fills	hashes	for	object	debugging.	As	I
wrote	above,	we	will	not	see	the	explanation	of	this	and	other	functions	which	are	for
debugging	purposes	in	this	chapter.

After	the		debug_object_early_init		function	we	can	see	the	call	of	the
	boot_init_stack_canary		function	which	fills		task_struct->canary		with	the	canary	value	for
the		-fstack-protector		gcc	feature.	This	function	depends	on	the		CONFIG_CC_STACKPROTECTOR	
configuration	option	and	if	this	option	is	disabled,		boot_init_stack_canary		does	nothing,
otherwise	it	generates	random	numbers	based	on	random	pool	and	the	TSC:

get_random_bytes(&canary,	sizeof(canary));

tsc	=	__native_read_tsc();

canary	+=	tsc	+	(tsc	<<	32UL);

After	we	got	a	random	number,	we	fill	the		stack_canary		field	of		task_struct		with	it:

current->stack_canary	=	canary;

Kernel	entry	point

134

http://en.wikipedia.org/wiki/IBM_ESA/390
http://en.wikipedia.org/wiki/ARM_architecture#64.2F32-bit_architecture
http://en.wikipedia.org/wiki/Time_Stamp_Counter

and	write	this	value	to	the	top	of	the	IRQ	stack	with	the:

this_cpu_write(irq_stack_union.stack_canary,	canary);	//	read	below	about	this_cpu_wri

te

Again,	we	will	not	dive	into	details	here,	we	will	cover	it	in	the	part	about	IRQs.	As	canary	is
set,	we	disable	local	and	early	boot	IRQs	and	register	the	bootstrap	CPU	in	the	CPU	maps.
We	disable	local	IRQs	(interrupts	for	current	CPU)	with	the		local_irq_disable		macro	which
expands	to	the	call	of	the		arch_local_irq_disable		function	from	include/linux/percpu-defs.h:

static	inline	notrace	void	arch_local_irq_enable(void)

{

								native_irq_enable();

}

Where		native_irq_enable		is		cli		instruction	for		x86_64	.	As	interrupts	are	disabled	we	can
register	the	current	CPU	with	the	given	ID	in	the	CPU	bitmap.

The	first	processor	activation
The	current	function	from	the		start_kernel		is		boot_cpu_init	.	This	function	initializes
various	CPU	masks	for	the	bootstrap	processor.	First	of	all	it	gets	the	bootstrap	processor	id
with	a	call	to:

int	cpu	=	smp_processor_id();

For	now	it	is	just	zero.	If	the		CONFIG_DEBUG_PREEMPT		configuration	option	is	disabled,
	smp_processor_id		just	expands	to	the	call	of		raw_smp_processor_id		which	expands	to	the:

#define	raw_smp_processor_id()	(this_cpu_read(cpu_number))

	this_cpu_read		as	many	other	function	like	this	(this_cpu_write	,		this_cpu_add		and	etc...)
defined	in	the	include/linux/percpu-defs.h	and	presents		this_cpu		operation.	These
operations	provide	a	way	of	optimizing	access	to	the	per-cpu	variables	which	are	associated
with	the	current	processor.	In	our	case	it	is		this_cpu_read	:

__pcpu_size_call_return(this_cpu_read_,	pcp)

Remember	that	we	have	passed		cpu_number		as		pcp		to	the		this_cpu_read		from	the
	raw_smp_processor_id	.	Now	let's	look	at	the		__pcpu_size_call_return		implementation:

Kernel	entry	point

135

http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h
https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h
http://0xax.gitbooks.io/linux-insides/content/Theory/per-cpu.html

#define	__pcpu_size_call_return(stem,	variable)																									\

({																																																																						\

								typeof(variable)	pscr_ret__;																																				\

								__verify_pcpu_ptr(&(variable));																																	\

								switch(sizeof(variable))	{																																						\

								case	1:	pscr_ret__	=	stem##1(variable);	break;																		\

								case	2:	pscr_ret__	=	stem##2(variable);	break;																		\

								case	4:	pscr_ret__	=	stem##4(variable);	break;																		\

								case	8:	pscr_ret__	=	stem##8(variable);	break;																		\

								default:																																																								\

																__bad_size_call_parameter();	break;																					\

								}																																																															\

								pscr_ret__;																																																					\

})

Yes,	it	looks	a	little	strange	but	it's	easy.	First	of	all	we	can	see	the	definition	of	the
	pscr_ret__		variable	with	the		int		type.	Why	int?	Ok,		variable		is		common_cpu		and	it	was
declared	as	per-cpu	int	variable:

DECLARE_PER_CPU_READ_MOSTLY(int,	cpu_number);

In	the	next	step	we	call		__verify_pcpu_ptr		with	the	address	of		cpu_number	.
	__veryf_pcpu_ptr		used	to	verify	that	the	given	parameter	is	a	per-cpu	pointer.	After	that	we
set		pscr_ret__		value	which	depends	on	the	size	of	the	variable.	Our		common_cpu		variable	is
	int	,	so	it	4	bytes	in	size.	It	means	that	we	will	get		this_cpu_read_4(common_cpu)		in
	pscr_ret__	.	In	the	end	of	the		__pcpu_size_call_return		we	just	call	it.		this_cpu_read_4		is	a
macro:

#define	this_cpu_read_4(pcp)							percpu_from_op("mov",	pcp)

which	calls		percpu_from_op		and	pass		mov		instruction	and	per-cpu	variable	there.
	percpu_from_op		will	expand	to	the	inline	assembly	call:

asm("movl	%%gs:%1,%0"	:	"=r"	(pfo_ret__)	:	"m"	(common_cpu))

Let's	try	to	understand	how	it	works	and	what	it	does.	The		gs		segment	register	contains	the
base	of	per-cpu	area.	Here	we	just	copy		common_cpu		which	is	in	memory	to	the		pfo_ret__	
with	the		movl		instruction.	Or	with	another	words:

this_cpu_read(common_cpu)

is	the	same	as:

Kernel	entry	point

136

movl	%gs:$common_cpu,	$pfo_ret__

As	we	didn't	setup	per-cpu	area,	we	have	only	one	-	for	the	current	running	CPU,	we	will	get
	zero		as	a	result	of	the		smp_processor_id	.

As	we	got	the	current	processor	id,		boot_cpu_init		sets	the	given	CPU	online,	active,
present	and	possible	with	the:

set_cpu_online(cpu,	true);

set_cpu_active(cpu,	true);

set_cpu_present(cpu,	true);

set_cpu_possible(cpu,	true);

All	of	these	functions	use	the	concept	-		cpumask	.		cpu_possible		is	a	set	of	CPU	ID's	which
can	be	plugged	in	at	any	time	during	the	life	of	that	system	boot.		cpu_present		represents
which	CPUs	are	currently	plugged	in.		cpu_online		represents	subset	of	the		cpu_present	
and	indicates	CPUs	which	are	available	for	scheduling.	These	masks	depend	on	the
	CONFIG_HOTPLUG_CPU		configuration	option	and	if	this	option	is	disabled		possible	==	present	
and		active	==	online	.	Implementation	of	the	all	of	these	functions	are	very	similar.	Every
function	checks	the	second	parameter.	If	it	is		true	,	it	calls		cpumask_set_cpu		or
	cpumask_clear_cpu		otherwise.

For	example	let's	look	at		set_cpu_possible	.	As	we	passed		true		as	the	second	parameter,
the:

cpumask_set_cpu(cpu,	to_cpumask(cpu_possible_bits));

will	be	called.	First	of	all	let's	try	to	understand	the		to_cpumask		macro.	This	macro	casts	a
bitmap	to	a		struct	cpumask	*	.	CPU	masks	provide	a	bitmap	suitable	for	representing	the
set	of	CPU's	in	a	system,	one	bit	position	per	CPU	number.	CPU	mask	presented	by	the
	cpu_mask		structure:

typedef	struct	cpumask	{	DECLARE_BITMAP(bits,	NR_CPUS);	}	cpumask_t;

which	is	just	bitmap	declared	with	the		DECLARE_BITMAP		macro:

#define	DECLARE_BITMAP(name,	bits)	unsigned	long	name[BITS_TO_LONGS(bits)]

As	we	can	see	from	its	definition,	the		DECLARE_BITMAP		macro	expands	to	the	array	of
	unsigned	long	.	Now	let's	look	at	how	the		to_cpumask		macro	is	implemented:

Kernel	entry	point

137

#define	to_cpumask(bitmap)																																														\

								((struct	cpumask	*)(1	?	(bitmap)																																\

																												:	(void	*)sizeof(__check_is_bitmap(bitmap))))

I	don't	know	about	you,	but	it	looked	really	weird	for	me	at	the	first	time.	We	can	see	a
ternary	operator	here	which	is		true		every	time,	but	why	the		__check_is_bitmap		here?	It's
simple,	let's	look	at	it:

static	inline	int	__check_is_bitmap(const	unsigned	long	*bitmap)

{

								return	1;

}

Yeah,	it	just	returns		1		every	time.	Actually	we	need	in	it	here	only	for	one	purpose:	at
compile	time	it	checks	that	the	given		bitmap		is	a	bitmap,	or	in	other	words	it	checks	that	the
given		bitmap		has	a	type	of		unsigned	long	*	.	So	we	just	pass		cpu_possible_bits		to	the
	to_cpumask		macro	for	converting	the	array	of		unsigned	long		to	the		struct	cpumask	*	.	Now
we	can	call		cpumask_set_cpu		function	with	the		cpu		-	0	and		struct	cpumask
*cpu_possible_bits	.	This	function	makes	only	one	call	of	the		set_bit		function	which	sets
the	given		cpu		in	the	cpumask.	All	of	these		set_cpu_*		functions	work	on	the	same
principle.

If	you're	not	sure	that	this		set_cpu_*		operations	and		cpumask		are	not	clear	for	you,	don't
worry	about	it.	You	can	get	more	info	by	reading	the	special	part	about	it	-	cpumask	or
documentation.

As	we	activated	the	bootstrap	processor,	it's	time	to	go	to	the	next	function	in	the
	start_kernel.		Now	it	is		page_address_init	,	but	this	function	does	nothing	in	our	case,
because	it	executes	only	when	all		RAM		can't	be	mapped	directly.

Print	linux	banner
The	next	call	is		pr_notice	:

#define	pr_notice(fmt,	...)	\

				printk(KERN_NOTICE	pr_fmt(fmt),	##__VA_ARGS__)

as	you	can	see	it	just	expands	to	the		printk		call.	At	this	moment	we	use		pr_notice		to
print	the	Linux	banner:

pr_notice("%s",	linux_banner);

Kernel	entry	point

138

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

which	is	just	the	kernel	version	with	some	additional	parameters:

Linux	version	4.0.0-rc6+	(alex@localhost)	(gcc	version	4.9.1	(Ubuntu	4.9.1-16ubuntu6)	

)	#319	SMP

Architecture-dependent	parts	of	initialization
The	next	step	is	architecture-specific	initialization.	The	Linux	kernel	does	it	with	the	call	of
the		setup_arch		function.	This	is	a	very	big	function	like		start_kernel		and	we	do	not	have
time	to	consider	all	of	its	implementation	in	this	part.	Here	we'll	only	start	to	do	it	and
continue	in	the	next	part.	As	it	is		architecture-specific	,	we	need	to	go	again	to	the		arch/	
directory.	The		setup_arch		function	defined	in	the	arch/x86/kernel/setup.c	source	code	file
and	takes	only	one	argument	-	address	of	the	kernel	command	line.

This	function	starts	from	the	reserving	memory	block	for	the	kernel		_text		and		_data	
which	starts	from	the		_text		symbol	(you	can	remember	it	from	the
arch/x86/kernel/head_64.S)	and	ends	before		__bss_stop	.	We	are	using		memblock		for	the
reserving	of	memory	block:

memblock_reserve(__pa_symbol(_text),	(unsigned	long)__bss_stop	-	(unsigned	long)_text)

;

You	can	read	about		memblock		in	the	Linux	kernel	memory	management	Part	1..	As	you	can
remember		memblock_reserve		function	takes	two	parameters:

base	physical	address	of	a	memory	block;
size	of	a	memory	block.

We	can	get	the	base	physical	address	of	the		_text		symbol	with	the		__pa_symbol		macro:

#define	__pa_symbol(x)	\

				__phys_addr_symbol(__phys_reloc_hide((unsigned	long)(x)))

First	of	all	it	calls		__phys_reloc_hide		macro	on	the	given	parameter.	The		__phys_reloc_hide	
macro	does	nothing	for		x86_64		and	just	returns	the	given	parameter.	Implementation	of	the
	__phys_addr_symbol		macro	is	easy.	It	just	subtracts	the	symbol	address	from	the	base
address	of	the	kernel	text	mapping	base	virtual	address	(you	can	remember	that	it	is
	__START_KERNEL_map)	and	adds		phys_base		which	is	the	base	address	of		_text	:

#define	__phys_addr_symbol(x)	\

	((unsigned	long)(x)	-	__START_KERNEL_map	+	phys_base)

Kernel	entry	point

139

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S#L46
http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html

After	we	got	the	physical	address	of	the		_text		symbol,		memblock_reserve		can	reserve	a
memory	block	from	the		_text		to	the		__bss_stop	-	_text	.

Reserve	memory	for	initrd
In	the	next	step	after	we	reserved	place	for	the	kernel	text	and	data	is	reserving	place	for	the
initrd.	We	will	not	see	details	about		initrd		in	this	post,	you	just	may	know	that	it	is
temporary	root	file	system	stored	in	memory	and	used	by	the	kernel	during	its	startup.	The
	early_reserve_initrd		function	does	all	work.	First	of	all	this	function	gets	the	base	address
of	the	ram	disk,	its	size	and	the	end	address	with:

u64	ramdisk_image	=	get_ramdisk_image();

u64	ramdisk_size		=	get_ramdisk_size();

u64	ramdisk_end			=	PAGE_ALIGN(ramdisk_image	+	ramdisk_size);

All	of	these	parameters	are	taken	from		boot_params	.	If	you	have	read	the	chapter	about
Linux	Kernel	Booting	Process,	you	must	remember	that	we	filled	the		boot_params		structure
during	boot	time.	The	kernel	setup	header	contains	a	couple	of	fields	which	describes
ramdisk,	for	example:

Field	name:				ramdisk_image

Type:								write	(obligatory)

Offset/size:				0x218/4

Protocol:				2.00+

		The	32-bit	linear	address	of	the	initial	ramdisk	or	ramfs.		Leave	at

		zero	if	there	is	no	initial	ramdisk/ramfs.

So	we	can	get	all	the	information	that	interests	us	from		boot_params	.	For	example	let's	look
at		get_ramdisk_image	:

static	u64	__init	get_ramdisk_image(void)

{

								u64	ramdisk_image	=	boot_params.hdr.ramdisk_image;

								ramdisk_image	|=	(u64)boot_params.ext_ramdisk_image	<<	32;

								return	ramdisk_image;

}

Here	we	get	the	address	of	the	ramdisk	from	the		boot_params		and	shift	left	it	on		32	.	We
need	to	do	it	because	as	you	can	read	in	the	Documentation/x86/zero-page.txt:

Kernel	entry	point

140

http://en.wikipedia.org/wiki/Initrd
http://0xax.gitbooks.io/linux-insides/content/Booting/index.html
https://github.com/0xAX/linux/blob/master/Documentation/x86/zero-page.txt

0C0/004				ALL				ext_ramdisk_image	ramdisk_image	high	32bits

So	after	shifting	it	on	32,	we're	getting	a	64-bit	address	in		ramdisk_image		and	we	return	it.
	get_ramdisk_size		works	on	the	same	principle	as		get_ramdisk_image	,	but	it	used
	ext_ramdisk_size		instead	of		ext_ramdisk_image	.	After	we	got	ramdisk's	size,	base	address
and	end	address,	we	check	that	bootloader	provided	ramdisk	with	the:

if	(!boot_params.hdr.type_of_loader	||

				!ramdisk_image	||	!ramdisk_size)

				return;

and	reserve	memory	block	with	the	calculated	addresses	for	the	initial	ramdisk	in	the	end:

memblock_reserve(ramdisk_image,	ramdisk_end	-	ramdisk_image);

Conclusion
It	is	the	end	of	the	fourth	part	about	the	Linux	kernel	initialization	process.	We	started	to	dive
in	the	kernel	generic	code	from	the		start_kernel		function	in	this	part	and	stopped	on	the
architecture-specific	initialization	in	the		setup_arch	.	In	the	next	part	we	will	continue	with
architecture-dependent	initialization	steps.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	a	PR	to	linux-insides.

Links
GCC	function	attributes
this_cpu	operations
cpumask
lock	validator
cgroups
stack	buffer	overflow
IRQs
initrd
Previous	part

Kernel	entry	point

141

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://www.kernel.org/doc/Documentation/this_cpu_ops.txt
http://www.crashcourse.ca/wiki/index.php/Cpumask
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Initrd
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-3.md

Kernel	entry	point

142

Kernel	initialization.	Part	5.

Continue	of	architecture-specific
initialization
In	the	previous	part,	we	stopped	at	the	initialization	of	an	architecture-specific	stuff	from	the
setup_arch	function	and	now	we	will	continue	with	it.	As	we	reserved	memory	for	the	initrd,
next	step	is	the		olpc_ofw_detect		which	detects	One	Laptop	Per	Child	support.	We	will	not
consider	platform	related	stuff	in	this	book	and	will	skip	functions	related	with	it.	So	let's	go
ahead.	The	next	step	is	the		early_trap_init		function.	This	function	initializes	debug	(#DB		-
raised	when	the		TF		flag	of	rflags	is	set)	and		int3		(#BP)	interrupts	gate.	If	you	don't	know
anything	about	interrupts,	you	can	read	about	it	in	the	Early	interrupt	and	exception	handling.
In		x86		architecture		INT	,		INTO		and		INT3		are	special	instructions	which	allow	a	task	to
explicitly	call	an	interrupt	handler.	The		INT3		instruction	calls	the	breakpoint	(#BP)	handler.
You	may	remember,	we	already	saw	it	in	the	part	about	interrupts:	and	exceptions:

--

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																									

							|

--

|3					|	#BP				|Breakpoint										|Trap	|NO								|INT	3																										

							|

--

Debug	interrupt		#DB		is	the	primary	method	of	invoking	debuggers.		early_trap_init	
defined	in	the	arch/x86/kernel/traps.c.	This	functions	sets		#DB		and		#BP		handlers	and
reloads	IDT:

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

								load_idt(&idt_descr);

}

Continue	architecture-specific	boot-time	initializations

143

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L856
http://en.wikipedia.org/wiki/Initrd
http://wiki.laptop.org/go/OFW_FAQ
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
http://en.wikipedia.org/wiki/Interrupt_descriptor_table

We	already	saw	implementation	of	the		set_intr_gate		in	the	previous	part	about	interrupts.
Here	are	two	similar	functions		set_intr_gate_ist		and		set_system_intr_gate_ist	.	Both	of
these	two	functions	take	three	parameters:

number	of	the	interrupt;
base	address	of	the	interrupt/exception	handler;
third	parameter	is	-		Interrupt	Stack	Table	.		IST		is	a	new	mechanism	in	the		x86_64	
and	part	of	the	TSS.	Every	active	thread	in	kernel	mode	has	own	kernel	stack	which	is
16	kilobytes.	While	a	thread	in	user	space,	kernel	stack	is	empty	except		thread_info	
(read	about	it	previous	part)	at	the	bottom.	In	addition	to	per-thread	stacks,	there	are	a
couple	of	specialized	stacks	associated	with	each	CPU.	All	about	these	stack	you	can
read	in	the	linux	kernel	documentation	-	Kernel	stacks.		x86_64		provides	feature	which
allows	to	switch	to	a	new		special		stack	for	during	any	events	as	non-maskable
interrupt	and	etc...	And	the	name	of	this	feature	is	-		Interrupt	Stack	Table	.	There	can
be	up	to	7		IST		entries	per	CPU	and	every	entry	points	to	the	dedicated	stack.	In	our
case	this	is		DEBUG_STACK	.

	set_intr_gate_ist		and		set_system_intr_gate_ist		work	by	the	same	principle	as
	set_intr_gate		with	only	one	difference.	Both	of	these	functions	checks	interrupt	number
and	call		_set_gate		inside:

BUG_ON((unsigned)n	>	0xFF);

_set_gate(n,	GATE_INTERRUPT,	addr,	0,	ist,	__KERNEL_CS);

as		set_intr_gate		does	this.	But		set_intr_gate		calls		_set_gate		with	dpl	-	0,	and	ist	-	0,	but
	set_intr_gate_ist		and		set_system_intr_gate_ist		sets		ist		as		DEBUG_STACK		and
	set_system_intr_gate_ist		sets		dpl		as		0x3		which	is	the	lowest	privilege.	When	an
interrupt	occurs	and	the	hardware	loads	such	a	descriptor,	then	hardware	automatically	sets
the	new	stack	pointer	based	on	the	IST	value,	then	invokes	the	interrupt	handler.	All	of	the
special	kernel	stacks	will	be	setted	in	the		cpu_init		function	(we	will	see	it	later).

As		#DB		and		#BP		gates	written	to	the		idt_descr	,	we	reload		IDT		table	with		load_idt	
which	just	cals		ldtr		instruction.	Now	let's	look	on	interrupt	handlers	and	will	try	to
understand	how	they	works.	Of	course,	I	can't	cover	all	interrupt	handlers	in	this	book	and	I
do	not	see	the	point	in	this.	It	is	very	interesting	to	delve	in	the	linux	kernel	source	code,	so
we	will	see	how		debug		handler	implemented	in	this	part,	and	understand	how	other
interrupt	handlers	are	implemented	will	be	your	task.

DB	handler

Continue	architecture-specific	boot-time	initializations

144

http://en.wikipedia.org/wiki/Task_state_segment
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level

As	you	can	read	above,	we	passed	address	of	the		#DB		handler	as		&debug		in	the
	set_intr_gate_ist	.	lxr.free-electorns.com	is	a	great	resource	for	searching	identifiers	in	the
linux	kernel	source	code,	but	unfortunately	you	will	not	find		debug		handler	with	it.	All	of	you
can	find,	it	is		debug		definition	in	the	arch/x86/include/asm/traps.h:

asmlinkage	void	debug(void);

We	can	see		asmlinkage		attribute	which	tells	to	us	that		debug		is	function	written	with
assembly.	Yeah,	again	and	again	assembly	:).	Implementation	of	the		#DB		handler	as	other
handlers	is	in	this	arch/x86/kernel/entry_64.S	and	defined	with	the		idtentry		assembly
macro:

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

	idtentry		is	a	macro	which	defines	an	interrupt/exception	entry	point.	As	you	can	see	it
takes	five	arguments:

name	of	the	interrupt	entry	point;
name	of	the	interrupt	handler;
has	interrupt	error	code	or	not;
paranoid	-	if	this	parameter	=	1,	switch	to	special	stack	(read	above);
shift_ist	-	stack	to	switch	during	interrupt.

Now	let's	look	on		idtentry		macro	implementation.	This	macro	defined	in	the	same
assembly	file	and	defines		debug		function	with	the		ENTRY		macro.	For	the	start		idtentry	
macro	checks	that	given	parameters	are	correct	in	case	if	need	to	switch	to	the	special
stack.	In	the	next	step	it	checks	that	give	interrupt	returns	error	code.	If	interrupt	does	not
return	error	code	(in	our	case		#DB		does	not	return	error	code),	it	calls		INTR_FRAME		or
	XCPT_FRAME		if	interrupt	has	error	code.	Both	of	these	macros		XCPT_FRAME		and		INTR_FRAME	
do	nothing	and	need	only	for	the	building	initial	frame	state	for	interrupts.	They	uses		CFI	
directives	and	used	for	debugging.	More	info	you	can	find	in	the	CFI	directives.	As	comment
from	the	arch/x86/kernel/entry_64.S	says:		CFI	macros	are	used	to	generate	dwarf2	unwind
information	for	better	backtraces.	They	don't	change	any	code.		so	we	will	ignore	them.

Continue	architecture-specific	boot-time	initializations

145

http://lxr.free-electrons.com/ident
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/traps.h
http://en.wikipedia.org/wiki/Assembly_language
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S
https://sourceware.org/binutils/docs/as/CFI-directives.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

				/*	Sanity	check	*/

				.if	\shift_ist	!=	-1	&&	\paranoid	==	0

				.error	"using	shift_ist	requires	paranoid=1"

				.endif

				.if	\has_error_code

				XCPT_FRAME

				.else

				INTR_FRAME

				.endif

				...

				...

				...

You	can	remember	from	the	previous	part	about	early	interrupts/exceptions	handling	that
after	interrupt	occurs,	current	stack	will	have	following	format:

				+-----------------------+

				|																							|

+40	|									SS												|

+32	|									RSP											|

+24	|								RFLAGS									|

+16	|									CS												|

+8		|									RIP											|

	0		|							Error	Code						|	<----	rsp

				|																							|

				+-----------------------+

The	next	two	macro	from	the		idtentry		implementation	are:

				ASM_CLAC

				PARAVIRT_ADJUST_EXCEPTION_FRAME

First		ASM_CLAC		macro	depends	on		CONFIG_X86_SMAP		configuration	option	and	need	for
security	reason,	more	about	it	you	can	read	here.	The	second
	PARAVIRT_ADJUST_EXCEPTION_FRAME		macro	is	for	handling	handle	Xen-type-exceptions	(this
chapter	about	kernel	initialization	and	we	will	not	consider	virtualization	stuff	here).

The	next	piece	of	code	checks	if	interrupt	has	error	code	or	not	and	pushes		$-1		which	is
	0xffffffffffffffff		on		x86_64		on	the	stack	if	not:

				.ifeq	\has_error_code

				pushq_cfi	$-1

				.endif

Continue	architecture-specific	boot-time	initializations

146

https://lwn.net/Articles/517475/

We	need	to	do	it	as		dummy		error	code	for	stack	consistency	for	all	interrupts.	In	the	next
step	we	subtract	from	the	stack	pointer		$ORIG_RAX-R15	:

				subq	$ORIG_RAX-R15,	%rsp

where		ORIRG_RAX	,		R15		and	other	macros	defined	in	the	arch/x86/include/asm/calling.h	and
	ORIG_RAX-R15		is	120	bytes.	General	purpose	registers	will	occupy	these	120	bytes	because
we	need	to	store	all	registers	on	the	stack	during	interrupt	handling.	After	we	set	stack	for
general	purpose	registers,	the	next	step	is	checking	that	interrupt	came	from	userspace	with:

testl	$3,	CS(%rsp)

jnz	1f

Here	we	checks	first	and	second	bits	in	the		CS	.	You	can	remember	that		CS		register
contains	segment	selector	where	first	two	bits	are		RPL	.	All	privilege	levels	are	integers	in
the	range	0–3,	where	the	lowest	number	corresponds	to	the	highest	privilege.	So	if	interrupt
came	from	the	kernel	mode	we	call		save_paranoid		or	jump	on	label		1		if	not.	In	the
	save_paranoid		we	store	all	general	purpose	registers	on	the	stack	and	switch	user		gs		on
kernel		gs		if	need:

				movl	$1,%ebx

				movl	$MSR_GS_BASE,%ecx

				rdmsr

				testl	%edx,%edx

				js	1f

				SWAPGS

				xorl	%ebx,%ebx

1:				ret

In	the	next	steps	we	put		pt_regs		pointer	to	the		rdi	,	save	error	code	in	the		rsi		if	it	has
and	call	interrupt	handler	which	is	-		do_debug		in	our	case	from	the	arch/x86/kernel/traps.c.
	do_debug		like	other	handlers	takes	two	parameters:

pt_regs	-	is	a	structure	which	presents	set	of	CPU	registers	which	are	saved	in	the
process'	memory	region;
error	code	-	error	code	of	interrupt.

After	interrupt	handler	finished	its	work,	calls		paranoid_exit		which	restores	stack,	switch	on
userspace	if	interrupt	came	from	there	and	calls		iret	.	That's	all.	Of	course	it	is	not	all	:),
but	we	will	see	more	deeply	in	the	separate	chapter	about	interrupts.

Continue	architecture-specific	boot-time	initializations

147

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/calling.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c

This	is	general	view	of	the		idtentry		macro	for		#DB		interrupt.	All	interrupts	are	similar	to
this	implementation	and	defined	with	idtentry	too.	After		early_trap_init		finished	its	work,
the	next	function	is		early_cpu_init	.	This	function	defined	in	the
arch/x86/kernel/cpu/common.c	and	collects	information	about	CPU	and	its	vendor.

Early	ioremap	initialization
The	next	step	is	initialization	of	early		ioremap	.	In	general	there	are	two	ways	to
communicate	with	devices:

I/O	Ports;
Device	memory.

We	already	saw	first	method	(outb/inb		instructions)	in	the	part	about	linux	kernel	booting
process.	The	second	method	is	to	map	I/O	physical	addresses	to	virtual	addresses.	When	a
physical	address	is	accessed	by	the	CPU,	it	may	refer	to	a	portion	of	physical	RAM	which
can	be	mapped	on	memory	of	the	I/O	device.	So		ioremap		used	to	map	device	memory	into
kernel	address	space.

As	i	wrote	above	next	function	is	the		early_ioremap_init		which	re-maps	I/O	memory	to
kernel	address	space	so	it	can	access	it.	We	need	to	initialize	early	ioremap	for	early
initialization	code	which	needs	to	temporarily	map	I/O	or	memory	regions	before	the	normal
mapping	functions	like		ioremap		are	available.	Implementation	of	this	function	is	in	the
arch/x86/mm/ioremap.c.	At	the	start	of	the		early_ioremap_init		we	can	see	definition	of	the
	pmd		point	with		pmd_t		type	(which	presents	page	middle	directory	entry		typedef	struct	{
pmdval_t	pmd;	}	pmd_t;		where		pmdval_t		is		unsigned	long)	and	make	a	check	that		fixmap	
aligned	in	a	correct	way:

pmd_t	*pmd;

BUILD_BUG_ON((fix_to_virt(0)	+	PAGE_SIZE)	&	((1	<<	PMD_SHIFT)	-	1));

	fixmap		-	is	fixed	virtual	address	mappings	which	extends	from		FIXADDR_START		to
	FIXADDR_TOP	.	Fixed	virtual	addresses	are	needed	for	subsystems	that	need	to	know	the
virtual	address	at	compile	time.	After	the	check		early_ioremap_init		makes	a	call	of	the
	early_ioremap_setup		function	from	the	mm/early_ioremap.c.		early_ioremap_setup		fills
	slot_virt		array	of	the		unsigned	long		with	virtual	addresses	with	512	temporary	boot-time
fix-mappings:

for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

				slot_virt[i]	=	__fix_to_virt(FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*i);

Continue	architecture-specific	boot-time	initializations

148

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
https://github.com/torvalds/linux/blob/master/arch/x86/mm/ioremap.c
https://github.com/torvalds/linux/blob/master/mm/early_ioremap.c

After	this	we	get	page	middle	directory	entry	for	the		FIX_BTMAP_BEGIN		and	put	to	the		pmd	
variable,	fills		bm_pte		with	zeros	which	is	boot	time	page	tables	and	call
	pmd_populate_kernel		function	for	setting	given	page	table	entry	in	the	given	page	middle
directory:

pmd	=	early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));

memset(bm_pte,	0,	sizeof(bm_pte));

pmd_populate_kernel(&init_mm,	pmd,	bm_pte);

That's	all	for	this.	If	you	feeling	puzzled,	don't	worry.	There	is	special	part	about		ioremap	
and		fixmaps		in	the	Linux	Kernel	Memory	Management.	Part	2	chapter.

Obtaining	major	and	minor	numbers	for	the
root	device
After	early		ioremap		was	initialized,	you	can	see	the	following	code:

ROOT_DEV	=	old_decode_dev(boot_params.hdr.root_dev);

This	code	obtains	major	and	minor	numbers	for	the	root	device	where		initrd		will	be
mounted	later	in	the		do_mount_root		function.	Major	number	of	the	device	identifies	a	driver
associated	with	the	device.	Minor	number	referred	on	the	device	controlled	by	driver.	Note
that		old_decode_dev		takes	one	parameter	from	the		boot_params_structure	.	As	we	can	read
from	the	x86	linux	kernel	boot	protocol:

Field	name:				root_dev

Type:								modify	(optional)

Offset/size:				0x1fc/2

Protocol:				ALL

		The	default	root	device	device	number.		The	use	of	this	field	is

		deprecated,	use	the	"root="	option	on	the	command	line	instead.

Now	let's	try	to	understand	what		old_decode_dev		does.	Actually	it	just	calls		MKDEV		inside
which	generates		dev_t		from	the	give	major	and	minor	numbers.	It's	implementation	is
pretty	simple:

static	inline	dev_t	old_decode_dev(u16	val)

{

									return	MKDEV((val	>>	8)	&	255,	val	&	255);

}

Continue	architecture-specific	boot-time	initializations

149

https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md

where		dev_t		is	a	kernel	data	type	to	present	major/minor	number	pair.	But	what's	the
strange		old_		prefix?	For	historical	reasons,	there	are	two	ways	of	managing	the	major	and
minor	numbers	of	a	device.	In	the	first	way	major	and	minor	numbers	occupied	2	bytes.	You
can	see	it	in	the	previous	code:	8	bit	for	major	number	and	8	bit	for	minor	number.	But	there
is	a	problem:	only	256	major	numbers	and	256	minor	numbers	are	possible.	So	16-bit
integer	was	replaced	by	32-bit	integer	where	12	bits	reserved	for	major	number	and	20	bits
for	minor.	You	can	see	this	in	the		new_decode_dev		implementation:

static	inline	dev_t	new_decode_dev(u32	dev)

{

									unsigned	major	=	(dev	&	0xfff00)	>>	8;

									unsigned	minor	=	(dev	&	0xff)	|	((dev	>>	12)	&	0xfff00);

									return	MKDEV(major,	minor);

}

After	calculation	we	will	get		0xfff		or	12	bits	for		major		if	it	is		0xffffffff		and		0xfffff		or
20	bits	for		minor	.	So	in	the	end	of	execution	of	the		old_decode_dev		we	will	get	major	and
minor	numbers	for	the	root	device	in		ROOT_DEV	.

Memory	map	setup
The	next	point	is	the	setup	of	the	memory	map	with	the	call	of	the		setup_memory_map	
function.	But	before	this	we	setup	different	parameters	as	information	about	a	screen
(current	row	and	column,	video	page	and	etc...	(you	can	read	about	it	in	the	Video	mode
initialization	and	transition	to	protected	mode)),	Extended	display	identification	data,	video
mode,	bootloader_type	and	etc...:

				screen_info	=	boot_params.screen_info;

				edid_info	=	boot_params.edid_info;

				saved_video_mode	=	boot_params.hdr.vid_mode;

				bootloader_type	=	boot_params.hdr.type_of_loader;

				if	((bootloader_type	>>	4)	==	0xe)	{

								bootloader_type	&=	0xf;

								bootloader_type	|=	(boot_params.hdr.ext_loader_type+0x10)	<<	4;

				}

				bootloader_version		=	bootloader_type	&	0xf;

				bootloader_version	|=	boot_params.hdr.ext_loader_ver	<<	4;

All	of	these	parameters	we	got	during	boot	time	and	stored	in	the		boot_params		structure.
After	this	we	need	to	setup	the	end	of	the	I/O	memory.	As	you	know	one	of	the	main
purposes	of	the	kernel	is	resource	management.	And	one	of	the	resource	is	memory.	As	we
already	know	there	are	two	ways	to	communicate	with	devices	are	I/O	ports	and	device
memory.	All	information	about	registered	resources	are	available	through:

Continue	architecture-specific	boot-time	initializations

150

http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html

/proc/ioports	-	provides	a	list	of	currently	registered	port	regions	used	for	input	or	output
communication	with	a	device;
/proc/iomem	-	provides	current	map	of	the	system's	memory	for	each	physical	device.

At	the	moment	we	are	interested	in		/proc/iomem	:

cat	/proc/iomem

00000000-00000fff	:	reserved

00001000-0009d7ff	:	System	RAM

0009d800-0009ffff	:	reserved

000a0000-000bffff	:	PCI	Bus	0000:00

000c0000-000cffff	:	Video	ROM

000d0000-000d3fff	:	PCI	Bus	0000:00

000d4000-000d7fff	:	PCI	Bus	0000:00

000d8000-000dbfff	:	PCI	Bus	0000:00

000dc000-000dffff	:	PCI	Bus	0000:00

000e0000-000fffff	:	reserved

		000e0000-000e3fff	:	PCI	Bus	0000:00

		000e4000-000e7fff	:	PCI	Bus	0000:00

		000f0000-000fffff	:	System	ROM

As	you	can	see	range	of	addresses	are	shown	in	hexadecimal	notation	with	its	owner.	Linux
kernel	provides	API	for	managing	any	resources	in	a	general	way.	Global	resources	(for
example	PICs	or	I/O	ports)	can	be	divided	into	subsets	-	relating	to	any	hardware	bus	slot.
The	main	structure		resource	:

struct	resource	{

								resource_size_t	start;

								resource_size_t	end;

								const	char	*name;

								unsigned	long	flags;

								struct	resource	*parent,	*sibling,	*child;

};

presents	abstraction	for	a	tree-like	subset	of	system	resources.	This	structure	provides
range	of	addresses	from		start		to		end		(resource_size_t		is		phys_addr_t		or		u64		for
	x86_64)	which	a	resource	covers,		name		of	a	resource	(you	see	these	names	in	the
	/proc/iomem		output)	and		flags		of	a	resource	(All	resources	flags	defined	in	the
include/linux/ioport.h).	The	last	are	three	pointers	to	the		resource		structure.	These	pointers
enable	a	tree-like	structure:

Continue	architecture-specific	boot-time	initializations

151

https://github.com/torvalds/linux/blob/master/include/linux/ioport.h

+-------------+						+-------------+

|													|						|													|

|				parent			|------|				sibling		|

|													|						|													|

+-------------+						+-------------+

							|

							|

+-------------+

|													|

|				child				|	

|													|

+-------------+

Every	subset	of	resources	has	root	range	resources.	For		iomem		it	is		iomem_resource		which
defined	as:

struct	resource	iomem_resource	=	{

								.name			=	"PCI	mem",

								.start		=	0,

								.end				=	-1,

								.flags		=	IORESOURCE_MEM,

};

EXPORT_SYMBOL(iomem_resource);

TODO	EXPORT_SYMBOL

	iomem_resource		defines	root	addresses	range	for	io	memory	with		PCI	mem		name	and
	IORESOURCE_MEM		(0x00000200)	as	flags.	As	i	wrote	above	our	current	point	is	setup	the	end
address	of	the		iomem	.	We	will	do	it	with:

iomem_resource.end	=	(1ULL	<<	boot_cpu_data.x86_phys_bits)	-	1;

Here	we	shift		1		on		boot_cpu_data.x86_phys_bits	.		boot_cpu_data		is		cpuinfo_x86		structure
which	we	filled	during	execution	of	the		early_cpu_init	.	As	you	can	understand	from	the
name	of	the		x86_phys_bits		field,	it	presents	maximum	bits	amount	of	the	maximum	physical
address	in	the	system.	Note	also	that		iomem_resource		is	passed	to	the		EXPORT_SYMBOL	
macro.	This	macro	exports	the	given	symbol	(iomem_resource		in	our	case)	for	dynamic
linking	or	in	other	words	it	makes	a	symbol	accessible	to	dynamically	loaded	modules.

After	we	set	the	end	address	of	the	root		iomem		resource	address	range,	as	I	wrote	above
the	next	step	will	be	setup	of	the	memory	map.	It	will	be	produced	with	the	call	of	the		setup_
memory_map		function:

Continue	architecture-specific	boot-time	initializations

152

void	__init	setup_memory_map(void)

{

								char	*who;

								who	=	x86_init.resources.memory_setup();

								memcpy(&e820_saved,	&e820,	sizeof(struct	e820map));

								printk(KERN_INFO	"e820:	BIOS-provided	physical	RAM	map:\n");

								e820_print_map(who);

}

First	of	all	we	call	look	here	the	call	of	the		x86_init.resources.memory_setup	.		x86_init		is	a
	x86_init_ops		structure	which	presents	platform	specific	setup	functions	as	resources
initialization,	pci	initialization	and	etc...	initialization	of	the		x86_init		is	in	the
arch/x86/kernel/x86_init.c.	I	will	not	give	here	the	full	description	because	it	is	very	long,	but
only	one	part	which	interests	us	for	now:

struct	x86_init_ops	x86_init	__initdata	=	{

				.resources	=	{

												.probe_roms													=	probe_roms,

												.reserve_resources						=	reserve_standard_io_resources,

												.memory_setup											=	default_machine_specific_memory_setup,

				},

				...

				...

				...

}

As	we	can	see	here		memry_setup		field	is		default_machine_specific_memory_setup		where	we
get	the	number	of	the	e820	entries	which	we	collected	in	the	boot	time,	sanitize	the	BIOS
e820	map	and	fill		e820map		structure	with	the	memory	regions.	As	all	regions	are	collected,
print	of	all	regions	with	printk.	You	can	find	this	print	if	you	execute		dmesg		command	and
you	can	see	something	like	this:

Continue	architecture-specific	boot-time	initializations

153

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c
http://en.wikipedia.org/wiki/E820
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html

[0.000000]	e820:	BIOS-provided	physical	RAM	map:

[0.000000]	BIOS-e820:	[mem	0x0000000000000000-0x000000000009d7ff]	usable

[0.000000]	BIOS-e820:	[mem	0x000000000009d800-0x000000000009ffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000000e0000-0x00000000000fffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x0000000000100000-0x00000000be825fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000be826000-0x00000000be82cfff]	ACPI	NVS

[0.000000]	BIOS-e820:	[mem	0x00000000be82d000-0x00000000bf744fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000bf745000-0x00000000bfff4fff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000bfff5000-0x00000000dc041fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000dc042000-0x00000000dc0d2fff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000dc0d3000-0x00000000dc138fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000dc139000-0x00000000dc27dfff]	ACPI	NVS

[0.000000]	BIOS-e820:	[mem	0x00000000dc27e000-0x00000000deffefff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000defff000-0x00000000deffffff]	usable

...

...

...

Copying	of	the	BIOS	Enhanced	Disk	Device
information
The	next	two	steps	is	parsing	of	the		setup_data		with		parse_setup_data		function	and
copying	BIOS	EDD	to	the	safe	place.		setup_data		is	a	field	from	the	kernel	boot	header	and
as	we	can	read	from	the		x86		boot	protocol:

Field	name:				setup_data

Type:								write	(special)

Offset/size:				0x250/8

Protocol:				2.09+

		The	64-bit	physical	pointer	to	NULL	terminated	single	linked	list	of

		struct	setup_data.	This	is	used	to	define	a	more	extensible	boot

		parameters	passing	mechanism.

It	used	for	storing	setup	information	for	different	types	as	device	tree	blob,	EFI	setup	data
and	etc...	In	the	second	step	we	copy	BIOS	EDD	information	from	the		boot_params	
structure	that	we	collected	in	the	arch/x86/boot/edd.c	to	the		edd		structure:

Continue	architecture-specific	boot-time	initializations

154

https://github.com/torvalds/linux/blob/master/arch/x86/boot/edd.c

static	inline	void	__init	copy_edd(void)

{

					memcpy(edd.mbr_signature,	boot_params.edd_mbr_sig_buffer,

												sizeof(edd.mbr_signature));

					memcpy(edd.edd_info,	boot_params.eddbuf,	sizeof(edd.edd_info));

					edd.mbr_signature_nr	=	boot_params.edd_mbr_sig_buf_entries;

					edd.edd_info_nr	=	boot_params.eddbuf_entries;

}

Memory	descriptor	initialization
The	next	step	is	initialization	of	the	memory	descriptor	of	the	init	process.	As	you	already
can	know	every	process	has	its	own	address	space.	This	address	space	presented	with
special	data	structure	which	called		memory	descriptor	.	Directly	in	the	linux	kernel	source
code	memory	descriptor	presented	with		mm_struct		structure.		mm_struct		contains	many
different	fields	related	with	the	process	address	space	as	start/end	address	of	the	kernel
code/data,	start/end	of	the	brk,	number	of	memory	areas,	list	of	memory	areas	and	etc...
This	structure	defined	in	the	include/linux/mm_types.h.	As	every	process	has	its	own
memory	descriptor,		task_struct		structure	contains	it	in	the		mm		and		active_mm		field.	And
our	first		init		process	has	it	too.	You	can	remember	that	we	saw	the	part	of	initialization	of
the	init		task_struct		with		INIT_TASK		macro	in	the	previous	part:

#define	INIT_TASK(tsk)		\

{

				...

				...

				...

				.mm	=	NULL,									\

				.active_mm		=	&init_mm,	\

				...

}

	mm		points	to	the	process	address	space	and		active_mm		points	to	the	active	address	space
if	process	has	no	address	space	such	as	kernel	threads	(more	about	it	you	can	read	in	the
documentation).	Now	we	fill	memory	descriptor	of	the	initial	process:

				init_mm.start_code	=	(unsigned	long)	_text;

				init_mm.end_code	=	(unsigned	long)	_etext;

				init_mm.end_data	=	(unsigned	long)	_edata;

				init_mm.brk	=	_brk_end;

with	the	kernel's	text,	data	and	brk.		init_mm		is	the	memory	descriptor	of	the	initial	process
and	defined	as:

Continue	architecture-specific	boot-time	initializations

155

https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://www.kernel.org/doc/Documentation/vm/active_mm.txt

struct	mm_struct	init_mm	=	{

				.mm_rb										=	RB_ROOT,

				.pgd												=	swapper_pg_dir,

				.mm_users							=	ATOMIC_INIT(2),

				.mm_count							=	ATOMIC_INIT(1),

				.mmap_sem							=	__RWSEM_INITIALIZER(init_mm.mmap_sem),

				.page_table_lock	=		__SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),

				.mmlist									=	LIST_HEAD_INIT(init_mm.mmlist),

				INIT_MM_CONTEXT(init_mm)

};

where		mm_rb		is	a	red-black	tree	of	the	virtual	memory	areas,		pgd		is	a	pointer	to	the	page
global	directory,		mm_users		is	address	space	users,		mm_count		is	primary	usage	counter	and
	mmap_sem		is	memory	area	semaphore.	After	we	setup	memory	descriptor	of	the	initial
process,	next	step	is	initialization	of	the	Intel	Memory	Protection	Extensions	with
	mpx_mm_init	.	The	next	step	is	initialization	of	the	code/data/bss	resources	with:

				code_resource.start	=	__pa_symbol(_text);

				code_resource.end	=	__pa_symbol(_etext)-1;

				data_resource.start	=	__pa_symbol(_etext);

				data_resource.end	=	__pa_symbol(_edata)-1;

				bss_resource.start	=	__pa_symbol(__bss_start);

				bss_resource.end	=	__pa_symbol(__bss_stop)-1;

We	already	know	a	little	about		resource		structure	(read	above).	Here	we	fills	code/data/bss
resources	with	their	physical	addresses.	You	can	see	it	in	the		/proc/iomem	:

00100000-be825fff	:	System	RAM

		01000000-015bb392	:	Kernel	code

		015bb393-01930c3f	:	Kernel	data

		01a11000-01ac3fff	:	Kernel	bss

All	of	these	structures	are	defined	in	the	arch/x86/kernel/setup.c	and	look	like	typical
resource	initialization:

static	struct	resource	code_resource	=	{

				.name				=	"Kernel	code",

				.start				=	0,

				.end				=	0,

				.flags				=	IORESOURCE_BUSY	|	IORESOURCE_MEM

};

Continue	architecture-specific	boot-time	initializations

156

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c

The	last	step	which	we	will	cover	in	this	part	will	be		NX		configuration.		NX-bit		or	no
execute	bit	is	63-bit	in	the	page	directory	entry	which	controls	the	ability	to	execute	code
from	all	physical	pages	mapped	by	the	table	entry.	This	bit	can	only	be	used/set	when	the
	no-execute		page-protection	mechanism	is	enabled	by	the	setting		EFER.NXE		to	1.	In	the
	x86_configure_nx		function	we	check	that	CPU	has	support	of		NX-bit		and	it	does	not
disabled.	After	the	check	we	fill		__supported_pte_mask		depend	on	it:

void	x86_configure_nx(void)

{

								if	(cpu_has_nx	&&	!disable_nx)

																__supported_pte_mask	|=	_PAGE_NX;

								else

																__supported_pte_mask	&=	~_PAGE_NX;

}

Conclusion
It	is	the	end	of	the	fifth	part	about	linux	kernel	initialization	process.	In	this	part	we	continued
to	dive	in	the		setup_arch		function	which	makes	initialization	of	architecture-specific	stuff.	It
was	long	part,	but	we	have	not	finished	with	it.	As	i	already	wrote,	the		setup_arch		is	big
function,	and	I	am	really	not	sure	that	we	will	cover	all	of	it	even	in	the	next	part.	There	were
some	new	interesting	concepts	in	this	part	like		Fix-mapped		addresses,	ioremap	and	etc...
Don't	worry	if	they	are	unclear	for	you.	There	is	a	special	part	about	these	concepts	-	Linux
kernel	memory	management	Part	2..	In	the	next	part	we	will	continue	with	the	initialization	of
the	architecture-specific	stuff	and	will	see	parsing	of	the	early	kernel	parameters,	early	dump
of	the	pci	devices,	direct	Media	Interface	scanning	and	many	many	more.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
mm	vs	active_mm
e820
Supervisor	mode	access	prevention
Kernel	stacks
TSS
IDT
Memory	mapped	I/O

Continue	architecture-specific	boot-time	initializations

157

https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://www.kernel.org/doc/Documentation/vm/active_mm.txt
http://en.wikipedia.org/wiki/E820
https://lwn.net/Articles/517475/
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Task_state_segment
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Memory-mapped_I/O

CFI	directives
PDF.	dwarf4	specification
Call	stack
Previous	part

Continue	architecture-specific	boot-time	initializations

158

https://sourceware.org/binutils/docs/as/CFI-directives.html
http://dwarfstd.org/doc/DWARF4.pdf
http://en.wikipedia.org/wiki/Call_stack
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html

Kernel	initialization.	Part	6.

Architecture-specific	initialization,	again...
In	the	previous	part	we	saw	architecture-specific	(x86_64		in	our	case)	initialization	stuff	from
the	arch/x86/kernel/setup.c	and	finished	on		x86_configure_nx		function	which	sets	the
	_PAGE_NX		flag	depends	on	support	of	NX	bit.	As	I	wrote	before		setup_arch		function	and
	start_kernel		are	very	big,	so	in	this	and	in	the	next	part	we	will	continue	to	learn	about
architecture-specific	initialization	process.	The	next	function	after		x86_configure_nx		is
	parse_early_param	.	This	function	is	defined	in	the	init/main.c	and	as	you	can	understand
from	its	name,	this	function	parses	kernel	command	line	and	setups	different	services
depends	on	the	given	parameters	(all	kernel	command	line	parameters	you	can	find	are	in
the	Documentation/kernel-parameters.txt).	You	may	remember	how	we	setup		earlyprintk	
in	the	earliest	part.	On	the	early	stage	we	looked	for	kernel	parameters	and	their	value	with
the		cmdline_find_option		function	and		__cmdline_find_option	,		__cmdline_find_option_bool	
helpers	from	the	arch/x86/boot/cmdline.c.	There	we're	in	the	generic	kernel	part	which	does
not	depend	on	architecture	and	here	we	use	another	approach.	If	you	are	reading	linux
kernel	source	code,	you	already	note	calls	like	this:

early_param("gbpages",	parse_direct_gbpages_on);

	early_param		macro	takes	two	parameters:

command	line	parameter	name;
function	which	will	be	called	if	given	parameter	is	passed.

and	defined	as:

#define	early_param(str,	fn)	\

								__setup_param(str,	fn,	fn,	1)

in	the	include/linux/init.h.	As	you	can	see		early_param		macro	just	makes	call	of	the
	__setup_param		macro:

Architecture-specific	initializations,	again...

159

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
http://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/cmdline.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h

#define	__setup_param(str,	unique_id,	fn,	early)																\

								static	const	char	__setup_str_##unique_id[]	__initconst	\

																__aligned(1)	=	str;	\

								static	struct	obs_kernel_param	__setup_##unique_id						\

																__used	__section(.init.setup)																			\

																__attribute__((aligned((sizeof(long)))))								\

																=	{	__setup_str_##unique_id,	fn,	early	}

This	macro	defines		__setup_str_*_id		variable	(where		*		depends	on	given	function	name)
and	assigns	it	to	the	given	command	line	parameter	name.	In	the	next	line	we	can	see
definition	of	the		__setup_*		variable	which	type	is		obs_kernel_param		and	its	initialization.
	obs_kernel_param		structure	defined	as:

struct	obs_kernel_param	{

								const	char	*str;

								int	(*setup_func)(char	*);

								int	early;

};

and	contains	three	fields:

name	of	the	kernel	parameter;
function	which	setups	something	depend	on	parameter;
field	determines	is	parameter	early	(1)	or	not	(0).

Note	that		__set_param		macro	defines	with		__section(.init.setup)		attribute.	It	means	that
all		__setup_str_*		will	be	placed	in	the		.init.setup		section,	moreover,	as	we	can	see	in
the	include/asm-generic/vmlinux.lds.h,	they	will	be	placed	between		__setup_start		and
	__setup_end	:

#define	INIT_SETUP(initsetup_align)																\

																.	=	ALIGN(initsetup_align);								\

																VMLINUX_SYMBOL(__setup_start)	=	.;	\

																*(.init.setup)																					\

																VMLINUX_SYMBOL(__setup_end)	=	.;

Now	we	know	how	parameters	are	defined,	let's	back	to	the		parse_early_param	
implementation:

Architecture-specific	initializations,	again...

160

https://github.com/torvalds/linux/blob/master/include/asm-generic/vmlinux.lds.h

void	__init	parse_early_param(void)

{

								static	int	done	__initdata;

								static	char	tmp_cmdline[COMMAND_LINE_SIZE]	__initdata;

								if	(done)

																return;

								/*	All	fall	through	to	do_early_param.	*/

								strlcpy(tmp_cmdline,	boot_command_line,	COMMAND_LINE_SIZE);

								parse_early_options(tmp_cmdline);

								done	=	1;

}

The		parse_early_param		function	defines	two	static	variables.	First		done		check	that
	parse_early_param		already	called	and	the	second	is	temporary	storage	for	kernel	command
line.	After	this	we	copy		boot_command_line		to	the	temporary	command	line	which	we	just
defined	and	call	the		parse_early_options		function	from	the	same	source	code		main.c		file.
	parse_early_options		calls	the		parse_args		function	from	the	kernel/params.c	where
	parse_args		parses	given	command	line	and	calls		do_early_param		function.	This	function
goes	from	the		__setup_start		to		__setup_end	,	and	calls	the	function	from	the
	obs_kernel_param		if	a	parameter	is	early.	After	this	all	services	which	are	depend	on	early
command	line	parameters	were	setup	and	the	next	call	after	the		parse_early_param		is
	x86_report_nx	.	As	I	wrote	in	the	beginning	of	this	part,	we	already	set		NX-bit		with	the
	x86_configure_nx	.	The	next		x86_report_nx		function	from	the	arch/x86/mm/setup_nx.c	just
prints	information	about	the		NX	.	Note	that	we	call		x86_report_nx		not	right	after	the
	x86_configure_nx	,	but	after	the	call	of	the		parse_early_param	.	The	answer	is	simple:	we	call
it	after	the		parse_early_param		because	the	kernel	support		noexec		parameter:

noexec								[X86]

												On	X86-32	available	only	on	PAE	configured	kernels.

												noexec=on:	enable	non-executable	mappings	(default)

												noexec=off:	disable	non-executable	mappings

We	can	see	it	in	the	booting	time:

After	this	we	can	see	call	of	the:

				memblock_x86_reserve_range_setup_data();

Architecture-specific	initializations,	again...

161

https://github.com/torvalds/linux/blob/master/
https://github.com/torvalds/linux/blob/master/init/main.c#L413
https://github.com/torvalds/linux/blob/master/arch/x86/mm/setup_nx.c

function.	This	function	is	defined	in	the	same	arch/x86/kernel/setup.c	source	code	file	and
remaps	memory	for	the		setup_data		and	reserved	memory	block	for	the		setup_data		(more
about		setup_data		you	can	read	in	the	previous	part	and	about		ioremap		and		memblock		you
can	read	in	the	Linux	kernel	memory	management).

In	the	next	step	we	can	see	following	conditional	statement:

				if	(acpi_mps_check())	{

#ifdef	CONFIG_X86_LOCAL_APIC

								disable_apic	=	1;

#endif

								setup_clear_cpu_cap(X86_FEATURE_APIC);

				}

The	first		acpi_mps_check		function	from	the	arch/x86/kernel/acpi/boot.c	depends	on
	CONFIG_X86_LOCAL_APIC		and		CONFIG_x86_MPPARSE		configuration	options:

int	__init	acpi_mps_check(void)

{

#if	defined(CONFIG_X86_LOCAL_APIC)	&&	!defined(CONFIG_X86_MPPARSE)

								/*	mptable	code	is	not	built-in*/

								if	(acpi_disabled	||	acpi_noirq)	{

																printk(KERN_WARNING	"MPS	support	code	is	not	built-in.\n"

																							"Using	acpi=off	or	acpi=noirq	or	pci=noacpi	"

																							"may	have	problem\n");

																	return	1;

								}

#endif

								return	0;

}

It	checks	the	built-in		MPS		or	MultiProcessor	Specification	table.	If		CONFIG_X86_LOCAL_APIC		is
set	and		CONFIG_x86_MPPAARSE		is	not	set,		acpi_mps_check		prints	warning	message	if	the	one
of	the	command	line	options:		acpi=off	,		acpi=noirq		or		pci=noacpi		passed	to	the	kernel.	If
	acpi_mps_check		returns		1		it	means	that	we	disable	local	APIC	and	clear		X86_FEATURE_APIC	
bit	in	the	of	the	current	CPU	with	the		setup_clear_cpu_cap		macro.	(more	about	CPU	mask
you	can	read	in	the	CPU	masks).

Early	PCI	dump
In	the	next	step	we	make	a	dump	of	the	PCI	devices	with	the	following	code:

Architecture-specific	initializations,	again...

162

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/acpi/boot.c
http://en.wikipedia.org/wiki/MultiProcessor_Specification
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://en.wikipedia.org/wiki/Conventional_PCI

#ifdef	CONFIG_PCI

				if	(pci_early_dump_regs)

								early_dump_pci_devices();

#endif

	pci_early_dump_regs		variable	defined	in	the	arch/x86/pci/common.c	and	its	value	depends
on	the	kernel	command	line	parameter:		pci=earlydump	.	We	can	find	definition	of	this
parameter	in	the	drivers/pci/pci.c:

early_param("pci",	pci_setup);

	pci_setup		function	gets	the	string	after	the		pci=		and	analyzes	it.	This	function	calls
	pcibios_setup		which	defined	as		__weak		in	the	drivers/pci/pci.c	and	every	architecture
defines	the	same	function	which	overrides		__weak		analog.	For	example		x86_64	
architecture-dependent	version	is	in	the	arch/x86/pci/common.c:

char	*__init	pcibios_setup(char	*str)	{

								...

								...

								...

								}	else	if	(!strcmp(str,	"earlydump"))	{

																pci_early_dump_regs	=	1;

																return	NULL;

								}

								...

								...

								...

}

So,	if		CONFIG_PCI		option	is	set	and	we	passed		pci=earlydump		option	to	the	kernel
command	line,	next	function	which	will	be	called	-		early_dump_pci_devices		from	the
arch/x86/pci/early.c.	This	function	checks		noearly		pci	parameter	with:

if	(!early_pci_allowed())

								return;

and	returns	if	it	was	passed.	Each	PCI	domain	can	host	up	to		256		buses	and	each	bus
hosts	up	to	32	devices.	So,	we	goes	in	a	loop:

Architecture-specific	initializations,	again...

163

https://github.com/torvalds/linux/blob/master/arch/x86/pci/common.c
https://github.com/torvalds/linux/blob/master/arch
https://github.com/torvalds/linux/blob/master/arch
https://github.com/torvalds/linux/blob/master/arch/x86/pci/common.c
https://github.com/torvalds/linux/blob/master/arch/x86/pci/early.c

for	(bus	=	0;	bus	<	256;	bus++)	{

																for	(slot	=	0;	slot	<	32;	slot++)	{

																								for	(func	=	0;	func	<	8;	func++)	{

																								...

																								...

																								...

																								}

																}

}

and	read	the		pci		config	with	the		read_pci_config		function.

That's	all.	We	will	not	go	deep	in	the		pci		details,	but	will	see	more	details	in	the	special
	Drivers/PCI		part.

Finish	with	memory	parsing
After	the		early_dump_pci_devices	,	there	are	a	couple	of	function	related	with	available
memory	and	e820	which	we	collected	in	the	First	steps	in	the	kernel	setup	part:

				/*	update	the	e820_saved	too	*/

				e820_reserve_setup_data();

				finish_e820_parsing();

				...

				...

				...

				e820_add_kernel_range();

				trim_bios_range(void);

				max_pfn	=	e820_end_of_ram_pfn();

				early_reserve_e820_mpc_new();

Let's	look	on	it.	As	you	can	see	the	first	function	is		e820_reserve_setup_data	.	This	function
does	almost	the	same	as		memblock_x86_reserve_range_setup_data		which	we	saw	above,	but
it	also	calls		e820_update_range		which	adds	new	regions	to	the		e820map		with	the	given	type
which	is		E820_RESERVED_KERN		in	our	case.	The	next	function	is		finish_e820_parsing		which
sanitizes		e820map		with	the		sanitize_e820_map		function.	Besides	this	two	functions	we	can
see	a	couple	of	functions	related	to	the	e820.	You	can	see	it	in	the	listing	above.
	e820_add_kernel_range		function	takes	the	physical	address	of	the	kernel	start	and	end:

u64	start	=	__pa_symbol(_text);

u64	size	=	__pa_symbol(_end)	-	start;

Architecture-specific	initializations,	again...

164

http://en.wikipedia.org/wiki/E820
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
http://en.wikipedia.org/wiki/E820

checks	that		.text			.data		and		.bss		marked	as		E820RAM		in	the		e820map		and	prints	the
warning	message	if	not.	The	next	function		trm_bios_range		update	first	4096	bytes	in
	e820Map		as		E820_RESERVED		and	sanitizes	it	again	with	the	call	of	the		sanitize_e820_map	.
After	this	we	get	the	last	page	frame	number	with	the	call	of	the		e820_end_of_ram_pfn	
function.	Every	memory	page	has	an	unique	number	-		Page	frame	number		and
	e820_end_of_ram_pfn		function	returns	the	maximum	with	the	call	of	the		e820_end_pfn	:

unsigned	long	__init	e820_end_of_ram_pfn(void)

{

				return	e820_end_pfn(MAX_ARCH_PFN);

}

where		e820_end_pfn		takes	maximum	page	frame	number	on	the	certain	architecture
(MAX_ARCH_PFN		is		0x400000000		for		x86_64).	In	the		e820_end_pfn		we	go	through	the	all
	e820		slots	and	check	that		e820		entry	has		E820_RAM		or		E820_PRAM		type	because	we
calculate	page	frame	numbers	only	for	these	types,	gets	the	base	address	and	end	address
of	the	page	frame	number	for	the	current		e820		entry	and	makes	some	checks	for	these
addresses:

for	(i	=	0;	i	<	e820.nr_map;	i++)	{

								struct	e820entry	*ei	=	&e820.map[i];

								unsigned	long	start_pfn;

								unsigned	long	end_pfn;

								if	(ei->type	!=	E820_RAM	&&	ei->type	!=	E820_PRAM)

												continue;

								start_pfn	=	ei->addr	>>	PAGE_SHIFT;

								end_pfn	=	(ei->addr	+	ei->size)	>>	PAGE_SHIFT;

								if	(start_pfn	>=	limit_pfn)

												continue;

								if	(end_pfn	>	limit_pfn)	{

												last_pfn	=	limit_pfn;

												break;

								}

								if	(end_pfn	>	last_pfn)

												last_pfn	=	end_pfn;

}

Architecture-specific	initializations,	again...

165

				if	(last_pfn	>	max_arch_pfn)

								last_pfn	=	max_arch_pfn;

				printk(KERN_INFO	"e820:	last_pfn	=	%#lx	max_arch_pfn	=	%#lx\n",

													last_pfn,	max_arch_pfn);

				return	last_pfn;

After	this	we	check	that		last_pfn		which	we	got	in	the	loop	is	not	greater	that	maximum
page	frame	number	for	the	certain	architecture	(x86_64		in	our	case),	print	information	about
last	page	frame	number	and	return	it.	We	can	see	the		last_pfn		in	the		dmesg		output:

...

[0.000000]	e820:	last_pfn	=	0x41f000	max_arch_pfn	=	0x400000000

...

After	this,	as	we	have	calculated	the	biggest	page	frame	number,	we	calculate		max_low_pfn	
which	is	the	biggest	page	frame	number	in	the		low	memory		or	bellow	first		4		gigabytes.	If
installed	more	than	4	gigabytes	of	RAM,		max_low_pfn		will	be	result	of	the
	e820_end_of_low_ram_pfn		function	which	does	the	same		e820_end_of_ram_pfn		but	with	4
gigabytes	limit,	in	other	way		max_low_pfn		will	be	the	same	as		max_pfn	:

if	(max_pfn	>	(1UL<<(32	-	PAGE_SHIFT)))

				max_low_pfn	=	e820_end_of_low_ram_pfn();

else

				max_low_pfn	=	max_pfn;

high_memory	=	(void	*)__va(max_pfn	*	PAGE_SIZE	-	1)	+	1;

Next	we	calculate		high_memory		(defines	the	upper	bound	on	direct	map	memory)	with		__va	
macro	which	returns	a	virtual	address	by	the	given	physical	memory.

DMI	scanning
The	next	step	after	manipulations	with	different	memory	regions	and		e820		slots	is	collecting
information	about	computer.	We	will	get	all	information	with	the	Desktop	Management
Interface	and	following	functions:

dmi_scan_machine();

dmi_memdev_walk();

Architecture-specific	initializations,	again...

166

http://en.wikipedia.org/wiki/Desktop_Management_Interface

First	is		dmi_scan_machine		defined	in	the	drivers/firmware/dmi_scan.c.	This	function	goes
through	the	System	Management	BIOS	structures	and	extracts	information.	There	are	two
ways	specified	to	gain	access	to	the		SMBIOS		table:	get	the	pointer	to	the		SMBIOS		table	from
the	EFI's	configuration	table	and	scanning	the	physical	memory	between		0xF0000		and
	0x10000		addresses.	Let's	look	on	the	second	approach.		dmi_scan_machine		function	remaps
memory	between		0xf0000		and		0x10000		with	the		dmi_early_remap		which	just	expands	to
the		early_ioremap	:

void	__init	dmi_scan_machine(void)

{

				char	__iomem	*p,	*q;

				char	buf[32];

				...

				...

				...

				p	=	dmi_early_remap(0xF0000,	0x10000);

				if	(p	==	NULL)

												goto	error;

and	iterates	over	all		DMI		header	address	and	find	search		_SM_		string:

memset(buf,	0,	16);

for	(q	=	p;	q	<	p	+	0x10000;	q	+=	16)	{

								memcpy_fromio(buf	+	16,	q,	16);

								if	(!dmi_smbios3_present(buf)	||	!dmi_present(buf))	{

												dmi_available	=	1;

												dmi_early_unmap(p,	0x10000);

												goto	out;

								}

								memcpy(buf,	buf	+	16,	16);

}

	SM		string	must	be	between		000F0000h		and		0x000FFFFF	.	Here	we	copy	16	bytes	to	the
	buf		with		memcpy_fromio		which	is	the	same		memcpy		and	execute		dmi_smbios3_present		and
	dmi_present		on	the	buffer.	These	functions	check	that	first	4	bytes	is		_SM_		string,	get
	SMBIOS		version	and	gets		_DMI_		attributes	as		DMI		structure	table	length,	table	address
and	etc...	After	one	of	these	functions	finish,	you	will	see	the	result	of	it	in	the		dmesg		output:

[0.000000]	SMBIOS	2.7	present.

[0.000000]	DMI:	Gigabyte	Technology	Co.,	Ltd.	Z97X-UD5H-BK/Z97X-UD5H-BK,	BIOS	F6	0

6/17/2014

In	the	end	of	the		dmi_scan_machine	,	we	unmap	the	previously	remapped	memory:

Architecture-specific	initializations,	again...

167

https://github.com/torvalds/linux/blob/master/drivers/firmware/dmi_scan.c
http://en.wikipedia.org/wiki/System_Management_BIOS
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

dmi_early_unmap(p,	0x10000);

The	second	function	is	-		dmi_memdev_walk	.	As	you	can	understand	it	goes	over	memory
devices.	Let's	look	on	it:

void	__init	dmi_memdev_walk(void)

{

				if	(!dmi_available)

								return;

				if	(dmi_walk_early(count_mem_devices)	==	0	&&	dmi_memdev_nr)	{

								dmi_memdev	=	dmi_alloc(sizeof(*dmi_memdev)	*	dmi_memdev_nr);

								if	(dmi_memdev)

												dmi_walk_early(save_mem_devices);

				}

}

It	checks	that		DMI		available	(we	got	it	in	the	previous	function	-		dmi_scan_machine)	and
collects	information	about	memory	devices	with		dmi_walk_early		and		dmi_alloc		which
defined	as:

#ifdef	CONFIG_DMI

RESERVE_BRK(dmi_alloc,	65536);

#endif

	RESERVE_BRK		defined	in	the	arch/x86/include/asm/setup.h	and	reserves	space	with	given
size	in	the		brk		section.

init_hypervisor_platform();

x86_init.resources.probe_roms();

insert_resource(&iomem_resource,	&code_resource);

insert_resource(&iomem_resource,	&data_resource);

insert_resource(&iomem_resource,	&bss_resource);

early_gart_iommu_check();

SMP	config
The	next	step	is	parsing	of	the	SMP	configuration.	We	do	it	with	the	call	of	the
	find_smp_config		function	which	just	calls	function:

Architecture-specific	initializations,	again...

168

http://en.wikipedia.org/wiki/Desktop_Management_Interface
http://en.wikipedia.org/wiki/Symmetric_multiprocessing

static	inline	void	find_smp_config(void)

{

								x86_init.mpparse.find_smp_config();

}

inside.		x86_init.mpparse.find_smp_config		is	the		default_find_smp_config		function	from	the
arch/x86/kernel/mpparse.c.	In	the		default_find_smp_config		function	we	are	scanning	a
couple	of	memory	regions	for		SMP		config	and	return	if	they	are	found:

if	(smp_scan_config(0x0,	0x400)	||

												smp_scan_config(639	*	0x400,	0x400)	||

												smp_scan_config(0xF0000,	0x10000))

												return;

First	of	all		smp_scan_config		function	defines	a	couple	of	variables:

unsigned	int	*bp	=	phys_to_virt(base);

struct	mpf_intel	*mpf;

First	is	virtual	address	of	the	memory	region	where	we	will	scan		SMP		config,	second	is	the
pointer	to	the		mpf_intel		structure.	Let's	try	to	understand	what	is	it		mpf_intel	.	All
information	stores	in	the	multiprocessor	configuration	data	structure.		mpf_intel		presents
this	structure	and	looks:

struct	mpf_intel	{

								char	signature[4];

								unsigned	int	physptr;

								unsigned	char	length;

								unsigned	char	specification;

								unsigned	char	checksum;

								unsigned	char	feature1;

								unsigned	char	feature2;

								unsigned	char	feature3;

								unsigned	char	feature4;

								unsigned	char	feature5;

};

As	we	can	read	in	the	documentation	-	one	of	the	main	functions	of	the	system	BIOS	is	to
construct	the	MP	floating	pointer	structure	and	the	MP	configuration	table.	And	operating
system	must	have	access	to	this	information	about	the	multiprocessor	configuration	and
	mpf_intel		stores	the	physical	address	(look	at	second	parameter)	of	the	multiprocessor
configuration	table.	So,		smp_scan_config		going	in	a	loop	through	the	given	memory	range

Architecture-specific	initializations,	again...

169

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/mpparse.c

and	tries	to	find		MP	floating	pointer	structure		there.	It	checks	that	current	byte	points	to
the		SMP		signature,	checks	checksum,	checks	if		mpf->specification		is	1	or	4(it	must	be		1	
or		4		by	specification)	in	the	loop:

while	(length	>	0)	{

if	((*bp	==	SMP_MAGIC_IDENT)	&&

				(mpf->length	==	1)	&&

				!mpf_checksum((unsigned	char	*)bp,	16)	&&

				((mpf->specification	==	1)

				||	(mpf->specification	==	4)))	{

								mem	=	virt_to_phys(mpf);

								memblock_reserve(mem,	sizeof(*mpf));

								if	(mpf->physptr)

												smp_reserve_memory(mpf);

				}

}

reserves	given	memory	block	if	search	is	successful	with		memblock_reserve		and	reserves
physical	address	of	the	multiprocessor	configuration	table.	You	can	find	documentation
about	this	in	the	-	MultiProcessor	Specification.	You	can	read	More	details	in	the	special	part
about		SMP	.

Additional	early	memory	initialization	routines
In	the	next	step	of	the		setup_arch		we	can	see	the	call	of	the		early_alloc_pgt_buf		function
which	allocates	the	page	table	buffer	for	early	stage.	The	page	table	buffer	will	be	placed	in
the		brk		area.	Let's	look	on	its	implementation:

void		__init	early_alloc_pgt_buf(void)

{

								unsigned	long	tables	=	INIT_PGT_BUF_SIZE;

								phys_addr_t	base;

								base	=	__pa(extend_brk(tables,	PAGE_SIZE));

								pgt_buf_start	=	base	>>	PAGE_SHIFT;

								pgt_buf_end	=	pgt_buf_start;

								pgt_buf_top	=	pgt_buf_start	+	(tables	>>	PAGE_SHIFT);

}

First	of	all	it	get	the	size	of	the	page	table	buffer,	it	will	be		INIT_PGT_BUF_SIZE		which	is		(6	*
PAGE_SIZE)		in	the	current	linux	kernel	4.0.	As	we	got	the	size	of	the	page	table	buffer,	we	call
	extend_brk		function	with	two	parameters:	size	and	align.	As	you	can	understand	from	its

Architecture-specific	initializations,	again...

170

http://www.intel.com/design/pentium/datashts/24201606.pdf

name,	this	function	extends	the		brk		area.	As	we	can	see	in	the	linux	kernel	linker	script
	brk		is	in	memory	right	after	the	BSS:

				.	=	ALIGN(PAGE_SIZE);

				.brk	:	AT(ADDR(.brk)	-	LOAD_OFFSET)	{

								__brk_base	=	.;

								.	+=	64	*	1024;								/*	64k	alignment	slop	space	*/

								(.brk_reservation)				/	areas	brk	users	have	reserved	*/

								__brk_limit	=	.;

				}

Or	we	can	find	it	with		readelf		util:

After	that	we	got	physical	address	of	the	new		brk		with	the		__pa		macro,	we	calculate	the
base	address	and	the	end	of	the	page	table	buffer.	In	the	next	step	as	we	got	page	table
buffer,	we	reserve	memory	block	for	the	brk	area	with	the		reserve_brk		function:

static	void	__init	reserve_brk(void)

{

				if	(_brk_end	>	_brk_start)

								memblock_reserve(__pa_symbol(_brk_start),

																	_brk_end	-	_brk_start);

				_brk_start	=	0;

}

Note	that	in	the	end	of	the		reserve_brk	,	we	set		brk_start		to	zero,	because	after	this	we
will	not	allocate	it	anymore.	The	next	step	after	reserving	memory	block	for	the		brk	,	we
need	to	unmap	out-of-range	memory	areas	in	the	kernel	mapping	with	the		cleanup_highmap	
function.	Remember	that	kernel	mapping	is		__START_KERNEL_map		and		_end	-	_text		or
	level2_kernel_pgt		maps	the	kernel		_text	,		data		and		bss	.	In	the	start	of	the
	clean_high_map		we	define	these	parameters:

unsigned	long	vaddr	=	__START_KERNEL_map;

unsigned	long	end	=	roundup((unsigned	long)_end,	PMD_SIZE)	-	1;

pmd_t	*pmd	=	level2_kernel_pgt;

pmd_t	*last_pmd	=	pmd	+	PTRS_PER_PMD;

Architecture-specific	initializations,	again...

171

http://en.wikipedia.org/wiki/.bss

Now,	as	we	defined	start	and	end	of	the	kernel	mapping,	we	go	in	the	loop	through	the	all
kernel	page	middle	directory	entries	and	clean	entries	which	are	not	between		_text		and
	end	:

for	(;	pmd	<	last_pmd;	pmd++,	vaddr	+=	PMD_SIZE)	{

								if	(pmd_none(*pmd))

												continue;

								if	(vaddr	<	(unsigned	long)	_text	||	vaddr	>	end)

												set_pmd(pmd,	__pmd(0));

}

After	this	we	set	the	limit	for	the		memblock		allocation	with	the		memblock_set_current_limit	
function	(read	more	about		memblock		you	can	in	the	Linux	kernel	memory	management	Part
2),	it	will	be		ISA_END_ADDRESS		or		0x100000		and	fill	the		memblock		information	according	to
	e820		with	the	call	of	the		memblock_x86_fill		function.	You	can	see	the	result	of	this	function
in	the	kernel	initialization	time:

MEMBLOCK	configuration:

	memory	size	=	0x1fff7ec00	reserved	size	=	0x1e30000

	memory.cnt		=	0x3

	memory[0x0]				[0x00000000001000-0x0000000009efff],	0x9e000	bytes	flags:	0x0

	memory[0x1]				[0x00000000100000-0x000000bffdffff],	0xbfee0000	bytes	flags:	0x0

	memory[0x2]				[0x00000100000000-0x0000023fffffff],	0x140000000	bytes	flags:	0x0

	reserved.cnt		=	0x3

	reserved[0x0]				[0x0000000009f000-0x000000000fffff],	0x61000	bytes	flags:	0x0

	reserved[0x1]				[0x00000001000000-0x00000001a57fff],	0xa58000	bytes	flags:	0x0

	reserved[0x2]				[0x0000007ec89000-0x0000007fffffff],	0x1377000	bytes	flags:	0x0

The	rest	functions	after	the		memblock_x86_fill		are:		early_reserve_e820_mpc_new		allocates
additional	slots	in	the		e820map		for	MultiProcessor	Specification	table,		reserve_real_mode		-
reserves	low	memory	from		0x0		to	1	megabyte	for	the	trampoline	to	the	real	mode	(for
rebooting,	etc.),		trim_platform_memory_ranges		-	trims	certain	memory	regions	started	from
	0x20050000	,		0x20110000	,	etc.	these	regions	must	be	excluded	because	Sandy	Bridge	has
problems	with	these	regions,		trim_low_memory_range		reserves	the	first	4	kilobyte	page	in
	memblock	,		init_mem_mapping		function	reconstructs	direct	memory	mapping	and	setups	the
direct	mapping	of	the	physical	memory	at		PAGE_OFFSET	,		early_trap_pf_init		setups		#PF	
handler	(we	will	look	on	it	in	the	chapter	about	interrupts)	and		setup_real_mode		function
setups	trampoline	to	the	real	mode	code.

That's	all.	You	can	note	that	this	part	will	not	cover	all	functions	which	are	in	the		setup_arch	
(like		early_gart_iommu_check	,	mtrr	initialization,	etc.).	As	I	already	wrote	many	times,
	setup_arch		is	big,	and	linux	kernel	is	big.	That's	why	I	can't	cover	every	line	in	the	linux
kernel.	I	don't	think	that	we	missed	something	important,	but	you	can	say	something	like:

Architecture-specific	initializations,	again...

172

https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md
http://en.wikipedia.org/wiki/Sandy_Bridge
http://en.wikipedia.org/wiki/Real_mode
http://en.wikipedia.org/wiki/Memory_type_range_register

each	line	of	code	is	important.	Yes,	it's	true,	but	I	missed	them	anyway,	because	I	think	that
it	is	not	realistic	to	cover	full	linux	kernel.	Anyway	we	will	often	return	to	the	idea	that	we
have	already	seen,	and	if	something	is	unfamiliar,	we	will	cover	this	theme.

Conclusion
It	is	the	end	of	the	sixth	part	about	linux	kernel	initialization	process.	In	this	part	we
continued	to	dive	in	the		setup_arch		function	again	and	it	was	long	part,	but	we	are	not
finished	with	it.	Yes,		setup_arch		is	big,	hope	that	next	part	will	be	the	last	part	about	this
function.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
MultiProcessor	Specification
NX	bit
Documentation/kernel-parameters.txt
APIC
CPU	masks
Linux	kernel	memory	management
PCI
e820
System	Management	BIOS
System	Management	BIOS
EFI
SMP
MultiProcessor	Specification
BSS
SMBIOS	specification
Previous	part

Architecture-specific	initializations,	again...

173

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/MultiProcessor_Specification
http://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
http://en.wikipedia.org/wiki/Conventional_PCI
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/System_Management_BIOS
http://en.wikipedia.org/wiki/System_Management_BIOS
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://en.wikipedia.org/wiki/.bss
http://www.dmtf.org/sites/default/files/standards/documents/DSP0134v2.5Final.pdf
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html

Kernel	initialization.	Part	7.

The	End	of	the	architecture-specific
initialization,	almost...
This	is	the	seventh	part	of	the	Linux	Kernel	initialization	process	which	covers	insides	of	the
	setup_arch		function	from	the	arch/x86/kernel/setup.c.	As	you	can	know	from	the	previous
parts,	the		setup_arch		function	does	some	architecture-specific	(in	our	case	it	is	x86_64)
initialization	stuff	like	reserving	memory	for	kernel	code/data/bss,	early	scanning	of	the
Desktop	Management	Interface,	early	dump	of	the	PCI	device	and	many	many	more.	If	you
have	read	the	previous	part,	you	can	remember	that	we've	finished	it	at	the
	setup_real_mode		function.	In	the	next	step,	as	we	set	limit	of	the	memblock	to	the	all
mapped	pages,	we	can	see	the	call	of	the		setup_log_buf		function	from	the
kernel/printk/printk.c.

The		setup_log_buf		function	setups	kernel	cyclic	buffer	and	its	length	depends	on	the
	CONFIG_LOG_BUF_SHIFT		configuration	option.	As	we	can	read	from	the	documentation	of	the
	CONFIG_LOG_BUF_SHIFT		it	can	be	between		12		and		21	.	In	the	insides,	buffer	defined	as
array	of	chars:

#define	__LOG_BUF_LEN	(1	<<	CONFIG_LOG_BUF_SHIFT)

static	char	__log_buf[__LOG_BUF_LEN]	__aligned(LOG_ALIGN);

static	char	*log_buf	=	__log_buf;

Now	let's	look	on	the	implementation	of	the		setup_log_buf		function.	It	starts	with	check	that
current	buffer	is	empty	(It	must	be	empty,	because	we	just	setup	it)	and	another	check	that	it
is	early	setup.	If	setup	of	the	kernel	log	buffer	is	not	early,	we	call	the		log_buf_add_cpu	
function	which	increase	size	of	the	buffer	for	every	CPU:

if	(log_buf	!=	__log_buf)

				return;

if	(!early	&&	!new_log_buf_len)

				log_buf_add_cpu();

We	will	not	research		log_buf_add_cpu		function,	because	as	you	can	see	in	the		setup_arch	,
we	call		setup_log_buf		as:

End	of	the	architecture-specific	initializations,	almost...

174

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L861
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Desktop_Management_Interface
http://en.wikipedia.org/wiki/PCI
http://0xax.gitbooks.io/linux-insides/content/Initialization/%20linux-initialization-6.html
http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html
https://github.com/torvalds/linux/blob/master/kernel/printk/printk.c

setup_log_buf(1);

where		1		means	that	it	is	early	setup.	In	the	next	step	we	check		new_log_buf_len		variable
which	is	updated	length	of	the	kernel	log	buffer	and	allocate	new	space	for	the	buffer	with
the		memblock_virt_alloc		function	for	it,	or	just	return.

As	kernel	log	buffer	is	ready,	the	next	function	is		reserve_initrd	.	You	can	remember	that
we	already	called	the		early_reserve_initrd		function	in	the	fourth	part	of	the	Kernel
initialization.	Now,	as	we	reconstructed	direct	memory	mapping	in	the		init_mem_mapping	
function,	we	need	to	move	initrd	into	directly	mapped	memory.	The		reserve_initrd		function
starts	from	the	definition	of	the	base	address	and	end	address	of	the		initrd		and	check	that
	initrd		is	provided	by	a	bootloader.	All	the	same	as	what	we	saw	in	the
	early_reserve_initrd	.	But	instead	of	the	reserving	place	in	the		memblock		area	with	the	call
of	the		memblock_reserve		function,	we	get	the	mapped	size	of	the	direct	memory	area	and
check	that	the	size	of	the		initrd		is	not	greater	than	this	area	with:

mapped_size	=	memblock_mem_size(max_pfn_mapped);

if	(ramdisk_size	>=	(mapped_size>>1))

				panic("initrd	too	large	to	handle,	"

										"disabling	initrd	(%lld	needed,	%lld	available)\n",

										ramdisk_size,	mapped_size>>1);

You	can	see	here	that	we	call		memblock_mem_size		function	and	pass	the		max_pfn_mapped		to
it,	where		max_pfn_mapped		contains	the	highest	direct	mapped	page	frame	number.	If	you	do
not	remember	what	is		page	frame	number	,	explanation	is	simple:	First		12		bits	of	the	virtual
address	represent	offset	in	the	physical	page	or	page	frame.	If	we	right-shift	out		12		bits	of
the	virtual	address,	we'll	discard	offset	part	and	will	get		Page	Frame	Number	.	In	the
	memblock_mem_size		we	go	through	the	all	memblock		mem		(not	reserved)	regions	and
calculates	size	of	the	mapped	pages	and	return	it	to	the		mapped_size		variable	(see	code
above).	As	we	got	amount	of	the	direct	mapped	memory,	we	check	that	size	of	the		initrd	
is	not	greater	than	mapped	pages.	If	it	is	greater	we	just	call		panic		which	halts	the	system
and	prints	famous	Kernel	panic	message.	In	the	next	step	we	print	information	about	the
	initrd		size.	We	can	see	the	result	of	this	in	the		dmesg		output:

[0.000000]	RAMDISK:	[mem	0x36d20000-0x37687fff]

and	relocate		initrd		to	the	direct	mapping	area	with	the		relocate_initrd		function.	In	the
start	of	the		relocate_initrd		function	we	try	to	find	a	free	area	with	the
	memblock_find_in_range		function:

End	of	the	architecture-specific	initializations,	almost...

175

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Kernel_panic

relocated_ramdisk	=	memblock_find_in_range(0,	PFN_PHYS(max_pfn_mapped),	area_size,	PAG

E_SIZE);

if	(!relocated_ramdisk)

				panic("Cannot	find	place	for	new	RAMDISK	of	size	%lld\n",

											ramdisk_size);

The		memblock_find_in_range		function	tries	to	find	a	free	area	in	a	given	range,	in	our	case
from		0		to	the	maximum	mapped	physical	address	and	size	must	equal	to	the	aligned	size
of	the		initrd	.	If	we	didn't	find	a	area	with	the	given	size,	we	call		panic		again.	If	all	is
good,	we	start	to	relocated	RAM	disk	to	the	down	of	the	directly	mapped	memory	in	the	next
step.

In	the	end	of	the		reserve_initrd		function,	we	free	memblock	memory	which	occupied	by
the	ramdisk	with	the	call	of	the:

memblock_free(ramdisk_image,	ramdisk_end	-	ramdisk_image);

After	we	relocated		initrd		ramdisk	image,	the	next	function	is		vsmp_init		from	the
arch/x86/kernel/vsmp_64.c.	This	function	initializes	support	of	the		ScaleMP	vSMP	.	As	I
already	wrote	in	the	previous	parts,	this	chapter	will	not	cover	non-related		x86_64	
initialization	parts	(for	example	as	the	current	or		ACPI	,	etc.).	So	we	will	skip	implementation
of	this	for	now	and	will	back	to	it	in	the	part	which	cover	techniques	of	parallel	computing.

The	next	function	is		io_delay_init		from	the	arch/x86/kernel/io_delay.c.	This	function	allows
to	override	default	default	I/O	delay		0x80		port.	We	already	saw	I/O	delay	in	the	Last
preparation	before	transition	into	protected	mode,	now	let's	look	on	the		io_delay_init	
implementation:

void	__init	io_delay_init(void)

{

				if	(!io_delay_override)

								dmi_check_system(io_delay_0xed_port_dmi_table);

}

This	function	check		io_delay_override		variable	and	overrides	I/O	delay	port	if
	io_delay_override		is	set.	We	can	set		io_delay_override		variably	by	passing		io_delay	
option	to	the	kernel	command	line.	As	we	can	read	from	the	Documentation/kernel-
parameters.txt,		io_delay		option	is:

End	of	the	architecture-specific	initializations,	almost...

176

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vsmp_64.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/io_delay.c
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt

io_delay=				[X86]	I/O	delay	method

				0x80

								Standard	port	0x80	based	delay

				0xed

								Alternate	port	0xed	based	delay	(needed	on	some	systems)

				udelay

								Simple	two	microseconds	delay

				none

								No	delay

We	can	see		io_delay		command	line	parameter	setup	with	the		early_param		macro	in	the
arch/x86/kernel/io_delay.c

early_param("io_delay",	io_delay_param);

More	about		early_param		you	can	read	in	the	previous	part.	So	the		io_delay_param		function
which	setups		io_delay_override		variable	will	be	called	in	the	do_early_param	function.
	io_delay_param		function	gets	the	argument	of	the		io_delay		kernel	command	line
parameter	and	sets		io_delay_type		depends	on	it:

static	int	__init	io_delay_param(char	*s)

{

								if	(!s)

																return	-EINVAL;

								if	(!strcmp(s,	"0x80"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_0X80;

								else	if	(!strcmp(s,	"0xed"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_0XED;

								else	if	(!strcmp(s,	"udelay"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_UDELAY;

								else	if	(!strcmp(s,	"none"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_NONE;

								else

																return	-EINVAL;

								io_delay_override	=	1;

								return	0;

}

The	next	functions	are		acpi_boot_table_init	,		early_acpi_boot_init		and		initmem_init	
after	the		io_delay_init	,	but	as	I	wrote	above	we	will	not	cover	ACPI	related	stuff	in	this
	Linux	Kernel	initialization	process		chapter.

Allocate	area	for	DMA

End	of	the	architecture-specific	initializations,	almost...

177

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/io_delay.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/%20linux-initialization-6.html
https://github.com/torvalds/linux/blob/master/init/main.c#L413
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

In	the	next	step	we	need	to	allocate	area	for	the	Direct	memory	access	with	the
	dma_contiguous_reserve		function	which	is	defined	in	the	drivers/base/dma-contiguous.c.
	DMA		is	a	special	mode	when	devices	communicate	with	memory	without	CPU.	Note	that	we
pass	one	parameter	-		max_pfn_mapped	<<	PAGE_SHIFT	,	to	the		dma_contiguous_reserve	
function	and	as	you	can	understand	from	this	expression,	this	is	limit	of	the	reserved
memory.	Let's	look	on	the	implementation	of	this	function.	It	starts	from	the	definition	of	the
following	variables:

phys_addr_t	selected_size	=	0;

phys_addr_t	selected_base	=	0;

phys_addr_t	selected_limit	=	limit;

bool	fixed	=	false;

where	first	represents	size	in	bytes	of	the	reserved	area,	second	is	base	address	of	the
reserved	area,	third	is	end	address	of	the	reserved	area	and	the	last		fixed		parameter
shows	where	to	place	reserved	area.	If		fixed		is		1		we	just	reserve	area	with	the
	memblock_reserve	,	if	it	is		0		we	allocate	space	with	the		kmemleak_alloc	.	In	the	next	step	we
check		size_cmdline		variable	and	if	it	is	not	equal	to		-1		we	fill	all	variables	which	you	can
see	above	with	the	values	from	the		cma		kernel	command	line	parameter:

if	(size_cmdline	!=	-1)	{

			...

			...

			...

}

You	can	find	in	this	source	code	file	definition	of	the	early	parameter:

early_param("cma",	early_cma);

where		cma		is:

cma=nn[MG]@[start[MG][-end[MG]]]

								[ARM,X86,KNL]

								Sets	the	size	of	kernel	global	memory	area	for

								contiguous	memory	allocations	and	optionally	the

								placement	constraint	by	the	physical	address	range	of

								memory	allocations.	A	value	of	0	disables	CMA

								altogether.	For	more	information,	see

								include/linux/dma-contiguous.h

End	of	the	architecture-specific	initializations,	almost...

178

http://en.wikipedia.org/wiki/Direct_memory_access
https://github.com/torvalds/linux/blob/master/drivers/base/dma-contiguous.c

If	we	will	not	pass		cma		option	to	the	kernel	command	line,		size_cmdline		will	be	equal	to
	-1	.	In	this	way	we	need	to	calculate	size	of	the	reserved	area	which	depends	on	the
following	kernel	configuration	options:

	CONFIG_CMA_SIZE_SEL_MBYTES		-	size	in	megabytes,	default	global		CMA		area,	which	is
equal	to		CMA_SIZE_MBYTES	*	SZ_1M		or		CONFIG_CMA_SIZE_MBYTES	*	1M	;
	CONFIG_CMA_SIZE_SEL_PERCENTAGE		-	percentage	of	total	memory;
	CONFIG_CMA_SIZE_SEL_MIN		-	use	lower	value;
	CONFIG_CMA_SIZE_SEL_MAX		-	use	higher	value.

As	we	calculated	the	size	of	the	reserved	area,	we	reserve	area	with	the	call	of	the
	dma_contiguous_reserve_area		function	which	first	of	all	calls:

ret	=	cma_declare_contiguous(base,	size,	limit,	0,	0,	fixed,	res_cma);

function.	The		cma_declare_contiguous		reserves	contiguous	area	from	the	given	base
address	with	given	size.	After	we	reserved	area	for	the		DMA	,	next	function	is	the
	memblock_find_dma_reserve	.	As	you	can	understand	from	its	name,	this	function	counts	the
reserved	pages	in	the		DMA		area.	This	part	will	not	cover	all	details	of	the		CMA		and		DMA	,
because	they	are	big.	We	will	see	much	more	details	in	the	special	part	in	the	Linux	Kernel
Memory	management	which	covers	contiguous	memory	allocators	and	areas.

Initialization	of	the	sparse	memory
The	next	step	is	the	call	of	the	function	-		x86_init.paging.pagetable_init	.	If	you	try	to	find
this	function	in	the	linux	kernel	source	code,	in	the	end	of	your	search,	you	will	see	the
following	macro:

#define	native_pagetable_init								paging_init

which	expands	as	you	can	see	to	the	call	of	the		paging_init		function	from	the
arch/x86/mm/init_64.c.	The		paging_init		function	initializes	sparse	memory	and	zone	sizes.
First	of	all	what's	zones	and	what	is	it		Sparsemem	.	The		Sparsemem		is	a	special	foundation	in
the	linux	kernel	memory	manager	which	used	to	split	memory	area	into	different	memory
banks	in	the	NUMA	systems.	Let's	look	on	the	implementation	of	the		paginig_init		function:

End	of	the	architecture-specific	initializations,	almost...

179

https://github.com/torvalds/linux/blob/master/arch/x86/mm/init_64.c
http://en.wikipedia.org/wiki/Non-uniform_memory_access

void	__init	paging_init(void)

{

								sparse_memory_present_with_active_regions(MAX_NUMNODES);

								sparse_init();

								node_clear_state(0,	N_MEMORY);

								if	(N_MEMORY	!=	N_NORMAL_MEMORY)

																node_clear_state(0,	N_NORMAL_MEMORY);

								zone_sizes_init();

}

As	you	can	see	there	is	call	of	the		sparse_memory_present_with_active_regions		function
which	records	a	memory	area	for	every		NUMA		node	to	the	array	of	the		mem_section	
structure	which	contains	a	pointer	to	the	structure	of	the	array	of		struct	page	.	The	next
	sparse_init		function	allocates	non-linear		mem_section		and		mem_map	.	In	the	next	step	we
clear	state	of	the	movable	memory	nodes	and	initialize	sizes	of	zones.	Every		NUMA		node	is
divided	into	a	number	of	pieces	which	are	called	-		zones	.	So,		zone_sizes_init		function
from	the	arch/x86/mm/init.c	initializes	size	of	zones.

Again,	this	part	and	next	parts	do	not	cover	this	theme	in	full	details.	There	will	be	special
part	about		NUMA	.

vsyscall	mapping
The	next	step	after		SparseMem		initialization	is	setting	of	the		trampoline_cr4_features		which
must	contain	content	of	the		cr4		Control	register.	First	of	all	we	need	to	check	that	current
CPU	has	support	of	the		cr4		register	and	if	it	has,	we	save	its	content	to	the
	trampoline_cr4_features		which	is	storage	for		cr4		in	the	real	mode:

if	(boot_cpu_data.cpuid_level	>=	0)	{

				mmu_cr4_features	=	__read_cr4();

				if	(trampoline_cr4_features)

								*trampoline_cr4_features	=	mmu_cr4_features;

}

The	next	function	which	you	can	see	is		map_vsyscal		from	the	arch/x86/kernel/vsyscall_64.c.
This	function	maps	memory	space	for	vsyscalls	and	depends	on
	CONFIG_X86_VSYSCALL_EMULATION		kernel	configuration	option.	Actually		vsyscall		is	a	special
segment	which	provides	fast	access	to	the	certain	system	calls	like		getcpu	,	etc.	Let's	look
on	implementation	of	this	function:

End	of	the	architecture-specific	initializations,	almost...

180

https://github.com/torvalds/linux/blob/master/arch/x86/mm/init.c
http://en.wikipedia.org/wiki/Control_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vsyscall_64.c
https://lwn.net/Articles/446528/

void	__init	map_vsyscall(void)

{

								extern	char	__vsyscall_page;

								unsigned	long	physaddr_vsyscall	=	__pa_symbol(&__vsyscall_page);

								if	(vsyscall_mode	!=	NONE)

																__set_fixmap(VSYSCALL_PAGE,	physaddr_vsyscall,

																													vsyscall_mode	==	NATIVE

																													?	PAGE_KERNEL_VSYSCALL

																													:	PAGE_KERNEL_VVAR);

								BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

																					(unsigned	long)VSYSCALL_ADDR);

}

In	the	beginning	of	the		map_vsyscall		we	can	see	definition	of	two	variables.	The	first	is
extern	variable		__vsyscall_page	.	As	a	extern	variable,	it	defined	somewhere	in	other	source
code	file.	Actually	we	can	see	definition	of	the		__vsyscall_page		in	the
arch/x86/kernel/vsyscall_emu_64.S.	The		__vsyscall_page		symbol	points	to	the	aligned	calls
of	the		vsyscalls		as		gettimeofday	,	etc.:

				.globl	__vsyscall_page

				.balign	PAGE_SIZE,	0xcc

				.type	__vsyscall_page,	@object

__vsyscall_page:

				mov	$__NR_gettimeofday,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_time,	%rax

				syscall

				ret

				...

				...

				...

The	second	variable	is		physaddr_vsyscall		which	just	stores	physical	address	of	the
	__vsyscall_page		symbol.	In	the	next	step	we	check	the		vsyscall_mode		variable,	and	if	it	is
not	equal	to		NONE	,	it	is		EMULATE		by	default:

static	enum	{	EMULATE,	NATIVE,	NONE	}	vsyscall_mode	=	EMULATE;

And	after	this	check	we	can	see	the	call	of	the		__set_fixmap		function	which	calls
	native_set_fixmap		with	the	same	parameters:

End	of	the	architecture-specific	initializations,	almost...

181

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vsyscall_emu_64.S

void	native_set_fixmap(enum	fixed_addresses	idx,	unsigned	long	phys,	pgprot_t	flags)

{

								__native_set_fixmap(idx,	pfn_pte(phys	>>	PAGE_SHIFT,	flags));

}

void	__native_set_fixmap(enum	fixed_addresses	idx,	pte_t	pte)

{

								unsigned	long	address	=	__fix_to_virt(idx);

								if	(idx	>=	__end_of_fixed_addresses)	{

																BUG();

																return;

								}

								set_pte_vaddr(address,	pte);

								fixmaps_set++;

}

Here	we	can	see	that		native_set_fixmap		makes	value	of		Page	Table	Entry		from	the	given
physical	address	(physical	address	of	the		__vsyscall_page		symbol	in	our	case)	and	calls
internal	function	-		__native_set_fixmap	.	Internal	function	gets	the	virtual	address	of	the
given		fixed_addresses		index	(VSYSCALL_PAGE		in	our	case)	and	checks	that	given	index	is
not	greater	than	end	of	the	fix-mapped	addresses.	After	this	we	set	page	table	entry	with	the
call	of	the		set_pte_vaddr		function	and	increase	count	of	the	fix-mapped	addresses.	And	in
the	end	of	the		map_vsyscall		we	check	that	virtual	address	of	the		VSYSCALL_PAGE		(which	is
first	index	in	the		fixed_addresses)	is	not	greater	than		VSYSCALL_ADDR		which	is		-10UL	<<	20	
or		ffffffffff600000		with	the		BUILD_BUG_ON		macro:

BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

																					(unsigned	long)VSYSCALL_ADDR);

Now		vsyscall		area	is	in	the		fix-mapped		area.	That's	all	about		map_vsyscall	,	if	you	do	not
know	anything	about	fix-mapped	addresses,	you	can	read	Fix-Mapped	Addresses	and
ioremap.	We	will	see	more	about		vsyscalls		in	the		vsyscalls	and	vdso		part.

Getting	the	SMP	configuration
You	may	remember	how	we	made	a	search	of	the	SMP	configuration	in	the	previous	part.
Now	we	need	to	get	the		SMP		configuration	if	we	found	it.	For	this	we	check
	smp_found_config		variable	which	we	set	in	the		smp_scan_config		function	(read	about	it	the
previous	part)	and	call	the		get_smp_config		function:

End	of	the	architecture-specific	initializations,	almost...

182

http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://0xax.gitbooks.io/linux-insides/content/Initialization/%20linux-initialization-6.html

if	(smp_found_config)

				get_smp_config();

The		get_smp_config		expands	to	the		x86_init.mpparse.default_get_smp_config		function
which	is	defined	in	the	arch/x86/kernel/mpparse.c.	This	function	defines	a	pointer	to	the
multiprocessor	floating	pointer	structure	-		mpf_intel		(you	can	read	about	it	in	the	previous
part)	and	does	some	checks:

struct	mpf_intel	*mpf	=	mpf_found;

if	(!mpf)

				return;

if	(acpi_lapic	&&	early)

			return;

Here	we	can	see	that	multiprocessor	configuration	was	found	in	the		smp_scan_config	
function	or	just	return	from	the	function	if	not.	The	next	check	is		acpi_lapic		and		early	.
And	as	we	did	this	checks,	we	start	to	read	the		SMP		configuration.	As	we	finished	reading	it,
the	next	step	is	-		prefill_possible_map		function	which	makes	preliminary	filling	of	the
possible	CPU's		cpumask		(more	about	it	you	can	read	in	the	Introduction	to	the	cpumasks).

The	rest	of	the	setup_arch
Here	we	are	getting	to	the	end	of	the		setup_arch		function.	The	rest	of	function	of	course	is
important,	but	details	about	these	stuff	will	not	will	not	be	included	in	this	part.	We	will	just
take	a	short	look	on	these	functions,	because	although	they	are	important	as	I	wrote	above,
but	they	cover	non-generic	kernel	features	related	with	the		NUMA	,		SMP	,		ACPI		and		APICs	,
etc.	First	of	all,	the	next	call	of	the		init_apic_mappings		function.	As	we	can	understand	this
function	sets	the	address	of	the	local	APIC.	The	next	is		x86_io_apic_ops.init		and	this
function	initializes	I/O	APIC.	Please	note	that	we	will	see	all	details	related	with		APIC		in	the
chapter	about	interrupts	and	exceptions	handling.	In	the	next	step	we	reserve	standard	I/O
resources	like		DMA	,		TIMER	,		FPU	,	etc.,	with	the	call	of	the
	x86_init.resources.reserve_resources		function.	Following	is		mcheck_init		function	initializes
	Machine	check	Exception		and	the	last	is		register_refined_jiffies		which	registers	jiffy
(There	will	be	separate	chapter	about	timers	in	the	kernel).

So	that's	all.	Finally	we	have	finished	with	the	big		setup_arch		function	in	this	part.	Of	course
as	I	already	wrote	many	times,	we	did	not	see	full	details	about	this	function,	but	do	not
worry	about	it.	We	will	be	back	more	than	once	to	this	function	from	different	chapters	for
understanding	how	different	platform-dependent	parts	are	initialized.

End	of	the	architecture-specific	initializations,	almost...

183

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/mpparse.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/%20linux-initialization-6.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Jiffy_%28time%29

That's	all,	and	now	we	can	back	to	the		start_kernel		from	the		setup_arch	.

Back	to	the	main.c
As	I	wrote	above,	we	have	finished	with	the		setup_arch		function	and	now	we	can	back	to
the		start_kernel		function	from	the	init/main.c.	As	you	may	remember	or	saw	yourself,
	start_kernel		function	as	big	as	the		setup_arch	.	So	the	couple	of	the	next	part	will	be
dedicated	to	learning	of	this	function.	So,	let's	continue	with	it.	After	the		setup_arch		we	can
see	the	call	of	the		mm_init_cpumask		function.	This	function	sets	the	cpumask	pointer	to	the
memory	descriptor		cpumask	.	We	can	look	on	its	implementation:

static	inline	void	mm_init_cpumask(struct	mm_struct	*mm)

{

#ifdef	CONFIG_CPUMASK_OFFSTACK

								mm->cpu_vm_mask_var	=	&mm->cpumask_allocation;

#endif

								cpumask_clear(mm->cpu_vm_mask_var);

}

As	you	can	see	in	the	init/main.c,	we	pass	memory	descriptor	of	the	init	process	to	the
	mm_init_cpumask		and	depends	on		CONFIG_CPUMASK_OFFSTACK		configuration	option	we	clear
TLB	switch		cpumask	.

In	the	next	step	we	can	see	the	call	of	the	following	function:

setup_command_line(command_line);

This	function	takes	pointer	to	the	kernel	command	line	allocates	a	couple	of	buffers	to	store
command	line.	We	need	a	couple	of	buffers,	because	one	buffer	used	for	future	reference
and	accessing	to	command	line	and	one	for	parameter	parsing.	We	will	allocate	space	for
the	following	buffers:

	saved_command_line		-	will	contain	boot	command	line;
	initcall_command_line		-	will	contain	boot	command	line.	will	be	used	in	the
	do_initcall_level	;
	static_command_line		-	will	contain	command	line	for	parameters	parsing.

We	will	allocate	space	with	the		memblock_virt_alloc		function.	This	function	calls
	memblock_virt_alloc_try_nid		which	allocates	boot	memory	block	with		memblock_reserve		if
slab	is	not	available	or	uses		kzalloc_node		(more	about	it	will	be	in	the	linux	memory
management	chapter).	The		memblock_virt_alloc		uses		BOOTMEM_LOW_LIMIT		(physical

End	of	the	architecture-specific	initializations,	almost...

184

https://github.com/torvalds/linux/blob/master/init/main.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Slab_allocation

address	of	the		(PAGE_OFFSET	+	0x1000000)		value)	and		BOOTMEM_ALLOC_ACCESSIBLE		(equal	to
the	current	value	of	the		memblock.current_limit)	as	minimum	address	of	the	memory	region
and	maximum	address	of	the	memory	region.

Let's	look	on	the	implementation	of	the		setup_command_line	:

static	void	__init	setup_command_line(char	*command_line)

{

								saved_command_line	=

																memblock_virt_alloc(strlen(boot_command_line)	+	1,	0);

								initcall_command_line	=

																memblock_virt_alloc(strlen(boot_command_line)	+	1,	0);

								static_command_line	=	memblock_virt_alloc(strlen(command_line)	+	1,	0);

								strcpy(saved_command_line,	boot_command_line);

								strcpy(static_command_line,	command_line);

	}

Here	we	can	see	that	we	allocate	space	for	the	three	buffers	which	will	contain	kernel
command	line	for	the	different	purposes	(read	above).	And	as	we	allocated	space,	we	store
	boot_command_line		in	the		saved_command_line		and		command_line		(kernel	command	line
from	the		setup_arch)	to	the		static_command_line	.

The	next	function	after	the		setup_command_line		is	the		setup_nr_cpu_ids	.	This	function
setting		nr_cpu_ids		(number	of	CPUs)	according	to	the	last	bit	in	the		cpu_possible_mask	
(more	about	it	you	can	read	in	the	chapter	describes	cpumasks	concept).	Let's	look	on	its
implementation:

void	__init	setup_nr_cpu_ids(void)

{

								nr_cpu_ids	=	find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS)	+	1;

}

Here		nr_cpu_ids		represents	number	of	CPUs,		NR_CPUS		represents	the	maximum	number
of	CPUs	which	we	can	set	in	configuration	time:

End	of	the	architecture-specific	initializations,	almost...

185

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html

Actually	we	need	to	call	this	function,	because		NR_CPUS		can	be	greater	than	actual	amount
of	the	CPUs	in	the	your	computer.	Here	we	can	see	that	we	call		find_last_bit		function	and
pass	two	parameters	to	it:

	cpu_possible_mask		bits;
maximum	number	of	CPUS.

In	the		setup_arch		we	can	find	the	call	of	the		prefill_possible_map		function	which
calculates	and	writes	to	the		cpu_possible_mask		actual	number	of	the	CPUs.	We	call	the
	find_last_bit		function	which	takes	the	address	and	maximum	size	to	search	and	returns
bit	number	of	the	first	set	bit.	We	passed		cpu_possible_mask		bits	and	maximum	number	of
the	CPUs.	First	of	all	the		find_last_bit		function	splits	given		unsigned	long		address	to	the
words:

words	=	size	/	BITS_PER_LONG;

where		BITS_PER_LONG		is		64		on	the		x86_64	.	As	we	got	amount	of	words	in	the	given	size	of
the	search	data,	we	need	to	check	is	given	size	does	not	contain	partial	words	with	the
following	check:

End	of	the	architecture-specific	initializations,	almost...

186

http://en.wikipedia.org/wiki/Word_%28computer_architecture%29

if	(size	&	(BITS_PER_LONG-1))	{

									tmp	=	(addr[words]	&	(~0UL	>>	(BITS_PER_LONG

																																	-	(size	&	(BITS_PER_LONG-1)))));

									if	(tmp)

																	goto	found;

}

if	it	contains	partial	word,	we	mask	the	last	word	and	check	it.	If	the	last	word	is	not	zero,	it
means	that	current	word	contains	at	least	one	set	bit.	We	go	to	the		found		label:

found:

				return	words	*	BITS_PER_LONG	+	__fls(tmp);

Here	you	can	see		__fls		function	which	returns	last	set	bit	in	a	given	word	with	help	of	the
	bsr		instruction:

static	inline	unsigned	long	__fls(unsigned	long	word)

{

								asm("bsr	%1,%0"

												:	"=r"	(word)

												:	"rm"	(word));

								return	word;

}

The		bsr		instruction	which	scans	the	given	operand	for	first	bit	set.	If	the	last	word	is	not
partial	we	going	through	the	all	words	in	the	given	address	and	trying	to	find	first	set	bit:

while	(words)	{

				tmp	=	addr[--words];

				if	(tmp)	{

found:

								return	words	*	BITS_PER_LONG	+	__fls(tmp);

				}

}

Here	we	put	the	last	word	to	the		tmp		variable	and	check	that		tmp		contains	at	least	one	set
bit.	If	a	set	bit	found,	we	return	the	number	of	this	bit.	If	no	one	words	do	not	contains	set	bit
we	just	return	given	size:

return	size;

After	this		nr_cpu_ids		will	contain	the	correct	amount	of	the	available	CPUs.

That's	all.

End	of	the	architecture-specific	initializations,	almost...

187

Conclusion
It	is	the	end	of	the	seventh	part	about	the	linux	kernel	initialization	process.	In	this	part,
finally	we	have	finished	with	the		setup_arch		function	and	returned	to	the		start_kernel	
function.	In	the	next	part	we	will	continue	to	learn	generic	kernel	code	from	the
	start_kernel		and	will	continue	our	way	to	the	first		init		process.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Desktop	Management	Interface
x86_64
initrd
Kernel	panic
Documentation/kernel-parameters.txt
ACPI
Direct	memory	access
NUMA
Control	register
vsyscalls
SMP
jiffy
Previous	part

End	of	the	architecture-specific	initializations,	almost...

188

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Desktop_Management_Interface
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Kernel_panic
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Direct_memory_access
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Control_register
https://lwn.net/Articles/446528/
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Jiffy_%28time%29
http://0xax.gitbooks.io/linux-insides/content/Initialization/%20linux-initialization-6.html

Kernel	initialization.	Part	8.

Scheduler	initialization
This	is	the	eighth	part	of	the	Linux	kernel	initialization	process	and	we	stopped	on	the
	setup_nr_cpu_ids		function	in	the	previous	part.	The	main	point	of	the	current	part	is
scheduler	initialization.	But	before	we	will	start	to	learn	initialization	process	of	the	scheduler,
we	need	to	do	some	stuff.	The	next	step	in	the	init/main.c	is	the		setup_per_cpu_areas	
function.	This	function	setups	areas	for	the		percpu		variables,	more	about	it	you	can	read	in
the	special	part	about	the	Per-CPU	variables.	After		percpu		areas	is	up	and	running,	the
next	step	is	the		smp_prepare_boot_cpu		function.	This	function	does	some	preparations	for
the	SMP:

static	inline	void	smp_prepare_boot_cpu(void)

{

									smp_ops.smp_prepare_boot_cpu();

}

where	the		smp_prepare_boot_cpu		expands	to	the	call	of	the		native_smp_prepare_boot_cpu	
function	(more	about		smp_ops		will	be	in	the	special	parts	about		SMP):

void	__init	native_smp_prepare_boot_cpu(void)

{

								int	me	=	smp_processor_id();

								switch_to_new_gdt(me);

								cpumask_set_cpu(me,	cpu_callout_mask);

								per_cpu(cpu_state,	me)	=	CPU_ONLINE;

}

The		native_smp_prepare_boot_cpu		function	gets	the	id	of	the	current	CPU	(which	is
Bootstrap	processor	and	its		id		is	zero)	with	the		smp_processor_id		function.	I	will	not
explain	how	the		smp_processor_id		works,	because	we	already	saw	it	in	the	Kernel	entry
point	part.	As	we	got	processor		id		number	we	reload	Global	Descriptor	Table	for	the	given
CPU	with	the		switch_to_new_gdt		function:

Scheduler	initialization

189

http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-7.md
http://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://github.com/torvalds/linux/blob/master/init/main.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
http://en.wikipedia.org/wiki/Global_Descriptor_Table

void	switch_to_new_gdt(int	cpu)

{

								struct	desc_ptr	gdt_descr;

								gdt_descr.address	=	(long)get_cpu_gdt_table(cpu);

								gdt_descr.size	=	GDT_SIZE	-	1;

								load_gdt(&gdt_descr);

								load_percpu_segment(cpu);

}

The		gdt_descr		variable	represents	pointer	to	the		GDT		descriptor	here	(we	already	saw
	desc_ptr		in	the	Early	interrupt	and	exception	handling).	We	get	the	address	and	the	size	of
the		GDT		descriptor	where		GDT_SIZE		is		256		or:

#define	GDT_SIZE	(GDT_ENTRIES	*	8)

and	the	address	of	the	descriptor	we	will	get	with	the		get_cpu_gdt_table	:

static	inline	struct	desc_struct	*get_cpu_gdt_table(unsigned	int	cpu)

{

								return	per_cpu(gdt_page,	cpu).gdt;

}

The		get_cpu_gdt_table		uses		per_cpu		macro	for	getting		gdt_page		percpu	variable	for	the
given	CPU	number	(bootstrap	processor	with		id		-	0	in	our	case).	You	may	ask	the
following	question:	so,	if	we	can	access		gdt_page		percpu	variable,	where	it	was	defined?
Actually	we	already	saw	it	in	this	book.	If	you	have	read	the	first	part	of	this	chapter,	you	can
remember	that	we	saw	definition	of	the		gdt_page		in	the	arch/x86/kernel/head_64.S:

early_gdt_descr:

				.word				GDT_ENTRIES*8-1

early_gdt_descr_base:

				.quad				INIT_PER_CPU_VAR(gdt_page)

and	if	we	will	look	on	the	linker	file	we	can	see	that	it	locates	after	the		__per_cpu_load	
symbol:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(gdt_page);

and	filled		gdt_page		in	the	arch/x86/kernel/cpu/common.c:

Scheduler	initialization

190

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://github.com/0xAX/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/0xAX/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c#L94

DEFINE_PER_CPU_PAGE_ALIGNED(struct	gdt_page,	gdt_page)	=	{	.gdt	=	{

#ifdef	CONFIG_X86_64

				[GDT_ENTRY_KERNEL32_CS]								=	GDT_ENTRY_INIT(0xc09b,	0,	0xfffff),

				[GDT_ENTRY_KERNEL_CS]								=	GDT_ENTRY_INIT(0xa09b,	0,	0xfffff),

				[GDT_ENTRY_KERNEL_DS]								=	GDT_ENTRY_INIT(0xc093,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER32_CS]				=	GDT_ENTRY_INIT(0xc0fb,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER_DS]				=	GDT_ENTRY_INIT(0xc0f3,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER_CS]				=	GDT_ENTRY_INIT(0xa0fb,	0,	0xfffff),

				...

				...

				...

more	about		percpu		variables	you	can	read	in	the	Per-CPU	variables	part.	As	we	got
address	and	size	of	the		GDT		descriptor	we	reload		GDT		with	the		load_gdt		which	just
execute		lgdt		instruct	and	load		percpu_segment		with	the	following	function:

void	load_percpu_segment(int	cpu)	{

				loadsegment(gs,	0);

				wrmsrl(MSR_GS_BASE,	(unsigned	long)per_cpu(irq_stack_union.gs_base,	cpu));

				load_stack_canary_segment();

}

The	base	address	of	the		percpu		area	must	contain		gs		register	(or		fs		register	for		x86),
so	we	are	using		loadsegment		macro	and	pass		gs	.	In	the	next	step	we	writes	the	base
address	if	the	IRQ	stack	and	setup	stack	canary	(this	is	only	for		x86_32).	After	we	load	new
	GDT	,	we	fill		cpu_callout_mask		bitmap	with	the	current	cpu	and	set	cpu	state	as	online	with
the	setting		cpu_state		percpu	variable	for	the	current	processor	-		CPU_ONLINE	:

cpumask_set_cpu(me,	cpu_callout_mask);

per_cpu(cpu_state,	me)	=	CPU_ONLINE;

So,	what	is		cpu_callout_mask		bitmap...	As	we	initialized	bootstrap	processor	(processor
which	is	booted	the	first	on		x86)	the	other	processors	in	a	multiprocessor	system	are
known	as		secondary	processors	.	Linux	kernel	uses	following	two	bitmasks:

	cpu_callout_mask	

	cpu_callin_mask	

After	bootstrap	processor	initialized,	it	updates	the		cpu_callout_mask		to	indicate	which
secondary	processor	can	be	initialized	next.	All	other	or	secondary	processors	can	do	some
initialization	stuff	before	and	check	the		cpu_callout_mask		on	the	boostrap	processor	bit.
Only	after	the	bootstrap	processor	filled	the		cpu_callout_mask		with	this	secondary
processor,	it	will	continue	the	rest	of	its	initialization.	After	that	the	certain	processor	finish	its
initialization	process,	the	processor	sets	bit	in	the		cpu_callin_mask	.	Once	the	bootstrap

Scheduler	initialization

191

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Buffer_overflow_protection

processor	finds	the	bit	in	the		cpu_callin_mask		for	the	current	secondary	processor,	this
processor	repeats	the	same	procedure	for	initialization	of	one	of	the	remaining	secondary
processors.	In	a	short	words	it	works	as	i	described,	but	we	will	see	more	details	in	the
chapter	about		SMP	.

That's	all.	We	did	all		SMP		boot	preparation.

Build	zonelists
In	the	next	step	we	can	see	the	call	of	the		build_all_zonelists		function.	This	function	sets
up	the	order	of	zones	that	allocations	are	preferred	from.	What	are	zones	and	what's	order
we	will	understand	soon.	For	the	start	let's	see	how	linux	kernel	considers	physical	memory.
Physical	memory	is	split	into	banks	which	are	called	-		nodes	.	If	you	has	no	hardware
support	for		NUMA	,	you	will	see	only	one	node:

$	cat	/sys/devices/system/node/node0/numastat	

numa_hit	72452442

numa_miss	0

numa_foreign	0

interleave_hit	12925

local_node	72452442

other_node	0

Every		node		is	presented	by	the		struct	pglist_data		in	the	linux	kernel.	Each	node	is
divided	into	a	number	of	special	blocks	which	are	called	-		zones	.	Every	zone	is	presented
by	the		zone	struct		in	the	linux	kernel	and	has	one	of	the	type:

	ZONE_DMA		-	0-16M;
	ZONE_DMA32		-	used	for	32	bit	devices	that	can	only	do	DMA	areas	below	4G;
	ZONE_NORMAL		-	all	RAM	from	the	4GB	on	the		x86_64	;
	ZONE_HIGHMEM		-	absent	on	the		x86_64	;
	ZONE_MOVABLE		-	zone	which	contains	movable	pages.

which	are	presented	by	the		zone_type		enum.	We	can	get	information	about	zones	with	the:

Scheduler	initialization

192

$	cat	/proc/zoneinfo

Node	0,	zone						DMA

		pages	free					3975

								min						3

								low						3

								...

								...

Node	0,	zone				DMA32

		pages	free					694163

								min						875

								low						1093

								...

								...

Node	0,	zone			Normal

		pages	free					2529995

								min						3146

								low						3932

								...

								...

As	I	wrote	above	all	nodes	are	described	with	the		pglist_data		or		pg_data_t		structure	in
memory.	This	structure	is	defined	in	the	include/linux/mmzone.h.	The		build_all_zonelists	
function	from	the	mm/page_alloc.c	constructs	an	ordered		zonelist		(of	different	zones
	DMA	,		DMA32	,		NORMAL	,		HIGH_MEMORY	,		MOVABLE)	which	specifies	the	zones/nodes	to	visit
when	a	selected		zone		or		node		cannot	satisfy	the	allocation	request.	That's	all.	More	about
	NUMA		and	multiprocessor	systems	will	be	in	the	special	part.

The	rest	of	the	stuff	before	scheduler
initialization
Before	we	will	start	to	dive	into	linux	kernel	scheduler	initialization	process	we	must	do	a
couple	of	things.	The	first	thing	is	the		page_alloc_init		function	from	the	mm/page_alloc.c.
This	function	looks	pretty	easy:

void	__init	page_alloc_init(void)

{

								hotcpu_notifier(page_alloc_cpu_notify,	0);

}

and	initializes	handler	for	the		CPU		hotplug.	Of	course	the		hotcpu_notifier		depends	on	the
	CONFIG_HOTPLUG_CPU		configuration	option	and	if	this	option	is	set,	it	just	calls		cpu_notifier	
macro	which	expands	to	the	call	of	the		register_cpu_notifier		which	adds	hotplug	cpu
handler	(page_alloc_cpu_notify		in	our	case).

Scheduler	initialization

193

https://github.com/torvalds/linux/blob/master/include/linux/mmzone.h
https://github.com/torvalds/linux/blob/master/mm/page_alloc.c
https://github.com/torvalds/linux/blob/master/mm/page_alloc.c
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

After	this	we	can	see	the	kernel	command	line	in	the	initialization	output:

And	a	couple	of	functions	such	as		parse_early_param		and		parse_args		which	handles	linux
kernel	command	line.	You	may	remember	that	we	already	saw	the	call	of	the
	parse_early_param		function	in	the	sixth	part	of	the	kernel	initialization	chapter,	so	why	we
call	it	again?	Answer	is	simple:	we	call	this	function	in	the	architecture-specific	code
(x86_64		in	our	case),	but	not	all	architecture	calls	this	function.	And	we	need	to	call	the
second	function		parse_args		to	parse	and	handle	non-early	command	line	arguments.

In	the	next	step	we	can	see	the	call	of	the		jump_label_init		from	the	kernel/jump_label.c.
and	initializes	jump	label.

After	this	we	can	see	the	call	of	the		setup_log_buf		function	which	setups	the	printk	log
buffer.	We	already	saw	this	function	in	the	seventh	part	of	the	linux	kernel	initialization
process	chapter.

PID	hash	initialization
The	next	is		pidhash_init		function.	As	you	know	each	process	has	assigned	a	unique
number	which	called	-		process	identification	number		or		PID	.	Each	process	generated
with	fork	or	clone	is	automatically	assigned	a	new	unique		PID		value	by	the	kernel.	The
management	of		PIDs		centered	around	the	two	special	data	structures:		struct	pid		and
	struct	upid	.	First	structure	represents	information	about	a		PID		in	the	kernel.	The	second
structure	represents	the	information	that	is	visible	in	a	specific	namespace.	All		PID	
instances	stored	in	the	special	hash	table:

static	struct	hlist_head	*pid_hash;

This	hash	table	is	used	to	find	the	pid	instance	that	belongs	to	a	numeric		PID		value.	So,
	pidhash_init		initializes	this	hash	table.	In	the	start	of	the		pidhash_init		function	we	can
see	the	call	of	the		alloc_large_system_hash	:

pid_hash	=	alloc_large_system_hash("PID",	sizeof(*pid_hash),	0,	18,

																																			HASH_EARLY	|	HASH_SMALL,

																																			&pidhash_shift,	NULL,

																																			0,	4096);

The	number	of	elements	of	the		pid_hash		depends	on	the		RAM		configuration,	but	it	can	be
between		2^4		and		2^12	.	The		pidhash_init		computes	the	size	and	allocates	the	required
storage	(which	is		hlist		in	our	case	-	the	same	as	doubly	linked	list,	but	contains	one

Scheduler	initialization

194

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html
https://github.com/torvalds/linux/blob/master/kernel/jump_label.c
https://lwn.net/Articles/412072/
http://www.makelinux.net/books/lkd2/ch18lev1sec3
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-7.html
http://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html

pointer	instead	on	the	struct	hlist_head].	The		alloc_large_system_hash		function	allocates	a
large	system	hash	table	with		memblock_virt_alloc_nopanic		if	we	pass		HASH_EARLY		flag	(as	it
in	our	case)	or	with		__vmalloc		if	we	did	no	pass	this	flag.

The	result	we	can	see	in	the		dmesg		output:

$	dmesg	|	grep	hash

[0.000000]	PID	hash	table	entries:	4096	(order:	3,	32768	bytes)

...

...

...

That's	all.	The	rest	of	the	stuff	before	scheduler	initialization	is	the	following	functions:
	vfs_caches_init_early		does	early	initialization	of	the	virtual	file	system	(more	about	it	will	be
in	the	chapter	which	will	describe	virtual	file	system),		sort_main_extable		sorts	the	kernel's
built-in	exception	table	entries	which	are	between		__start___ex_table		and
	__stop___ex_table	,	and		trap_init		initializes	trap	handlers	(more	about	last	two	function
we	will	know	in	the	separate	chapter	about	interrupts).

The	last	step	before	the	scheduler	initialization	is	initialization	of	the	memory	manager	with
the		mm_init		function	from	the	init/main.c.	As	we	can	see,	the		mm_init		function	initializes
different	parts	of	the	linux	kernel	memory	manager:

page_ext_init_flatmem();

mem_init();

kmem_cache_init();

percpu_init_late();

pgtable_init();

vmalloc_init();

The	first	is		page_ext_init_flatmem		which	depends	on	the		CONFIG_SPARSEMEM		kernel
configuration	option	and	initializes	extended	data	per	page	handling.	The		mem_init	
releases	all		bootmem	,	the		kmem_cache_init		initializes	kernel	cache,	the		percpu_init_late		-
replaces		percpu		chunks	with	those	allocated	by	slub,	the		pgtable_init		-	initializes	the
	page->ptl		kernel	cache,	the		vmalloc_init		-	initializes		vmalloc	.	Please,	NOTE	that	we	will
not	dive	into	details	about	all	of	these	functions	and	concepts,	but	we	will	see	all	of	they	it	in
the	Linux	kernel	memory	manager	chapter.

That's	all.	Now	we	can	look	on	the		scheduler	.

Scheduler	initialization

Scheduler	initialization

195

https://github.com/torvalds/linux/blob/master/include/linux/types.h
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/SLUB_%28software%29
http://0xax.gitbooks.io/linux-insides/content/mm/index.html

And	now	we	come	to	the	main	purpose	of	this	part	-	initialization	of	the	task	scheduler.	I	want
to	say	again	as	I	already	did	it	many	times,	you	will	not	see	the	full	explanation	of	the
scheduler	here,	there	will	be	special	chapter	about	this.	Ok,	next	point	is	the		sched_init	
function	from	the	kernel/sched/core.c	and	as	we	can	understand	from	the	function's	name,	it
initializes	scheduler.	Let's	start	to	dive	into	this	function	and	try	to	understand	how	the
scheduler	is	initialized.	At	the	start	of	the		sched_init		function	we	can	see	the	following
code:

#ifdef	CONFIG_FAIR_GROUP_SCHED

									alloc_size	+=	2	*	nr_cpu_ids	*	sizeof(void	**);

#endif

#ifdef	CONFIG_RT_GROUP_SCHED

									alloc_size	+=	2	*	nr_cpu_ids	*	sizeof(void	**);

#endif

First	of	all	we	can	see	two	configuration	options	here:

	CONFIG_FAIR_GROUP_SCHED	

	CONFIG_RT_GROUP_SCHED	

Both	of	this	options	provide	two	different	planning	models.	As	we	can	read	from	the
documentation,	the	current	scheduler	-		CFS		or		Completely	Fair	Scheduler		use	a	simple
concept.	It	models	process	scheduling	as	if	the	system	has	an	ideal	multitasking	processor
where	each	process	would	receive		1/n		processor	time,	where		n		is	the	number	of	the
runnable	processes.	The	scheduler	uses	the	special	set	of	rules.	These	rules	determine
when	and	how	to	select	a	new	process	to	run	and	they	are	called		scheduling	policy	.	The
Completely	Fair	Scheduler	supports	following		normal		or		non-real-time		scheduling
policies:		SCHED_NORMAL	,		SCHED_BATCH		and		SCHED_IDLE	.	The		SCHED_NORMAL		is	used	for	the
most	normal	applications,	the	amount	of	cpu	each	process	consumes	is	mostly	determined
by	the	nice	value,	the		SCHED_BATCH		used	for	the	100%	non-interactive	tasks	and	the
	SCHED_IDLE		runs	tasks	only	when	the	processor	has	no	task	to	run	besides	this	task.	The
	real-time		policies	are	also	supported	for	the	time-critical	applications:		SCHED_FIFO		and
	SCHED_RR	.	If	you've	read	something	about	the	Linux	kernel	scheduler,	you	can	know	that	it
is	modular.	It	means	that	it	supports	different	algorithms	to	schedule	different	types	of
processes.	Usually	this	modularity	is	called		scheduler	classes	.	These	modules	encapsulate
scheduling	policy	details	and	are	handled	by	the	scheduler	core	without	knowing	too	much
about	them.

Now	let's	back	to	the	our	code	and	look	on	the	two	configuration	options
	CONFIG_FAIR_GROUP_SCHED		and		CONFIG_RT_GROUP_SCHED	.	The	scheduler	operates	on	an
individual	task.	These	options	allows	to	schedule	group	tasks	(more	about	it	you	can	read	in

Scheduler	initialization

196

https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://en.wikipedia.org/wiki/Nice_%28Unix%29

the	CFS	group	scheduling).	We	can	see	that	we	assign	the		alloc_size		variables	which
represent	size	based	on	amount	of	the	processors	to	allocate	for	the		sched_entity		and
	cfs_rq		to	the		2	*	nr_cpu_ids	*	sizeof(void	**)		expression	with		kzalloc	:

ptr	=	(unsigned	long)kzalloc(alloc_size,	GFP_NOWAIT);

#ifdef	CONFIG_FAIR_GROUP_SCHED

								root_task_group.se	=	(struct	sched_entity	**)ptr;

								ptr	+=	nr_cpu_ids	*	sizeof(void	**);

								root_task_group.cfs_rq	=	(struct	cfs_rq	**)ptr;

								ptr	+=	nr_cpu_ids	*	sizeof(void	**);

#endif

The		sched_entity		is	a	structure	which	is	defined	in	the	include/linux/sched.h	and	used	by
the	scheduler	to	keep	track	of	process	accounting.	The		cfs_rq		presents	run	queue.	So,
you	can	see	that	we	allocated	space	with	size		alloc_size		for	the	run	queue	and	scheduler
entity	of	the		root_task_group	.	The		root_task_group		is	an	instance	of	the		task_group	
structure	from	the	kernel/sched/sched.h	which	contains	task	group	related	information:

struct	task_group	{

				...

				...

				struct	sched_entity	**se;

				struct	cfs_rq	**cfs_rq;

				...

				...

}

The	root	task	group	is	the	task	group	which	belongs	to	every	task	in	system.	As	we	allocated
space	for	the	root	task	group	scheduler	entity	and	runqueue,	we	go	over	all	possible	CPUs
(cpu_possible_mask		bitmap)	and	allocate	zeroed	memory	from	a	particular	memory	node
with	the		kzalloc_node		function	for	the		load_balance_mask			percpu		variable:

DECLARE_PER_CPU(cpumask_var_t,	load_balance_mask);

Here		cpumask_var_t		is	the		cpumask_t		with	one	difference:		cpumask_var_t		is	allocated	only
	nr_cpu_ids		bits	when	the		cpumask_t		always	has		NR_CPUS		bits	(more	about		cpumask		you
can	read	in	the	CPU	masks	part).	As	you	can	see:

Scheduler	initialization

197

http://lwn.net/Articles/240474/
https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://en.wikipedia.org/wiki/Run_queue
https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html

#ifdef	CONFIG_CPUMASK_OFFSTACK

				for_each_possible_cpu(i)	{

								per_cpu(load_balance_mask,	i)	=	(cpumask_var_t)kzalloc_node(

																cpumask_size(),	GFP_KERNEL,	cpu_to_node(i));

				}

#endif

this	code	depends	on	the		CONFIG_CPUMASK_OFFSTACK		configuration	option.	This	configuration
options	says	to	use	dynamic	allocation	for		cpumask	,	instead	of	putting	it	on	the	stack.	All
groups	have	to	be	able	to	rely	on	the	amount	of	CPU	time.	With	the	call	of	the	two	following
functions:

init_rt_bandwidth(&def_rt_bandwidth,

																		global_rt_period(),	global_rt_runtime());

init_dl_bandwidth(&def_dl_bandwidth,

																		global_rt_period(),	global_rt_runtime());

we	initialize	bandwidth	management	for	the		SCHED_DEADLINE		real-time	tasks.	These
functions	initializes		rt_bandwidth		and		dl_bandwidth		structures	which	store	information
about	maximum		deadline		bandwidth	of	the	system.	For	example,	let's	look	on	the
implementation	of	the		init_rt_bandwidth		function:

void	init_rt_bandwidth(struct	rt_bandwidth	*rt_b,	u64	period,	u64	runtime)

{

								rt_b->rt_period	=	ns_to_ktime(period);

								rt_b->rt_runtime	=	runtime;

								raw_spin_lock_init(&rt_b->rt_runtime_lock);

								hrtimer_init(&rt_b->rt_period_timer,

																					CLOCK_MONOTONIC,	HRTIMER_MODE_REL);

								rt_b->rt_period_timer.function	=	sched_rt_period_timer;

}

It	takes	three	parameters:

address	of	the		rt_bandwidth		structure	which	contains	information	about	the	allocated
and	consumed	quota	within	a	period;
	period		-	period	over	which	real-time	task	bandwidth	enforcement	is	measured	in		us	;
	runtime		-	part	of	the	period	that	we	allow	tasks	to	run	in		us	.

As		period		and		runtime		we	pass	result	of	the		global_rt_period		and		global_rt_runtime	
functions.	Which	are		1s		second	and	and		0.95s		by	default.	The		rt_bandwidth		structure	is
defined	in	the	kernel/sched/sched.h	and	looks:

Scheduler	initialization

198

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

struct	rt_bandwidth	{

								raw_spinlock_t										rt_runtime_lock;

								ktime_t																	rt_period;

								u64																					rt_runtime;

								struct	hrtimer										rt_period_timer;

};

As	you	can	see,	it	contains		runtime		and		period		and	also	two	following	fields:

	rt_runtime_lock		-	spinlock	for	the		rt_time		protection;
	rt_period_timer		-	high-resolution	kernel	timer	for	unthrottled	of	real-time	tasks.

So,	in	the		init_rt_bandwidth		we	initialize		rt_bandwidth		period	and	runtime	with	the	given
parameters,	initialize	the	spinlock	and	high-resolution	time.	In	the	next	step,	depends	on
enable	of	SMP,	we	make	initialization	of	the	root	domain:

#ifdef	CONFIG_SMP

				init_defrootdomain();

#endif

The	real-time	scheduler	requires	global	resources	to	make	scheduling	decision.	But
unfortunately	scalability	bottlenecks	appear	as	the	number	of	CPUs	increase.	The	concept
of	root	domains	was	introduced	for	improving	scalability.	The	linux	kernel	provides	a	special
mechanism	for	assigning	a	set	of	CPUs	and	memory	nodes	to	a	set	of	tasks	and	it	is	called	-
	cpuset	.	If	a		cpuset		contains	non-overlapping	with	other		cpuset		CPUs,	it	is		exclusive
cpuset	.	Each	exclusive	cpuset	defines	an	isolated	domain	or		root	domain		of	CPUs
partitioned	from	other	cpusets	or	CPUs.	A		root	domain		is	presented	by	the		struct
root_domain		from	the	kernel/sched/sched.h	in	the	linux	kernel	and	its	main	purpose	is	to
narrow	the	scope	of	the	global	variables	to	per-domain	variables	and	all	real-time	scheduling
decisions	are	made	only	within	the	scope	of	a	root	domain.	That's	all	about	it,	but	we	will	see
more	details	about	it	in	the	chapter	about	real-time	scheduler.

After		root	domain		initialization,	we	make	initialization	of	the	bandwidth	for	the	real-time
tasks	of	the	root	task	group	as	we	did	it	above:

#ifdef	CONFIG_RT_GROUP_SCHED

				init_rt_bandwidth(&root_task_group.rt_bandwidth,

												global_rt_period(),	global_rt_runtime());

#endif

In	the	next	step,	depends	on	the		CONFIG_CGROUP_SCHED		kernel	configuration	option	we
initialize	the		siblings		and		children		lists	of	the	root	task	group.	As	we	can	read	from	the
documentation,	the		CONFIG_CGROUP_SCHED		is:

Scheduler	initialization

199

http://en.wikipedia.org/wiki/Spinlock
https://www.kernel.org/doc/Documentation/timers/hrtimers.txt
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

This	option	allows	you	to	create	arbitrary	task	groups	using	the	"cgroup"	pseudo

filesystem	and	control	the	cpu	bandwidth	allocated	to	each	such	task	group.

As	we	finished	with	the	lists	initialization,	we	can	see	the	call	of	the		autogroup_init	
function:

#ifdef	CONFIG_CGROUP_SCHED

									list_add(&root_task_group.list,	&task_groups);

									INIT_LIST_HEAD(&root_task_group.children);

									INIT_LIST_HEAD(&root_task_group.siblings);

									autogroup_init(&init_task);

#endif

which	initializes	automatic	process	group	scheduling.

After	this	we	are	going	through	the	all		possible		cpu	(you	can	remember	that		possible	
CPUs	store	in	the		cpu_possible_mask		bitmap	that	can	ever	be	available	in	the	system)	and
initialize	a		runqueue		for	each	possible	cpu:

for_each_possible_cpu(i)	{

				struct	rq	*rq;

				...

				...

				...

Each	processor	has	its	own	locking	and	individual	runqueue.	All	runnable	tasks	are	stored	in
an	active	array	and	indexed	according	to	its	priority.	When	a	process	consumes	its	time
slice,	it	is	moved	to	an	expired	array.	All	of	these	arras	are	stored	in	the	special	structure
which	names	is		runqueue	.	As	there	are	no	global	lock	and	runqueue,	we	are	going	through
the	all	possible	CPUs	and	initialize	runqueue	for	the	every	cpu.	The		runqueue		is	presented
by	the		rq		structure	in	the	linux	kernel	which	is	defined	in	the	kernel/sched/sched.h.

rq	=	cpu_rq(i);

raw_spin_lock_init(&rq->lock);

rq->nr_running	=	0;

rq->calc_load_active	=	0;

rq->calc_load_update	=	jiffies	+	LOAD_FREQ;

init_cfs_rq(&rq->cfs);

init_rt_rq(&rq->rt);

init_dl_rq(&rq->dl);

rq->rt.rt_runtime	=	def_rt_bandwidth.rt_runtime;

Scheduler	initialization

200

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

Here	we	get	the	runqueue	for	the	every	CPU	with	the		cpu_rq		macro	which	returns
	runqueues		percpu	variable	and	start	to	initialize	it	with	runqueue	lock,	number	of	running
tasks,		calc_load		relative	fields	(calc_load_active		and		calc_load_update)	which	are	used
in	the	reckoning	of	a	CPU	load	and	initialization	of	the	completely	fair,	real-time	and	deadline
related	fields	in	a	runqueue.	After	this	we	initialize		cpu_load		array	with	zeros	and	set	the
last	load	update	tick	to	the		jiffies		variable	which	determines	the	number	of	time	ticks
(cycles),	since	the	system	boot:

for	(j	=	0;	j	<	CPU_LOAD_IDX_MAX;	j++)

				rq->cpu_load[j]	=	0;

rq->last_load_update_tick	=	jiffies;

where		cpu_load		keeps	history	of	runqueue	loads	in	the	past,	for	now		CPU_LOAD_IDX_MAX		is
5.	In	the	next	step	we	fill		runqueue		fields	which	are	related	to	the	SMP,	but	we	will	not	cover
them	in	this	part.	And	in	the	end	of	the	loop	we	initialize	high-resolution	timer	for	the	give
	runqueue		and	set	the		iowait		(more	about	it	in	the	separate	part	about	scheduler)	number:

init_rq_hrtick(rq);

atomic_set(&rq->nr_iowait,	0);

Now	we	come	out	from	the		for_each_possible_cpu		loop	and	the	next	we	need	to	set	load
weight	for	the		init		task	with	the		set_load_weight		function.	Weight	of	process	is	calculated
through	its	dynamic	priority	which	is	static	priority	+	scheduling	class	of	the	process.	After
this	we	increase	memory	usage	counter	of	the	memory	descriptor	of	the		init		process	and
set	scheduler	class	for	the	current	process:

atomic_inc(&init_mm.mm_count);

current->sched_class	=	&fair_sched_class;

And	make	current	process	(it	will	be	the	first		init		process)		idle		and	update	the	value	of
the		calc_load_update		with	the	5	seconds	interval:

init_idle(current,	smp_processor_id());

calc_load_update	=	jiffies	+	LOAD_FREQ;

So,	the		init		process	will	be	run,	when	there	will	be	no	other	candidates	(as	it	is	the	first
process	in	the	system).	In	the	end	we	just	set		scheduler_running		variable:

scheduler_running	=	1;

Scheduler	initialization

201

http://en.wikipedia.org/wiki/Symmetric_multiprocessing

That's	all.	Linux	kernel	scheduler	is	initialized.	Of	course,	we	have	skipped	many	different
details	and	explanations	here,	because	we	need	to	know	and	understand	how	different
concepts	(like	process	and	process	groups,	runqueue,	rcu,	etc.)	works	in	the	linux	kernel	,
but	we	took	a	short	look	on	the	scheduler	initialization	process.	We	will	look	all	other	details
in	the	separate	part	which	will	be	fully	dedicated	to	the	scheduler.

Conclusion
It	is	the	end	of	the	eighth	part	about	the	linux	kernel	initialization	process.	In	this	part,	we
looked	on	the	initialization	process	of	the	scheduler	and	we	will	continue	in	the	next	part	to
dive	in	the	linux	kernel	initialization	process	and	will	see	initialization	of	the	RCU	and	many
other	initialization	stuff	in	the	next	part.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
CPU	masks
high-resolution	kernel	timer
spinlock
Run	queue
Linux	kernem	memory	manager
slub
virtual	file	system
Linux	kernel	hotplug	documentation
IRQ
Global	Descriptor	Table
Per-CPU	variables
SMP
RCU
CFS	Scheduler	documentation
Real-Time	group	scheduling
Previous	part

Scheduler	initialization

202

http://en.wikipedia.org/wiki/Read-copy-update
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://www.kernel.org/doc/Documentation/timers/hrtimers.txt
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/Run_queue
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
http://en.wikipedia.org/wiki/SLUB_%28software%29
http://en.wikipedia.org/wiki/Virtual_file_system
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Read-copy-update
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-7.html

Kernel	initialization.	Part	9.

RCU	initialization
This	is	ninth	part	of	the	Linux	Kernel	initialization	process	and	in	the	previous	part	we
stopped	at	the	scheduler	initialization.	In	this	part	we	will	continue	to	dive	to	the	linux	kernel
initialization	process	and	the	main	purpose	of	this	part	will	be	to	learn	about	initialization	of
the	RCU.	We	can	see	that	the	next	step	in	the	init/main.c	after	the		sched_init		is	the	call	of
the		preempt_disable	.	There	are	two	macros:

	preempt_disable	

	preempt_enable	

for	preemption	disabling	and	enabling.	First	of	all	let's	try	to	understand	what	is		preempt		in
the	context	of	an	operating	system	kernel.	In	simple	words,	preemption	is	ability	of	the
operating	system	kernel	to	preempt	current	task	to	run	task	with	higher	priority.	Here	we
need	to	disable	preemption	because	we	will	have	only	one		init		process	for	the	early	boot
time	and	we	don't	need	to	stop	it	before	we	call		cpu_idle		function.	The		preempt_disable	
macro	is	defined	in	the	include/linux/preempt.h	and	depends	on	the		CONFIG_PREEMPT_COUNT	
kernel	configuration	option.	This	macro	is	implemented	as:

#define	preempt_disable()	\

do	{	\

								preempt_count_inc();	\

								barrier();	\

}	while	(0)

and	if		CONFIG_PREEMPT_COUNT		is	not	set	just:

#define	preempt_disable()																							barrier()

Let's	look	on	it.	First	of	all	we	can	see	one	difference	between	these	macro	implementations.
The		preempt_disable		with		CONFIG_PREEMPT_COUNT		set	contains	the	call	of	the
	preempt_count_inc	.	There	is	special		percpu		variable	which	stores	the	number	of	held	locks
and		preempt_disable		calls:

DECLARE_PER_CPU(int,	__preempt_count);

RCU	initialization

203

http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-8.html
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/preempt.h

In	the	first	implementation	of	the		preempt_disable		we	increment	this		__preempt_count	.
There	is	API	for	returning	value	of	the		__preempt_count	,	it	is	the		preempt_count		function.	As
we	called		preempt_disable	,	first	of	all	we	increment	preemption	counter	with	the
	preempt_count_inc		macro	which	expands	to	the:

#define	preempt_count_inc()	preempt_count_add(1)

#define	preempt_count_add(val)		__preempt_count_add(val)

where		preempt_count_add		calls	the		raw_cpu_add_4		macro	which	adds		1		to	the	given
	percpu		variable	(__preempt_count)	in	our	case	(more	about		precpu		variables	you	can
read	in	the	part	about	Per-CPU	variables).	Ok,	we	increased		__preempt_count		and	the	next
step	we	can	see	the	call	of	the		barrier		macro	in	the	both	macros.	The		barrier		macro
inserts	an	optimization	barrier.	In	the	processors	with		x86_64		architecture	independent
memory	access	operations	can	be	performed	in	any	order.	That's	why	we	need	the
opportunity	to	point	compiler	and	processor	on	compliance	of	order.	This	mechanism	is
memory	barrier.	Let's	consider	a	simple	example:

preempt_disable();

foo();

preempt_enable();

Compiler	can	rearrange	it	as:

preempt_disable();

preempt_enable();

foo();

In	this	case	non-preemptible	function		foo		can	be	preempted.	As	we	put		barrier		macro	in
the		preempt_disable		and		preempt_enable		macros,	it	prevents	the	compiler	from	swapping
	preempt_count_inc		with	other	statements.	More	about	barriers	you	can	read	here	and	here.

In	the	next	step	we	can	see	following	statement:

if	(WARN(!irqs_disabled(),

					"Interrupts	were	enabled	*very*	early,	fixing	it\n"))

				local_irq_disable();

which	check	IRQs	state,	and	disabling	(with		cli		instruction	for		x86_64)	if	they	are
enabled.

That's	all.	Preemption	is	disabled	and	we	can	go	ahead.

RCU	initialization

204

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://en.wikipedia.org/wiki/Memory_barrier
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29

Initialization	of	the	integer	ID	management
In	the	next	step	we	can	see	the	call	of	the		idr_init_cache		function	which	defined	in	the
lib/idr.c.	The		idr		library	is	used	in	a	various	places	in	the	linux	kernel	to	manage	assigning
integer		IDs		to	objects	and	looking	up	objects	by	id.

Let's	look	on	the	implementation	of	the		idr_init_cache		function:

void	__init	idr_init_cache(void)

{

								idr_layer_cache	=	kmem_cache_create("idr_layer_cache",

																																sizeof(struct	idr_layer),	0,	SLAB_PANIC,	NULL);

}

Here	we	can	see	the	call	of	the		kmem_cache_create	.	We	already	called	the		kmem_cache_init	
in	the	init/main.c.	This	function	create	generalized	caches	again	using	the		kmem_cache_alloc	
(more	about	caches	we	will	see	in	the	Linux	kernel	memory	management	chapter).	In	our
case,	as	we	are	using		kmem_cache_t		which	will	be	used	by	the	slab	allocator	and
	kmem_cache_create		creates	it.	As	you	can	see	we	pass	five	parameters	to	the
	kmem_cache_create	:

name	of	the	cache;
size	of	the	object	to	store	in	cache;
offset	of	the	first	object	in	the	page;
flags;
constructor	for	the	objects.

and	it	will	create		kmem_cache		for	the	integer	IDs.	Integer		IDs		is	commonly	used	pattern	to
map	set	of	integer	IDs	to	the	set	of	pointers.	We	can	see	usage	of	the	integer	IDs	in	the	i2c
drivers	subsystem.	For	example	drivers/i2c/i2c-core.c	which	represents	the	core	of	the		i2c	
subsystem	defines		ID		for	the		i2c		adapter	with	the		DEFINE_IDR		macro:

static	DEFINE_IDR(i2c_adapter_idr);

and	then	uses	it	for	the	declaration	of	the		i2c		adapter:

RCU	initialization

205

https://github.com/torvalds/linux/blob/master/lib/idr.c
http://lxr.free-electrons.com/ident?i=idr_find
https://github.com/torvalds/linux/blob/master/init/main.c#L485
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
http://en.wikipedia.org/wiki/Slab_allocation
http://en.wikipedia.org/wiki/I%C2%B2C
https://github.com/torvalds/linux/blob/master/drivers/i2c/i2c-core.c

static	int	__i2c_add_numbered_adapter(struct	i2c_adapter	*adap)

{

		int					id;

		...

		...

		...

		id	=	idr_alloc(&i2c_adapter_idr,	adap,	adap->nr,	adap->nr	+	1,	GFP_KERNEL);

		...

		...

		...

}

and		id2_adapter_idr		presents	dynamically	calculated	bus	number.

More	about	integer	ID	management	you	can	read	here.

RCU	initialization
The	next	step	is	RCU	initialization	with	the		rcu_init		function	and	it's	implementation
depends	on	two	kernel	configuration	options:

	CONFIG_TINY_RCU	

	CONFIG_TREE_RCU	

In	the	first	case		rcu_init		will	be	in	the	kernel/rcu/tiny.c	and	in	the	second	case	it	will	be
defined	in	the	kernel/rcu/tree.c.	We	will	see	the	implementation	of	the		tree	rcu	,	but	first	of
all	about	the		RCU		in	general.

	RCU		or	read-copy	update	is	a	scalable	high-performance	synchronization	mechanism
implemented	in	the	Linux	kernel.	On	the	early	stage	the	linux	kernel	provided	support	and
environment	for	the	concurrently	running	applications,	but	all	execution	was	serialized	in	the
kernel	using	a	single	global	lock.	In	our	days	linux	kernel	has	no	single	global	lock,	but
provides	different	mechanisms	including	lock-free	data	structures,	percpu	data	structures
and	other.	One	of	these	mechanisms	is	-	the		read-copy	update	.	The		RCU		technique	is
designed	for	rarely-modified	data	structures.	The	idea	of	the		RCU		is	simple.	For	example	we
have	a	rarely-modified	data	structure.	If	somebody	wants	to	change	this	data	structure,	we
make	a	copy	of	this	data	structure	and	make	all	changes	in	the	copy.	In	the	same	time	all
other	users	of	the	data	structure	use	old	version	of	it.	Next,	we	need	to	choose	safe	moment
when	original	version	of	the	data	structure	will	have	no	users	and	update	it	with	the	modified
copy.

Of	course	this	description	of	the		RCU		is	very	simplified.	To	understand	some	details	about
	RCU	,	first	of	all	we	need	to	learn	some	terminology.	Data	readers	in	the		RCU		executed	in
the	critical	section.	Every	time	when	data	reader	get	to	the	critical	section,	it	calls	the

RCU	initialization

206

https://lwn.net/Articles/103209/
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/kernel/rcu/tiny.c
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c
http://en.wikipedia.org/wiki/Concurrent_data_structure
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://en.wikipedia.org/wiki/Critical_section

	rcu_read_lock	,	and		rcu_read_unlock		on	exit	from	the	critical	section.	If	the	thread	is	not	in
the	critical	section,	it	will	be	in	state	which	called	-		quiescent	state	.	The	moment	when
every	thread	is	in	the		quiescent	state		called	-		grace	period	.	If	a	thread	wants	to	remove
an	element	from	the	data	structure,	this	occurs	in	two	steps.	First	step	is		removal		-
atomically	removes	element	from	the	data	structure,	but	does	not	release	the	physical
memory.	After	this	thread-writer	announces	and	waits	until	it	is	finished.	From	this	moment,
the	removed	element	is	available	to	the	thread-readers.	After	the		grace	period		finished,	the
second	step	of	the	element	removal	will	be	started,	it	just	removes	the	element	from	the
physical	memory.

There	a	couple	of	implementations	of	the		RCU	.	Old		RCU		called	classic,	the	new
implementation	called		tree		RCU.	As	you	may	already	understand,	the		CONFIG_TREE_RCU	
kernel	configuration	option	enables	tree		RCU	.	Another	is	the		tiny		RCU	which	depends	on
	CONFIG_TINY_RCU		and		CONFIG_SMP=n	.	We	will	see	more	details	about	the		RCU		in	general	in
the	separate	chapter	about	synchronization	primitives,	but	now	let's	look	on	the		rcu_init	
implementation	from	the	kernel/rcu/tree.c:

void	__init	rcu_init(void)

{

									int	cpu;

									rcu_bootup_announce();

									rcu_init_geometry();

									rcu_init_one(&rcu_bh_state,	&rcu_bh_data);

									rcu_init_one(&rcu_sched_state,	&rcu_sched_data);

									__rcu_init_preempt();

									open_softirq(RCU_SOFTIRQ,	rcu_process_callbacks);

									/*

										*	We	don't	need	protection	against	CPU-hotplug	here	because

										*	this	is	called	early	in	boot,	before	either	interrupts

										*	or	the	scheduler	are	operational.

										*/

									cpu_notifier(rcu_cpu_notify,	0);

									pm_notifier(rcu_pm_notify,	0);

									for_each_online_cpu(cpu)

																	rcu_cpu_notify(NULL,	CPU_UP_PREPARE,	(void	*)(long)cpu);

									rcu_early_boot_tests();

}

In	the	beginning	of	the		rcu_init		function	we	define		cpu		variable	and	call
	rcu_bootup_announce	.	The		rcu_bootup_announce		function	is	pretty	simple:

RCU	initialization

207

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c

static	void	__init	rcu_bootup_announce(void)

{

								pr_info("Hierarchical	RCU	implementation.\n");

								rcu_bootup_announce_oddness();

}

It	just	prints	information	about	the		RCU		with	the		pr_info		function	and
	rcu_bootup_announce_oddness		which	uses		pr_info		too,	for	printing	different	information
about	the	current		RCU		configuration	which	depends	on	different	kernel	configuration	options
like		CONFIG_RCU_TRACE	,		CONFIG_PROVE_RCU	,		CONFIG_RCU_FANOUT_EXACT	,	etc.	In	the	next	step,
we	can	see	the	call	of	the		rcu_init_geometry		function.	This	function	is	defined	in	the	same
source	code	file	and	computes	the	node	tree	geometry	depends	on	the	amount	of	CPUs.
Actually		RCU		provides	scalability	with	extremely	low	internal	RCU	lock	contention.	What	if	a
data	structure	will	be	read	from	the	different	CPUs?		RCU		API	provides	the		rcu_state	
structure	which	presents	RCU	global	state	including	node	hierarchy.	Hierarchy	is	presented
by	the:

struct	rcu_node	node[NUM_RCU_NODES];

array	of	structures.	As	we	can	read	in	the	comment	of	above	definition:

The	root	(first	level)	of	the	hierarchy	is	in	->node[0]	(referenced	by	->level[0]),	th

e	second

level	in	->node[1]	through	->node[m]	(->node[1]	referenced	by	->level[1]),	and	the	thi

rd	level

in	->node[m+1]	and	following	(->node[m+1]	referenced	by	->level[2]).		The	number	of	le

vels	is

determined	by	the	number	of	CPUs	and	by	CONFIG_RCU_FANOUT.

Small	systems	will	have	a	"hierarchy"	consisting	of	a	single	rcu_node.

The		rcu_node		structure	is	defined	in	the	kernel/rcu/tree.h	and	contains	information	about
current	grace	period,	is	grace	period	completed	or	not,	CPUs	or	groups	that	need	to	switch
in	order	for	current	grace	period	to	proceed,	etc.	Every		rcu_node		contains	a	lock	for	a
couple	of	CPUs.	These		rcu_node		structures	are	embedded	into	a	linear	array	in	the
	rcu_state		structure	and	represented	as	a	tree	with	the	root	as	the	first	element	and	covers
all	CPUs.	As	you	can	see	the	number	of	the	rcu	nodes	determined	by	the		NUM_RCU_NODES	
which	depends	on	number	of	available	CPUs:

#define	NUM_RCU_NODES	(RCU_SUM	-	NR_CPUS)

#define	RCU_SUM	(NUM_RCU_LVL_0	+	NUM_RCU_LVL_1	+	NUM_RCU_LVL_2	+	NUM_RCU_LVL_3	+	NUM_R

CU_LVL_4)

RCU	initialization

208

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.h

where	levels	values	depend	on	the		CONFIG_RCU_FANOUT_LEAF		configuration	option.	For
example	for	the	simplest	case,	one		rcu_node		will	cover	two	CPU	on	machine	with	the	eight
CPUs:

+---+

|		rcu_state																																																						|

|																	+----------------------+																								|

|																	|									root									|																								|

|																	|							rcu_node							|																								|

|																	+----------------------+																								|

|																				|																|																											|

|															+----v-----+							+--v-------+																			|

|															|										|							|										|																			|

|															|	rcu_node	|							|	rcu_node	|																			|

|															|										|							|										|																			|

|									+------------------+					+----------------+													|

|									|																		|								|													|													|

|									|																		|								|													|													|

|				+----v-----+				+-------v--+			+-v--------+		+-v--------+				|

|				|										|				|										|			|										|		|										|				|

|				|	rcu_node	|				|	rcu_node	|			|	rcu_node	|		|	rcu_node	|				|

|				|										|				|										|			|										|		|										|				|

|				+----------+				+----------+			+----------+		+----------+				|

|									|																	|													|															|							|

|									|																	|													|															|							|

|									|																	|													|															|							|

|									|																	|													|															|							|

+---------|-----------------|-------------|---------------|-------+

										|																	|													|															|

+---------v-----------------v-------------v---------------v--------+

|																	|																|															|															|

|					CPU1								|						CPU3						|						CPU5					|					CPU7						|

|																	|																|															|															|

|					CPU2								|						CPU4						|						CPU6					|					CPU8						|

|																	|																|															|															|

+--+

So,	in	the		rcu_init_geometry		function	we	just	need	to	calculate	the	total	number	of
	rcu_node		structures.	We	start	to	do	it	with	the	calculation	of	the		jiffies		till	to	the	first	and
next		fqs		which	is		force-quiescent-state		(read	above	about	it):

d	=	RCU_JIFFIES_TILL_FORCE_QS	+	nr_cpu_ids	/	RCU_JIFFIES_FQS_DIV;

if	(jiffies_till_first_fqs	==	ULONG_MAX)

								jiffies_till_first_fqs	=	d;

if	(jiffies_till_next_fqs	==	ULONG_MAX)

								jiffies_till_next_fqs	=	d;

where:

RCU	initialization

209

#define	RCU_JIFFIES_TILL_FORCE_QS	(1	+	(HZ	>	250)	+	(HZ	>	500))

#define	RCU_JIFFIES_FQS_DIV					256

As	we	calculated	these	jiffies,	we	check	that	previous	defined		jiffies_till_first_fqs		and
	jiffies_till_next_fqs		variables	are	equal	to	the	ULONG_MAX	(their	default	values)	and
set	they	equal	to	the	calculated	value.	As	we	did	not	touch	these	variables	before,	they	are
equal	to	the		ULONG_MAX	:

static	ulong	jiffies_till_first_fqs	=	ULONG_MAX;

static	ulong	jiffies_till_next_fqs	=	ULONG_MAX;

In	the	next	step	of	the		rcu_init_geometry	,	we	check	that		rcu_fanout_leaf		didn't	change	(it
has	the	same	value	as		CONFIG_RCU_FANOUT_LEAF		in	compile-time)	and	equal	to	the	value	of
the		CONFIG_RCU_FANOUT_LEAF		configuration	option,	we	just	return:

if	(rcu_fanout_leaf	==	CONFIG_RCU_FANOUT_LEAF	&&

				nr_cpu_ids	==	NR_CPUS)

				return;

After	this	we	need	to	compute	the	number	of	nodes	that	an		rcu_node		tree	can	handle	with
the	given	number	of	levels:

rcu_capacity[0]	=	1;

rcu_capacity[1]	=	rcu_fanout_leaf;

for	(i	=	2;	i	<=	MAX_RCU_LVLS;	i++)

				rcu_capacity[i]	=	rcu_capacity[i	-	1]	*	CONFIG_RCU_FANOUT;

And	in	the	last	step	we	calculate	the	number	of	rcu_nodes	at	each	level	of	the	tree	in	the
loop.

As	we	calculated	geometry	of	the		rcu_node		tree,	we	need	to	go	back	to	the		rcu_init	
function	and	next	step	we	need	to	initialize	two		rcu_state		structures	with	the		rcu_init_one	
function:

rcu_init_one(&rcu_bh_state,	&rcu_bh_data);

rcu_init_one(&rcu_sched_state,	&rcu_sched_data);

The		rcu_init_one		function	takes	two	arguments:

Global		RCU		state;
Per-CPU	data	for		RCU	.

RCU	initialization

210

http://en.wikipedia.org/wiki/Jiffy_%28time%29
http://www.rowleydownload.co.uk/avr/documentation/index.htm?http://www.rowleydownload.co.uk/avr/documentation/ULONG_MAX.htm
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c#L4094

Both	variables	defined	in	the	kernel/rcu/tree.h	with	its		percpu		data:

extern	struct	rcu_state	rcu_bh_state;

DECLARE_PER_CPU(struct	rcu_data,	rcu_bh_data);

About	this	states	you	can	read	here.	As	I	wrote	above	we	need	to	initialize		rcu_state	
structures	and		rcu_init_one		function	will	help	us	with	it.	After	the		rcu_state		initialization,
we	can	see	the	call	of	the		__rcu_init_preempt		which	depends	on	the		CONFIG_PREEMPT_RCU	
kernel	configuration	option.	It	does	the	same	as	previous	functions	-	initialization	of	the
	rcu_preempt_state		structure	with	the		rcu_init_one		function	which	has		rcu_state		type.
After	this,	in	the		rcu_init	,	we	can	see	the	call	of	the:

open_softirq(RCU_SOFTIRQ,	rcu_process_callbacks);

function.	This	function	registers	a	handler	of	the		pending	interrupt	.	Pending	interrupt	or
	softirq		supposes	that	part	of	actions	can	be	delayed	for	later	execution	when	the	system
is	less	loaded.	Pending	interrupts	is	represented	by	the	following	structure:

struct	softirq_action

{

								void				(*action)(struct	softirq_action	*);

};

which	is	defined	in	the	include/linux/interrupt.h	and	contains	only	one	field	-	handler	of	an
interrupt.	You	can	check	about		softirqs		in	the	your	system	with	the:

RCU	initialization

211

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.h
http://lwn.net/Articles/264090/
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h

$	cat	/proc/softirqs

																				CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							

CPU6							CPU7

										HI:										2										0										0										1										0										2							

			0										0

							TIMER:					137779					108110					139573					107647					107408					114972						9

9653						98665

						NET_TX:							1127										0										4										0										1										1							

			0										0

						NET_RX:								334								221					132939							3076								451								361							

	292								303

							BLOCK:							5253							5596										8								779							2016						37442							

		28							2855

BLOCK_IOPOLL:										0										0										0										0										0										0							

			0										0

					TASKLET:									66										0							2916								113										0									24						2

6708										0

							SCHED:					102350						75950						91705						75356						75323						82627						6

9279						69914

					HRTIMER:								510								302								368								260								219								255							

	248								246

									RCU:						81290						68062						82979						69015						68390						69385						6

3304						63473

The		open_softirq		function	takes	two	parameters:

index	of	the	interrupt;
interrupt	handler.

and	adds	interrupt	handler	to	the	array	of	the	pending	interrupts:

void	open_softirq(int	nr,	void	(*action)(struct	softirq_action	*))

{

								softirq_vec[nr].action	=	action;

}

In	our	case	the	interrupt	handler	is	-		rcu_process_callbacks		which	is	defined	in	the
kernel/rcu/tree.c	and	does	the		RCU		core	processing	for	the	current	CPU.	After	we	registered
	softirq		interrupt	for	the		RCU	,	we	can	see	the	following	code:

cpu_notifier(rcu_cpu_notify,	0);

pm_notifier(rcu_pm_notify,	0);

for_each_online_cpu(cpu)

				rcu_cpu_notify(NULL,	CPU_UP_PREPARE,	(void	*)(long)cpu);

RCU	initialization

212

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c

Here	we	can	see	registration	of	the		cpu		notifier	which	needs	in	systems	which	supports
CPU	hotplug	and	we	will	not	dive	into	details	about	this	theme.	The	last	function	in	the
	rcu_init		is	the		rcu_early_boot_tests	:

void	rcu_early_boot_tests(void)

{

								pr_info("Running	RCU	self	tests\n");

								if	(rcu_self_test)

																	early_boot_test_call_rcu();

									if	(rcu_self_test_bh)

																	early_boot_test_call_rcu_bh();

									if	(rcu_self_test_sched)

																early_boot_test_call_rcu_sched();

}

which	runs	self	tests	for	the		RCU	.

That's	all.	We	saw	initialization	process	of	the		RCU		subsystem.	As	I	wrote	above,	more
about	the		RCU		will	be	in	the	separate	chapter	about	synchronization	primitives.

Rest	of	the	initialization	process
Ok,	we	already	passed	the	main	theme	of	this	part	which	is		RCU		initialization,	but	it	is	not
the	end	of	the	linux	kernel	initialization	process.	In	the	last	paragraph	of	this	theme	we	will
see	a	couple	of	functions	which	work	in	the	initialization	time,	but	we	will	not	dive	into	deep
details	around	this	function	for	different	reasons.	Some	reasons	not	to	dive	into	details	are
following:

They	are	not	very	important	for	the	generic	kernel	initialization	process	and	depend	on
the	different	kernel	configuration;
They	have	the	character	of	debugging	and	not	important	for	now;
We	will	see	many	of	this	stuff	in	the	separate	parts/chapters.

After	we	initialized		RCU	,	the	next	step	which	you	can	see	in	the	init/main.c	is	the	-
	trace_init		function.	As	you	can	understand	from	its	name,	this	function	initialize	tracing
subsystem.	You	can	read	more	about	linux	kernel	trace	system	-	here.

After	the		trace_init	,	we	can	see	the	call	of	the		radix_tree_init	.	If	you	are	familiar	with
the	different	data	structures,	you	can	understand	from	the	name	of	this	function	that	it
initializes	kernel	implementation	of	the	Radix	tree.	This	function	is	defined	in	the	lib/radix-
tree.c	and	you	can	read	more	about	it	in	the	part	about	Radix	tree.

RCU	initialization

213

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Tracing_%28software%29
http://elinux.org/Kernel_Trace_Systems
http://en.wikipedia.org/wiki/Radix_tree
https://github.com/torvalds/linux/blob/master/lib/radix-tree.c
https://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html

In	the	next	step	we	can	see	the	functions	which	are	related	to	the		interrupts	handling	
subsystem,	they	are:

	early_irq_init	

	init_IRQ	

	softirq_init	

We	will	see	explanation	about	this	functions	and	their	implementation	in	the	special	part
about	interrupts	and	exceptions	handling.	After	this	many	different	functions	(like
	init_timers	,		hrtimers_init	,		time_init	,	etc.)	which	are	related	to	different	timing	and
timers	stuff.	We	will	see	more	about	these	function	in	the	chapter	about	timers.

The	next	couple	of	functions	are	related	with	the	perf	events	-		perf_event-init		(there	will
be	separate	chapter	about	perf),	initialization	of	the		profiling		with	the		profile_init	.	After
this	we	enable		irq		with	the	call	of	the:

local_irq_enable();

which	expands	to	the		sti		instruction	and	making	post	initialization	of	the	SLAB	with	the	call
of	the		kmem_cache_init_late		function	(As	I	wrote	above	we	will	know	about	the		SLAB		in	the
Linux	memory	management	chapter).

After	the	post	initialization	of	the		SLAB	,	next	point	is	initialization	of	the	console	with	the
	console_init		function	from	the	drivers/tty/tty_io.c.

After	the	console	initialization,	we	can	see	the		lockdep_info		function	which	prints
information	about	the	Lock	dependency	validator.	After	this,	we	can	see	the	initialization	of
the	dynamic	allocation	of	the		debug	objects		with	the		debug_objects_mem_init	,	kernel
memory	leak	detector	initialization	with	the		kmemleak_init	,		percpu		pageset	setup	with	the
	setup_per_cpu_pageset	,	setup	of	the	NUMA	policy	with	the		numa_policy_init	,	setting	time
for	the	scheduler	with	the		sched_clock_init	,		pidmap		initialization	with	the	call	of	the
	pidmap_init		function	for	the	initial		PID		namespace,	cache	creation	with	the
	anon_vma_init		for	the	private	virtual	memory	areas	and	early	initialization	of	the	ACPI	with
the		acpi_early_init	.

This	is	the	end	of	the	ninth	part	of	the	linux	kernel	initialization	process	and	here	we	saw
initialization	of	the	RCU.	In	the	last	paragraph	of	this	part	(Rest	of	the	initialization
process)	we	will	go	through	many	functions	but	did	not	dive	into	details	about	their
implementations.	Do	not	worry	if	you	do	not	know	anything	about	these	stuff	or	you	know
and	do	not	understand	anything	about	this.	As	I	already	wrote	many	times,	we	will	see
details	of	implementations	in	other	parts	or	other	chapters.

RCU	initialization

214

https://perf.wiki.kernel.org/index.php/Main_Page
http://en.wikipedia.org/wiki/Slab_allocation
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
https://github.com/torvalds/linux/blob/master/drivers/tty/tty_io.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/kmemleak.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
http://en.wikipedia.org/wiki/Read-copy-update

Conclusion
It	is	the	end	of	the	ninth	part	about	the	linux	kernel	initialization	process.	In	this	part,	we
looked	on	the	initialization	process	of	the		RCU		subsystem.	In	the	next	part	we	will	continue
to	dive	into	linux	kernel	initialization	process	and	I	hope	that	we	will	finish	with	the
	start_kernel		function	and	will	go	to	the		rest_init		function	from	the	same	init/main.c
source	code	file	and	will	see	the	start	of	the	first	process.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
lock-free	data	structures
kmemleak
ACPI
IRQs
RCU
RCU	documentation
integer	ID	management
Documentation/memory-barriers.txt
Runtime	locking	correctness	validator
Per-CPU	variables
Linux	kernel	memory	management
slab
i2c
Previous	part

RCU	initialization

215

http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Concurrent_data_structure
https://www.kernel.org/doc/Documentation/kmemleak.txt
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/tree/master/Documentation/RCU
https://lwn.net/Articles/103209/
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
http://en.wikipedia.org/wiki/Slab_allocation
http://en.wikipedia.org/wiki/I%C2%B2C
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-8.html

Kernel	initialization.	Part	10.

End	of	the	linux	kernel	initialization
process
This	is	tenth	part	of	the	chapter	about	linux	kernel	initialization	process	and	in	the	previous
part	we	saw	the	initialization	of	the	RCU	and	stopped	on	the	call	of	the		acpi_early_init	
function.	This	part	will	be	the	last	part	of	the	Kernel	initialization	process	chapter,	so	let's
finish	it.

After	the	call	of	the		acpi_early_init		function	from	the	init/main.c,	we	can	see	the	following
code:

#ifdef	CONFIG_X86_ESPFIX64

				init_espfix_bsp();

#endif

Here	we	can	see	the	call	of	the		init_espfix_bsp		function	which	depends	on	the
	CONFIG_X86_ESPFIX64		kernel	configuration	option.	As	we	can	understand	from	the	function
name,	it	does	something	with	the	stack.	This	function	is	defined	in	the
arch/x86/kernel/espfix_64.c	and	prevents	leaking	of		31:16		bits	of	the		esp		register	during
returning	to	16-bit	stack.	First	of	all	we	install		espfix		page	upper	directory	into	the	kernel
page	directory	in	the		init_espfix_bs	:

pgd_p	=	&init_level4_pgt[pgd_index(ESPFIX_BASE_ADDR)];

pgd_populate(&init_mm,	pgd_p,	(pud_t	*)espfix_pud_page);

Where		ESPFIX_BASE_ADDR		is:

#define	PGDIR_SHIFT					39

#define	ESPFIX_PGD_ENTRY	_AC(-2,	UL)

#define	ESPFIX_BASE_ADDR	(ESPFIX_PGD_ENTRY	<<	PGDIR_SHIFT)

Also	we	can	find	it	in	the	Documentation/x86/x86_64/mm:

...	unused	hole	...

ffffff0000000000	-	ffffff7fffffffff	(=39	bits)	%esp	fixup	stacks

...	unused	hole	...

End	of	initialization

216

http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-9.html
http://en.wikipedia.org/wiki/Read-copy-update
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/espfix_64.c
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt

After	we've	filled	page	global	directory	with	the		espfix		pud,	the	next	step	is	call	of	the
	init_espfix_random		and		init_espfix_ap		functions.	The	first	function	returns	random
locations	for	the		espfix		page	and	the	second	enables	the		espfix		for	the	current	CPU.
After	the		init_espfix_bsp		finished	the	work,	we	can	see	the	call	of	the
	thread_info_cache_init		function	which	defined	in	the	kernel/fork.c	and	allocates	cache	for
the		thread_info		if		THREAD_SIZE		is	less	than		PAGE_SIZE	:

#	if	THREAD_SIZE	>=	PAGE_SIZE

...

...

...

void	thread_info_cache_init(void)

{

								thread_info_cache	=	kmem_cache_create("thread_info",	THREAD_SIZE,

																																														THREAD_SIZE,	0,	NULL);

								BUG_ON(thread_info_cache	==	NULL);

}

...

...

...

#endif

As	we	already	know	the		PAGE_SIZE		is		(_AC(1,UL)	<<	PAGE_SHIFT)		or		4096		bytes	and
	THREAD_SIZE		is		(PAGE_SIZE	<<	THREAD_SIZE_ORDER)		or		16384		bytes	for	the		x86_64	.	The
next	function	after	the		thread_info_cache_init		is	the		cred_init		from	the	kernel/cred.c.	This
function	just	allocates	cache	for	the	credentials	(like		uid	,		gid	,	etc.):

void	__init	cred_init(void)

{

									cred_jar	=	kmem_cache_create("cred_jar",	sizeof(struct	cred),

																																					0,	SLAB_HWCACHE_ALIGN|SLAB_PANIC,	NULL);

}

more	about	credentials	you	can	read	in	the	Documentation/security/credentials.txt.	Next	step
is	the		fork_init		function	from	the	kernel/fork.c.	The		fork_init		function	allocates	cache	for
the		task_struct	.	Let's	look	on	the	implementation	of	the		fork_init	.	First	of	all	we	can	see
definitions	of	the		ARCH_MIN_TASKALIGN		macro	and	creation	of	a	slab	where	task_structs	will
be	allocated:

End	of	initialization

217

https://github.com/torvalds/linux/blob/master/kernel/fork.c
https://github.com/torvalds/linux/blob/master/kernel/cred.c
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c

#ifndef	CONFIG_ARCH_TASK_STRUCT_ALLOCATOR

#ifndef	ARCH_MIN_TASKALIGN

#define	ARCH_MIN_TASKALIGN						L1_CACHE_BYTES

#endif

								task_struct_cachep	=

																kmem_cache_create("task_struct",	sizeof(struct	task_struct),

																								ARCH_MIN_TASKALIGN,	SLAB_PANIC	|	SLAB_NOTRACK,	NULL);

#endif

As	we	can	see	this	code	depends	on	the		CONFIG_ARCH_TASK_STRUCT_ACLLOCATOR		kernel
configuration	option.	This	configuration	option	shows	the	presence	of	the		alloc_task_struct	
for	the	given	architecture.	As		x86_64		has	no		alloc_task_struct		function,	this	code	will	not
work	and	even	will	not	be	compiled	on	the		x86_64	.

Allocating	cache	for	init	task
After	this	we	can	see	the	call	of	the		arch_task_cache_init		function	in	the		fork_init	:

void	arch_task_cache_init(void)

{

								task_xstate_cachep	=

																kmem_cache_create("task_xstate",	xstate_size,

																																		__alignof__(union	thread_xstate),

																																		SLAB_PANIC	|	SLAB_NOTRACK,	NULL);

								setup_xstate_comp();

}

The		arch_task_cache_init		does	initialization	of	the	architecture-specific	caches.	In	our	case
it	is		x86_64	,	so	as	we	can	see,	the		arch_task_cache_init		allocates	cache	for	the
	task_xstate		which	represents	FPU	state	and	sets	up	offsets	and	sizes	of	all	extended
states	in	xsave	area	with	the	call	of	the		setup_xstate_comp		function.	After	the
	arch_task_cache_init		we	calculate	default	maximum	number	of	threads	with	the:

set_max_threads(MAX_THREADS);

where	default	maximum	number	of	threads	is:

#define	FUTEX_TID_MASK		0x3fffffff

#define	MAX_THREADS					FUTEX_TID_MASK

In	the	end	of	the		fork_init		function	we	initialize	signal	handler:

End	of	initialization

218

http://en.wikipedia.org/wiki/Floating-point_unit
http://www.felixcloutier.com/x86/XSAVES.html
http://www.win.tue.nl/~aeb/linux/lk/lk-5.html

init_task.signal->rlim[RLIMIT_NPROC].rlim_cur	=	max_threads/2;

init_task.signal->rlim[RLIMIT_NPROC].rlim_max	=	max_threads/2;

init_task.signal->rlim[RLIMIT_SIGPENDING]	=

								init_task.signal->rlim[RLIMIT_NPROC];

As	we	know	the		init_task		is	an	instance	of	the		task_struct		structure,	so	it	contains
	signal		field	which	represents	signal	handler.	It	has	following	type		struct	signal_struct	.
On	the	first	two	lines	we	can	see	setting	of	the	current	and	maximum	limit	of	the		resource
limits	.	Every	process	has	an	associated	set	of	resource	limits.	These	limits	specify	amount
of	resources	which	current	process	can	use.	Here		rlim		is	resource	control	limit	and
presented	by	the:

struct	rlimit	{

								__kernel_ulong_t								rlim_cur;

								__kernel_ulong_t								rlim_max;

};

structure	from	the	include/uapi/linux/resource.h.	In	our	case	the	resource	is	the
	RLIMIT_NPROC		which	is	the	maximum	number	of	processes	that	user	can	own	and
	RLIMIT_SIGPENDING		-	the	maximum	number	of	pending	signals.	We	can	see	it	in	the:

cat	/proc/self/limits

Limit																					Soft	Limit											Hard	Limit											Units					

...

...

...

Max	processes													63815																63815																processes	

Max	pending	signals							63815																63815																signals			

...

...

...

Initialization	of	the	caches
The	next	function	after	the		fork_init		is	the		proc_caches_init		from	the	kernel/fork.c.	This
function	allocates	caches	for	the	memory	descriptors	(or		mm_struct		structure).	At	the
beginning	of	the		proc_caches_init		we	can	see	allocation	of	the	different	SLAB	caches	with
the	call	of	the		kmem_cache_create	:

	sighand_cachep		-	manage	information	about	installed	signal	handlers;
	signal_cachep		-	manage	information	about	process	signal	descriptor;
	files_cachep		-	manage	information	about	opened	files;

End	of	initialization

219

https://github.com/torvalds/linux/blob/master/include/uapi/linux/resource.h
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://en.wikipedia.org/wiki/Slab_allocation

	fs_cachep		-	manage	filesystem	information.

After	this	we	allocate		SLAB		cache	for	the		mm_struct		structures:

mm_cachep	=	kmem_cache_create("mm_struct",

																									sizeof(struct	mm_struct),	ARCH_MIN_MMSTRUCT_ALIGN,

																									SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK,	NULL);

After	this	we	allocate		SLAB		cache	for	the	important		vm_area_struct		which	used	by	the
kernel	to	manage	virtual	memory	space:

vm_area_cachep	=	KMEM_CACHE(vm_area_struct,	SLAB_PANIC);

Note,	that	we	use		KMEM_CACHE		macro	here	instead	of	the		kmem_cache_create	.	This	macro	is
defined	in	the	include/linux/slab.h	and	just	expands	to	the		kmem_cache_create		call:

#define	KMEM_CACHE(__struct,	__flags)	kmem_cache_create(#__struct,\

																sizeof(struct	__struct),	__alignof__(struct	__struct),\

																(__flags),	NULL)

The		KMEM_CACHE		has	one	difference	from		kmem_cache_create	.	Take	a	look	on		__alignof__	
operator.	The		KMEM_CACHE		macro	aligns		SLAB		to	the	size	of	the	given	structure,	but
	kmem_cache_create		uses	given	value	to	align	space.	After	this	we	can	see	the	call	of	the
	mmap_init		and		nsproxy_cache_init		functions.	The	first	function	initializes	virtual	memory
area		SLAB		and	the	second	function	initializes		SLAB		for	namespaces.

The	next	function	after	the		proc_caches_init		is		buffer_init	.	This	function	is	defined	in	the
fs/buffer.c	source	code	file	and	allocate	cache	for	the		buffer_head	.	The		buffer_head		is	a
special	structure	which	defined	in	the	include/linux/buffer_head.h	and	used	for	managing
buffers.	In	the	start	of	the		buffer_init		function	we	allocate	cache	for	the		struct
buffer_head		structures	with	the	call	of	the		kmem_cache_create		function	as	we	did	in	the
previous	functions.	And	calculate	the	maximum	size	of	the	buffers	in	memory	with:

nrpages	=	(nr_free_buffer_pages()	*	10)	/	100;

max_buffer_heads	=	nrpages	*	(PAGE_SIZE	/	sizeof(struct	buffer_head));

which	will	be	equal	to	the		10%		of	the		ZONE_NORMAL		(all	RAM	from	the	4GB	on	the		x86_64).
The	next	function	after	the		buffer_init		is	-		vfs_caches_init	.	This	function	allocates		SLAB	
caches	and	hashtable	for	different	VFS	caches.	We	already	saw	the		vfs_caches_init_early	
function	in	the	eighth	part	of	the	linux	kernel	initialization	process	which	initialized	caches	for
	dcache		(or	directory-cache)	and	inode	cache.	The		vfs_caches_init		function	makes	post-
early	initialization	of	the		dcache		and		inode		caches,	private	data	cache,	hash	tables	for	the

End	of	initialization

220

https://github.com/torvalds/linux/blob/master/include/linux/slab.h
https://github.com/torvalds/linux/blob/master/fs/buffer.c
https://github.com/torvalds/linux/blob/master/include/linux/buffer_head.h
http://en.wikipedia.org/wiki/Virtual_file_system
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-8.html
http://en.wikipedia.org/wiki/Inode

mount	points,	etc.	More	details	about	VFS	will	be	described	in	the	separate	part.	After	this
we	can	see		signals_init		function.	This	function	is	defined	in	the	kernel/signal.c	and
allocates	a	cache	for	the		sigqueue		structures	which	represents	queue	of	the	real	time
signals.	The	next	function	is		page_writeback_init	.	This	function	initializes	the	ratio	for	the
dirty	pages.	Every	low-level	page	entry	contains	the		dirty		bit	which	indicates	whether	a
page	has	been	written	to	after	been	loaded	into	memory.

Creation	of	the	root	for	the	procfs
After	all	of	this	preparations	we	need	to	create	the	root	for	the	proc	filesystem.	We	will	do	it
with	the	call	of	the		proc_root_init		function	from	the	fs/proc/root.c.	At	the	start	of	the
	proc_root_init		function	we	allocate	the	cache	for	the	inodes	and	register	a	new	filesystem
in	the	system	with	the:

err	=	register_filesystem(&proc_fs_type);

						if	(err)

																return;

As	I	wrote	above	we	will	not	dive	into	details	about	VFS	and	different	filesystems	in	this
chapter,	but	will	see	it	in	the	chapter	about	the		VFS	.	After	we've	registered	a	new	filesystem
in	our	system,	we	call	the		proc_self_init		function	from	the	fs/proc/self.c	and	this	function
allocates		inode		number	for	the		self		(/proc/self		directory	refers	to	the	process
accessing	the		/proc		filesystem).	The	next	step	after	the		proc_self_init		is
	proc_setup_thread_self		which	setups	the		/proc/thread-self		directory	which	contains
information	about	current	thread.	After	this	we	create		/proc/self/mounts		symlink	which	will
contains	mount	points	with	the	call	of	the

proc_symlink("mounts",	NULL,	"self/mounts");

and	a	couple	of	directories	depends	on	the	different	configuration	options:

End	of	initialization

221

http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/kernel/signal.c
http://en.wikipedia.org/wiki/Procfs
https://github.com/torvalds/linux/blob/master/fs/proc/root.c
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/fs/proc/self.c

#ifdef	CONFIG_SYSVIPC

								proc_mkdir("sysvipc",	NULL);

#endif

								proc_mkdir("fs",	NULL);

								proc_mkdir("driver",	NULL);

								proc_mkdir("fs/nfsd",	NULL);

#if	defined(CONFIG_SUN_OPENPROMFS)	||	defined(CONFIG_SUN_OPENPROMFS_MODULE)

								proc_mkdir("openprom",	NULL);

#endif

								proc_mkdir("bus",	NULL);

								...

								...

								...

								if	(!proc_mkdir("tty",	NULL))

																	return;

								proc_mkdir("tty/ldisc",	NULL);

								...

								...

								...

In	the	end	of	the		proc_root_init		we	call	the		proc_sys_init		function	which	creates
	/proc/sys		directory	and	initializes	the	Sysctl.

It	is	the	end	of		start_kernel		function.	I	did	not	describe	all	functions	which	are	called	in	the
	start_kernel	.	I	skipped	them,	because	they	are	not	important	for	the	generic	kernel
initialization	stuff	and	depend	on	only	different	kernel	configurations.	They	are
	taskstats_init_early		which	exports	per-task	statistic	to	the	user-space,		delayacct_init		-
initializes	per-task	delay	accounting,		key_init		and		security_init		initialize	different
security	stuff,		check_bugs		-	fix	some	architecture-dependent	bugs,		ftrace_init		function
executes	initialization	of	the	ftrace,		cgroup_init		makes	initialization	of	the	rest	of	the	cgroup
subsystem,etc.	Many	of	these	parts	and	subsystems	will	be	described	in	the	other	chapters.

That's	all.	Finally	we	have	passed	through	the	long-long		start_kernel		function.	But	it	is	not
the	end	of	the	linux	kernel	initialization	process.	We	haven't	run	the	first	process	yet.	In	the
end	of	the		start_kernel		we	can	see	the	last	call	of	the	-		rest_init		function.	Let's	go
ahead.

First	steps	after	the	start_kernel
The		rest_init		function	is	defined	in	the	same	source	code	file	as		start_kernel		function,
and	this	file	is	init/main.c.	In	the	beginning	of	the		rest_init		we	can	see	call	of	the	two
following	functions:

End	of	initialization

222

http://en.wikipedia.org/wiki/Sysctl
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://en.wikipedia.org/wiki/Cgroups
https://github.com/torvalds/linux/blob/master/init/main.c

				rcu_scheduler_starting();

				smpboot_thread_init();

The	first		rcu_scheduler_starting		makes	RCU	scheduler	active	and	the	second
	smpboot_thread_init		registers	the		smpboot_thread_notifier		CPU	notifier	(more	about	it	you
can	read	in	the	CPU	hotplug	documentation.	After	this	we	can	see	the	following	calls:

kernel_thread(kernel_init,	NULL,	CLONE_FS);

pid	=	kernel_thread(kthreadd,	NULL,	CLONE_FS	|	CLONE_FILES);

Here	the		kernel_thread		function	(defined	in	the	kernel/fork.c)	creates	new	kernel	thread.As
we	can	see	the		kernel_thread		function	takes	three	arguments:

Function	which	will	be	executed	in	a	new	thread;
Parameter	for	the		kernel_init		function;
Flags.

We	will	not	dive	into	details	about		kernel_thread		implementation	(we	will	see	it	in	the
chapter	which	describe	scheduler,	just	need	to	say	that		kernel_thread		invokes	clone).	Now
we	only	need	to	know	that	we	create	new	kernel	thread	with		kernel_thread		function,	parent
and	child	of	the	thread	will	use	shared	information	about	filesystem	and	it	will	start	to
execute		kernel_init		function.	A	kernel	thread	differs	from	a	user	thread	that	it	runs	in
kernel	mode.	So	with	these	two		kernel_thread		calls	we	create	two	new	kernel	threads	with
the		PID	=	1		for		init		process	and		PID	=	2		for		kthreadd	.	We	already	know	what	is		init	
process.	Let's	look	on	the		kthreadd	.	It	is	a	special	kernel	thread	which	manages	and	helps
different	parts	of	the	kernel	to	create	another	kernel	thread.	We	can	see	it	in	the	output	of
the		ps		util:

$	ps	-ef	|	grep	kthread

root									2					0		0	Jan11	?								00:00:00	[kthreadd]

Let's	postpone		kernel_init		and		kthreadd		for	now	and	go	ahead	in	the		rest_init	.	In	the
next	step	after	we	have	created	two	new	kernel	threads	we	can	see	the	following	code:

				rcu_read_lock();

				kthreadd_task	=	find_task_by_pid_ns(pid,	&init_pid_ns);

				rcu_read_unlock();

The	first		rcu_read_lock		function	marks	the	beginning	of	an	RCU	read-side	critical	section
and	the		rcu_read_unlock		marks	the	end	of	an	RCU	read-side	critical	section.	We	call	these
functions	because	we	need	to	protect	the		find_task_by_pid_ns	.	The		find_task_by_pid_ns	

End	of	initialization

223

http://en.wikipedia.org/wiki/Read-copy-update
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://www.tutorialspoint.com/unix_system_calls/clone.htm
http://en.wikipedia.org/wiki/Read-copy-update

returns	pointer	to	the		task_struct		by	the	given	pid.	So,	here	we	are	getting	the	pointer	to
the		task_struct		for		PID	=	2		(we	got	it	after		kthreadd		creation	with	the		kernel_thread).	In
the	next	step	we	call		complete		function

complete(&kthreadd_done);

and	pass	address	of	the		kthreadd_done	.	The		kthreadd_done		defined	as

static	__initdata	DECLARE_COMPLETION(kthreadd_done);

where		DECLARE_COMPLETION		macro	defined	as:

#define	DECLARE_COMPLETION(work)	\

									struct	completion	work	=	COMPLETION_INITIALIZER(work)

and	expands	to	the	definition	of	the		completion		structure.	This	structure	is	defined	in	the
include/linux/completion.h	and	presents		completions		concept.	Completions	is	a	code
synchronization	mechanism	which	provides	race-free	solution	for	the	threads	that	must	wait
for	some	process	to	have	reached	a	point	or	a	specific	state.	Using	completions	consists	of
three	parts:	The	first	is	definition	of	the		complete		structure	and	we	did	it	with	the
	DECLARE_COMPLETION	.	The	second	is	call	of	the		wait_for_completion	.	After	the	call	of	this
function,	a	thread	which	called	it	will	not	continue	to	execute	and	will	wait	while	other	thread
did	not	call		complete		function.	Note	that	we	call		wait_for_completion		with	the
	kthreadd_done		in	the	beginning	of	the		kernel_init_freeable	:

wait_for_completion(&kthreadd_done);

And	the	last	step	is	to	call		complete		function	as	we	saw	it	above.	After	this	the
	kernel_init_freeable		function	will	not	be	executed	while		kthreadd		thread	will	not	be	set.
After	the		kthreadd		was	set,	we	can	see	three	following	functions	in	the		rest_init	:

				init_idle_bootup_task(current);

				schedule_preempt_disabled();

				cpu_startup_entry(CPUHP_ONLINE);

The	first		init_idle_bootup_task		function	from	the	kernel/sched/core.c	sets	the	Scheduling
class	for	the	current	process	(idle		class	in	our	case):

End	of	initialization

224

https://github.com/torvalds/linux/blob/master/include/linux/completion.h
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c

void	init_idle_bootup_task(struct	task_struct	*idle)

{

									idle->sched_class	=	&idle_sched_class;

}

where		idle		class	is	a	low	task	priority	and	tasks	can	be	run	only	when	the	processor
doesn't	have	anything	to	run	besides	this	tasks.	The	second	function
	schedule_preempt_disabled		disables	preempt	in		idle		tasks.	And	the	third	function
	cpu_startup_entry		is	defined	in	the	kernel/sched/idle.c	and	calls		cpu_idle_loop		from	the
kernel/sched/idle.c.	The		cpu_idle_loop		function	works	as	process	with		PID	=	0		and	works
in	the	background.	Main	purpose	of	the		cpu_idle_loop		is	to	consume	the	idle	CPU	cycles.
When	there	is	no	process	to	run,	this	process	starts	to	work.	We	have	one	process	with
	idle		scheduling	class	(we	just	set	the		current		task	to	the		idle		with	the	call	of	the
	init_idle_bootup_task		function),	so	the		idle		thread	does	not	do	useful	work	but	just
checks	if	there	is	an	active	task	to	switch	to:

static	void	cpu_idle_loop(void)

{

								...

								...

								...

								while	(1)	{

																while	(!need_resched())	{

																...

																...

																...

																}

								...

								}

More	about	it	will	be	in	the	chapter	about	scheduler.	So	for	this	moment	the		start_kernel	
calls	the		rest_init		function	which	spawns	an		init		(kernel_init		function)	process	and
become		idle		process	itself.	Now	is	time	to	look	on	the		kernel_init	.	Execution	of	the
	kernel_init		function	starts	from	the	call	of	the		kernel_init_freeable		function.	The
	kernel_init_freeable		function	first	of	all	waits	for	the	completion	of	the		kthreadd		setup.	I
already	wrote	about	it	above:

wait_for_completion(&kthreadd_done);

After	this	we	set		gfp_allowed_mask		to		__GFP_BITS_MASK		which	means	that	system	is	already
running,	set	allowed	cpus/mems	to	all	CPUs	and	NUMA	nodes	with	the		set_mems_allowed	
function,	allow		init		process	to	run	on	any	CPU	with	the		set_cpus_allowed_ptr	,	set	pid	for
the		cad		or		Ctrl-Alt-Delete	,	do	preparation	for	booting	of	the	other	CPUs	with	the	call	of

End	of	initialization

225

https://github.com/torvalds/linux/blob/master/sched/idle.c
https://github.com/torvalds/linux/blob/master/sched/idle.c
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access

the		smp_prepare_cpus	,	call	early	initcalls	with	the		do_pre_smp_initcalls	,	initialize		SMP		with
the		smp_init		and	initialize	lockup_detector	with	the	call	of	the		lockup_detector_init		and
initialize	scheduler	with	the		sched_init_smp	.

After	this	we	can	see	the	call	of	the	following	functions	-		do_basic_setup	.	Before	we	will	call
the		do_basic_setup		function,	our	kernel	already	initialized	for	this	moment.	As	comment
says:

Now	we	can	finally	start	doing	some	real	work..

The		do_basic_setup		will	reinitialize	cpuset	to	the	active	CPUs,	initialize	the		khelper		-	which
is	a	kernel	thread	which	used	for	making	calls	out	to	userspace	from	within	the	kernel,
initialize	tmpfs,	initialize		drivers		subsystem,	enable	the	user-mode	helper		workqueue		and
make	post-early	call	of	the		initcalls	.	We	can	see	opening	of	the		dev/console		and	dup
twice	file	descriptors	from		0		to		2		after	the		do_basic_setup	:

if	(sys_open((const	char	__user	*)	"/dev/console",	O_RDWR,	0)	<	0)

				pr_err("Warning:	unable	to	open	an	initial	console.\n");

(void)	sys_dup(0);

(void)	sys_dup(0);

We	are	using	two	system	calls	here		sys_open		and		sys_dup	.	In	the	next	chapters	we	will
see	explanation	and	implementation	of	the	different	system	calls.	After	we	opened	initial
console,	we	check	that		rdinit=		option	was	passed	to	the	kernel	command	line	or	set
default	path	of	the	ramdisk:

if	(!ramdisk_execute_command)

				ramdisk_execute_command	=	"/init";

Check	user's	permissions	for	the		ramdisk		and	call	the		prepare_namespace		function	from	the
init/do_mounts.c	which	checks	and	mounts	the	initrd:

if	(sys_access((const	char	__user	*)	ramdisk_execute_command,	0)	!=	0)	{

				ramdisk_execute_command	=	NULL;

				prepare_namespace();

}

This	is	the	end	of	the		kernel_init_freeable		function	and	we	need	return	to	the
	kernel_init	.	The	next	step	after	the		kernel_init_freeable		finished	its	execution	is	the
	async_synchronize_full	.	This	function	waits	until	all	asynchronous	function	calls	have	been
done	and	after	it	we	will	call	the		free_initmem		which	will	release	all	memory	occupied	by	the

End	of	initialization

226

http://kernelnewbies.org/Documents/InitcallMechanism
https://www.kernel.org/doc/Documentation/lockup-watchdogs.txt
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://en.wikipedia.org/wiki/Tmpfs
https://github.com/torvalds/linux/blob/master/init/do_mounts.c
http://en.wikipedia.org/wiki/Initrd

initialization	stuff	which	located	between		__init_begin		and		__init_end	.	After	this	we
protect		.rodata		with	the		mark_rodata_ro		and	update	state	of	the	system	from	the
	SYSTEM_BOOTING		to	the

system_state	=	SYSTEM_RUNNING;

And	tries	to	run	the		init		process:

if	(ramdisk_execute_command)	{

				ret	=	run_init_process(ramdisk_execute_command);

				if	(!ret)

								return	0;

				pr_err("Failed	to	execute	%s	(error	%d)\n",

											ramdisk_execute_command,	ret);

}

First	of	all	it	checks	the		ramdisk_execute_command		which	we	set	in	the		kernel_init_freeable	
function	and	it	will	be	equal	to	the	value	of	the		rdinit=		kernel	command	line	parameters	or
	/init		by	default.	The		run_init_process		function	fills	the	first	element	of	the		argv_init	
array:

static	const	char	*argv_init[MAX_INIT_ARGS+2]	=	{	"init",	NULL,	};

which	represents	arguments	of	the		init		program	and	call		do_execve		function:

argv_init[0]	=	init_filename;

return	do_execve(getname_kernel(init_filename),

				(const	char	__user	*const	__user	*)argv_init,

				(const	char	__user	*const	__user	*)envp_init);

The		do_execve		function	is	defined	in	the	include/linux/sched.h	and	runs	program	with	the
given	file	name	and	arguments.	If	we	did	not	pass		rdinit=		option	to	the	kernel	command
line,	kernel	starts	to	check	the		execute_command		which	is	equal	to	value	of	the		init=		kernel
command	line	parameter:

				if	(execute_command)	{

								ret	=	run_init_process(execute_command);

								if	(!ret)

												return	0;

								panic("Requested	init	%s	failed	(error	%d).",

														execute_command,	ret);

				}

End	of	initialization

227

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

If	we	did	not	pass		init=		kernel	command	line	parameter	either,	kernel	tries	to	run	one	of
the	following	executable	files:

if	(!try_to_run_init_process("/sbin/init")	||

				!try_to_run_init_process("/etc/init")	||

				!try_to_run_init_process("/bin/init")	||

				!try_to_run_init_process("/bin/sh"))

				return	0;

Otherwise	we	finish	with	panic:

panic("No	working	init	found.		Try	passing	init=	option	to	kernel.	"

						"See	Linux	Documentation/init.txt	for	guidance.");

That's	all!	Linux	kernel	initialization	process	is	finished!

Conclusion
It	is	the	end	of	the	tenth	part	about	the	linux	kernel	initialization	process.	It	is	not	only	the
	tenth		part,	but	also	is	the	last	part	which	describes	initialization	of	the	linux	kernel.	As	I
wrote	in	the	first	part	of	this	chapter,	we	will	go	through	all	steps	of	the	kernel	initialization
and	we	did	it.	We	started	at	the	first	architecture-independent	function	-		start_kernel		and
finished	with	the	launch	of	the	first		init		process	in	the	our	system.	I	skipped	details	about
different	subsystem	of	the	kernel,	for	example	I	almost	did	not	cover	scheduler,	interrupts,
exception	handling,	etc.	From	the	next	part	we	will	start	to	dive	to	the	different	kernel
subsystems.	Hope	it	will	be	interesting.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
SLAB
xsave
FPU
Documentation/security/credentials.txt
Documentation/x86/x86_64/mm
RCU
VFS

End	of	initialization

228

http://en.wikipedia.org/wiki/Kernel_panic
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Slab_allocation
http://www.felixcloutier.com/x86/XSAVES.html
http://en.wikipedia.org/wiki/Floating-point_unit
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.txt
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Virtual_file_system

inode
proc
man	proc
Sysctl
ftrace
cgroup
CPU	hotplug	documentation
completions	-	wait	for	completion	handling
NUMA
cpus/mems
initcalls
Tmpfs
initrd
panic
Previous	part

End	of	initialization

229

http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Procfs
http://linux.die.net/man/5/proc
http://en.wikipedia.org/wiki/Sysctl
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://en.wikipedia.org/wiki/Cgroups
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://www.kernel.org/doc/Documentation/scheduler/completion.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://kernelnewbies.org/Documents/InitcallMechanism
http://en.wikipedia.org/wiki/Tmpfs
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Kernel_panic
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-9.html

Interrupts	and	Interrupt	Handling
You	will	find	a	couple	of	posts	which	describe	interrupts	and	exceptions	handling	in	the	linux
kernel.

Interrupts	and	Interrupt	Handling.	Part	1.	-	describes	an	interrupts	handling	theory.
Start	to	dive	into	interrupts	in	the	Linux	kernel	-	this	part	starts	to	describe	interrupts	and
exceptions	handling	related	stuff	from	the	early	stage.
Early	interrupt	handlers	-	third	part	describes	early	interrupt	handlers.
Interrupt	handlers	-	fourth	part	describes	first	non-early	interrupt	handlers.
Implementation	of	exception	handlers	-	descripbes	implementation	of	some	exception
handlers	as	double	fault,	divide	by	zero	and	etc.
Handling	Non-Maskable	interrupts	-	describes	handling	of	non-maskable	interrupts	and
the	rest	of	interrupts	handlers	from	the	architecture-specific	part.
Dive	into	external	hardware	interrupts	-	this	part	describes	early	initialization	of	code
which	is	related	to	handling	of	external	hardware	interrupts.
Non-early	initialization	of	the	IRQs	-	this	part	describes	non-early	initialization	of	code
which	is	related	to	handling	of	external	hardware	interrupts.
Softirq,	Tasklets	and	Workqueues	-	this	part	describes	softirqs,	tasklets	and	workqueues
concepts.
-	this	is	the	last	part	of	the	interrupts	and	interrupt	handling	chapter	and	here	we	will	see
a	real	hardware	driver	and	interrupts	related	stuff.

Interrupts

230

https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-1.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-2.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-3.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-4.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-5.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-6.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-7.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-8.md
https://github.com/0xAX/linux-insides/blob/master/interrupts/interrupts-9.md

Interrupts	and	Interrupt	Handling.	Part	1.

Introduction
This	is	the	first	part	of	the	new	chapter	of	the	linux	insides	book.	We	have	come	a	long	way
in	the	previous	chapter	of	this	book.	We	started	from	the	earliest	steps	of	kernel	initialization
and	finished	with	the	launch	of	the	first		init		process.	Yes,	we	saw	several	initialization
steps	which	are	related	to	the	various	kernel	subsystems.	But	we	did	not	dig	deep	into	the
details	of	these	subsystems.	With	this	chapter,	we	will	try	to	understand	how	the	various
kernel	subsystems	work	and	how	they	are	implemented.	As	you	can	already	understand
from	the	chapter's	title,	the	first	subsystem	will	be	interrupts.

What	is	an	Interrupt?
We	have	already	heard	of	the	word		interrupt		in	several	parts	of	this	book.	We	even	saw	a
couple	of	examples	of	interrupt	handlers.	In	the	current	chapter	we	will	start	from	the	theory
i.e.

What	are		interrupts		?
What	are		interrupt	handlers	?

We	will	then	continue	to	dig	deeper	into	the	details	of		interrupts		and	how	the	Linux	kernel
handles	them.

So...,	First	of	all	what	is	an	interrupt?	An	interrupt	is	an		event		which	is	raised	by	software	or
hardware	when	its	needs	the	CPU's	attention.	For	example,	we	press	a	button	on	the
keyboard	and	what	do	we	expect	next?	What	should	the	operating	system	and	computer	do
after	this?	To	simplify	matters	assume	that	each	peripheral	device	has	an	interrupt	line	to	the
CPU.	A	device	can	use	it	to	signal	an	interrupt	to	the	CPU.	However	interrupts	are	not
signaled	directly	to	the	CPU.	In	the	old	machines	there	was	a	PIC	which	is	a	chip
responsible	for	sequentially	processing	multiple	interrupt	requests	from	multiple	devices.	In
the	new	machines	there	is	an	Advanced	Programmable	Interrupt	Controller	commonly
known	as	-		APIC	.	An		APIC		consists	of	two	separate	devices:

	Local	APIC	

	I/O	APIC	

Introduction

231

http://0xax.gitbooks.io/linux-insides/content/
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-10.html
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

The	first	-		Local	APIC		is	located	on	each	CPU	core.	The	local	APIC	is	responsible	for
handling	the	CPU-specific	interrupt	configuration.	The	local	APIC	is	usually	used	to	manage
interrupts	from	the	APIC-timer,	thermal	sensor	and	any	other	such	locally	connected	I/O
devices.

The	second	-		I/O	APIC		provides	multi-processor	interrupt	management.	It	is	used	to
distribute	external	interrupts	among	the	CPU	cores.	More	about	the	local	and	I/O	APICs	will
be	covered	later	in	this	chapter.	As	you	can	understand,	interrupts	can	occur	at	any	time.
When	an	interrupt	occurs,	the	operating	system	must	handle	it	immediately.	But	what	does	it
mean		to	handle	an	interrupt	?	When	an	interrupt	occurs,	the	operating	system	must
ensure	the	following	steps:

The	kernel	must	pause	execution	of	the	current	process;	(preempt	current	task);
The	kernel	must	search	for	the	handler	of	the	interrupt	and	transfer	control	(execute
interrupt	handler);
After	the	interrupt	handler	completes	execution,	the	interrupted	process	can	resume
execution.

Of	course	there	are	numerous	intricacies	involved	in	this	procedure	of	handling	interrupts.
But	the	above	3	steps	form	the	basic	skeleton	of	the	procedure.

Addresses	of	each	of	the	interrupt	handlers	are	maintained	in	a	special	location	referred	to
as	the	-		Interrupt	Descriptor	Table		or		IDT	.	The	processor	uses	a	unique	number	for
recognizing	the	type	of	interruption	or	exception.	This	number	is	called	-		vector	number	.	A
vector	number	is	an	index	in	the		IDT	.	There	is	limited	amount	of	the	vector	numbers	and	it
can	be	from		0		to		255	.	You	can	note	the	following	range-check	upon	the	vector	number
within	the	Linux	kernel	source-code:

BUG_ON((unsigned)n	>	0xFF);

You	can	find	this	check	within	the	Linux	kernel	source	code	related	to	interrupt	setup	(eg.
The		set_intr_gate	,		void	set_system_intr_gate		in	arch/x86/include/asm/desc.h).	The	first
32	vector	numbers	from		0		to		31		are	reserved	by	the	processor	and	used	for	the
processing	of	architecture-defined	exceptions	and	interrupts.	You	can	find	the	table	with	the
description	of	these	vector	numbers	in	the	second	part	of	the	Linux	kernel	initialization
process	-	Early	interrupt	and	exception	handling.	Vector	numbers	from		32		to		255		are
designated	as	user-defined	interrupts	and	are	not	reserved	by	the	processor.	These
interrupts	are	generally	assigned	to	external	I/O	devices	to	enable	those	devices	to	send
interrupts	to	the	processor.

Now	let's	talk	about	the	types	of	interrupts.	Broadly	speaking,	we	can	split	interrupts	into	2
major	classes:

Introduction

232

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html

External	or	hardware	generated	interrupts;
Software-generated	interrupts.

The	first	-	external	interrupts	are	received	through	the		Local	APIC		or	pins	on	the	processor
which	are	connected	to	the		Local	APIC	.	The	second	-	software-generated	interrupts	are
caused	by	an	exceptional	condition	in	the	processor	itself	(sometimes	using	special
architecture-specific	instructions).	A	common	example	for	an	exceptional	condition	is
	division	by	zero	.	Another	example	is	exiting	a	program	with	the		syscall		instruction.

As	mentioned	earlier,	an	interrupt	can	occur	at	any	time	for	a	reason	which	the	code	and
CPU	have	no	control	over.	On	the	other	hand,	exceptions	are		synchronous		with	program
execution	and	can	be	classified	into	3	categories:

	Faults	

	Traps	

	Aborts	

A		fault		is	an	exception	reported	before	the	execution	of	a	"faulty"	instruction	(which	can
then	be	corrected).	If	corrected,	it	allows	the	interrupted	program	to	be	resume.

Next	a		trap		is	an	exception	which	is	reported	immediately	following	the	execution	of	the
	trap		instruction.	Traps	also	allow	the	interrupted	program	to	be	continued	just	as	a		fault	
does.

Finally	an		abort		is	an	exception	that	does	not	always	report	the	exact	instruction	which
caused	the	exception	and	does	not	allow	the	interrupted	program	to	be	resumed.

Also	we	already	know	from	the	previous	part	that	interrupts	can	be	classified	as		maskable	
and		non-maskable	.	Maskable	interrupts	are	interrupts	which	can	be	blocked	with	the	two
following	instructions	for		x86_64		-		sti		and		cli	.	We	can	find	them	in	the	Linux	kernel
source	code:

static	inline	void	native_irq_disable(void)

{

								asm	volatile("cli":	:	:"memory");

}

and

static	inline	void	native_irq_enable(void)

{

								asm	volatile("sti":	:	:"memory");

}

Introduction

233

http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html

These	two	instructions	modify	the		IF		flag	bit	within	the	interrupt	register.	The		sti	
instruction	sets	the		IF		flag	and	the		cli		instruction	clears	this	flag.	Non-maskable
interrupts	are	always	reported.	Usually	any	failure	in	the	hardware	is	mapped	to	such	non-
maskable	interrupts.

If	multiple	exceptions	or	interrupts	occur	at	the	same	time,	the	processor	handles	them	in
order	of	their	predefined	priorities.	We	can	determine	the	priorities	from	the	highest	to	the
lowest	in	the	following	table:

+--+

|														|																																																	|

|			Priority			|	Description																																					|

|														|																																																	|

+--------------+---+

|														|	Hardware	Reset	and	Machine	Checks															|

|					1								|	-	RESET																																									|

|														|	-	Machine	Check																																	|

+--------------+---+

|														|	Trap	on	Task	Switch																													|

|					2								|	-	T	flag	in	TSS	is	set																										|

|														|																																																	|

+--------------+---+

|														|	External	Hardware	Interventions																	|

|														|	-	FLUSH																																									|

|					3								|	-	STOPCLK																																							|

|														|	-	SMI																																											|

|														|	-	INIT																																										|

+--------------+---+

|														|	Traps	on	the	Previous	Instruction															|

|					4								|	-	Breakpoints																																			|

|														|	-	Debug	Trap	Exceptions																									|

+--------------+---+

|					5								|	Nonmaskable	Interrupts																										|

+--------------+---+

|					6								|	Maskable	Hardware	Interrupts																				|

+--------------+---+

|					7								|	Code	Breakpoint	Fault																											|

+--------------+---+

|					8								|	Faults	from	Fetching	Next	Instruction											|

|														|	Code-Segment	Limit	Violation																				|

|														|	Code	Page	Fault																																	|

+--------------+---+

|														|	Faults	from	Decoding	the	Next	Instruction							|

|														|	Instruction	length	>	15	bytes																			|

|					9								|	Invalid	Opcode																																		|

|														|	Coprocessor	Not	Available																							|

|														|																																																	|

+--------------+---+

|					10							|	Faults	on	Executing	an	Instruction														|

|														|	Overflow																																								|

|														|	Bound	error																																					|

Introduction

234

|														|	Invalid	TSS																																					|

|														|	Segment	Not	Present																													|

|														|	Stack	fault																																					|

|														|	General	Protection																														|

|														|	Data	Page	Fault																																	|

|														|	Alignment	Check																																	|

|														|	x87	FPU	Floating-point	exception																|

|														|	SIMD	floating-point	exception																			|

|														|	Virtualization	exception																								|

+--------------+---+

Now	that	we	know	a	little	about	the	various	types	of	interrupts	and	exceptions,	it	is	time	to
move	on	to	a	more	practical	part.	We	start	with	the	description	of	the		Interrupt	Descriptor
Table	.	As	mentioned	earlier,	the		IDT		stores	entry	points	of	the	interrupts	and	exceptions
handlers.	The		IDT		is	similar	in	structure	to	the		Global	Descriptor	Table		which	we	saw	in
the	second	part	of	the	Kernel	booting	process.	But	of	course	it	has	some	differences.
Instead	of		descriptors	,	the		IDT		entries	are	called		gates	.	It	can	contain	one	of	the
following	gates:

Interrupt	gates
Task	gates
Trap	gates.

in	the		x86		architecture.	Only	long	mode	interrupt	gates	and	trap	gates	can	be	referenced	in
the		x86_64	.	Like	the		Global	Descriptor	Table	,	the		Interrupt	Descriptor	table		is	an	array
of	8-byte	gates	on		x86		and	an	array	of	16-byte	gates	on		x86_64	.	We	can	remember	from
the	second	part	of	the	Kernel	booting	process,	that		Global	Descriptor	Table		must	contain
	NULL		descriptor	as	its	first	element.	Unlike	the		Global	Descriptor	Table	,	the		Interrupt
Descriptor	Table		may	contain	a	gate;	it	is	not	mandatory.	For	example,	you	may	remember
that	we	have	loaded	the	Interrupt	Descriptor	table	with	the		NULL		gates	only	in	the	earlier
part	while	transitioning	into	protected	mode:

/*

	*	Set	up	the	IDT

	*/

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

from	the	arch/x86/boot/pm.c.	The		Interrupt	Descriptor	table		can	be	located	anywhere	in
the	linear	address	space	and	the	base	address	of	it	must	be	aligned	on	an	8-byte	boundary
on		x86		or	16-byte	boundary	on		x86_64	.	The	base	address	of	the		IDT		is	stored	in	the

Introduction

235

http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
http://en.wikipedia.org/wiki/Long_mode
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
http://en.wikipedia.org/wiki/Protected_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pm.c

special	register	-		IDTR	.	There	are	two	instructions	on		x86	-compatible	processors	to	modify
the		IDTR		register:

	LIDT	

	SIDT	

The	first	instruction		LIDT		is	used	to	load	the	base-address	of	the		IDT		i.e.	the	specified
operand	into	the		IDTR	.	The	second	instruction		SIDT		is	used	to	read	and	store	the	contents
of	the		IDTR		into	the	specified	operand.	The		IDTR		register	is	48-bits	on	the		x86		and
contains	the	following	information:

+-----------------------------------+----------------------+

|																																			|																						|

|					Base	address	of	the	IDT							|			Limit	of	the	IDT			|

|																																			|																						|

+-----------------------------------+----------------------+

47																																16	15																				0

Looking	at	the	implementation	of		setup_idt	,	we	have	prepared	a		null_idt		and	loaded	it	to
the		IDTR		register	with	the		lidt		instruction.	Note	that		null_idt		has		gdt_ptr		type	which
is	defined	as:

struct	gdt_ptr	{

								u16	len;

								u32	ptr;

}	__attribute__((packed));

Here	we	can	see	the	definition	of	the	structure	with	the	two	fields	of	2-bytes	and	4-bytes
each	(a	total	of	48-bits)	as	we	can	see	in	the	diagram.	Now	let's	look	at	the		IDT		entries
structure.	The		IDT		entries	structure	is	an	array	of	the	16-byte	entries	which	are	called	gates
in	the		x86_64	.	They	have	the	following	structure:

Introduction

236

127																																																																													96

+---+

|																																																																															|

|																																Reserved																																							|

|																																																																															|

+--

95																																																																														64

+---+

|																																																																															|

|																															Offset	63..32																																			|

|																																																																															|

+---+

63																															48	47						46		44			42				39													34				32

+---+

|																																		|							|		D		|			|					|						|			|			|					|

|							Offset	31..16														|			P			|		P		|	0	|Type	|0	0	0	|	0	|	0	|	IST	|

|																																		|							|		L		|			|					|						|			|			|					|

	---+

31																																			16	15																																						0

+---+

|																																						|																																								|

|										Segment	Selector												|																	Offset	15..0											|

|																																						|																																								|

+---+

To	form	an	index	into	the	IDT,	the	processor	scales	the	exception	or	interrupt	vector	by
sixteen.	The	processor	handles	the	occurrence	of	exceptions	and	interrupts	just	like	it
handles	calls	of	a	procedure	when	it	sees	the		call		instruction.	A	processor	uses	an	unique
number	or		vector	number		of	the	interrupt	or	the	exception	as	the	index	to	find	the	necessary
	Interrupt	Descriptor	Table		entry.	Now	let's	take	a	closer	look	at	an		IDT		entry.

As	we	can	see,		IDT		entry	on	the	diagram	consists	of	the	following	fields:

	0-15		bits	-	offset	from	the	segment	selector	which	is	used	by	the	processor	as	the
base	address	of	the	entry	point	of	the	interrupt	handler;
	16-31		bits	-	base	address	of	the	segment	select	which	contains	the	entry	point	of	the
interrupt	handler;
	IST		-	a	new	special	mechanism	in	the		x86_64	,	will	see	it	later;
	DPL		-	Descriptor	Privilege	Level;
	P		-	Segment	Present	flag;
	48-63		bits	-	second	part	of	the	handler	base	address;
	64-95		bits	-	third	part	of	the	base	address	of	the	handler;
	96-127		bits	-	and	the	last	bits	are	reserved	by	the	CPU.

And	the	last		Type		field	describes	the	type	of	the		IDT		entry.	There	are	three	different	kinds
of	handlers	for	interrupts:

Introduction

237

Interrupt	gate
Trap	gate
Task	gate

The		IST		or		Interrupt	Stack	Table		is	a	new	mechanism	in	the		x86_64	.	It	is	used	as	an
alternative	to	the	legacy	stack-switch	mechanism.	Previously	The		x86		architecture
provided	a	mechanism	to	automatically	switch	stack	frames	in	response	to	an	interrupt.	The
	IST		is	a	modified	version	of	the		x86		Stack	switching	mode.	This	mechanism
unconditionally	switches	stacks	when	it	is	enabled	and	can	be	enabled	for	any	interrupt	in
the		IDT		entry	related	with	the	certain	interrupt	(we	will	soon	see	it).	From	this	we	can
understand	that		IST		is	not	necessary	for	all	interrupts.	Some	interrupts	can	continue	to	use
the	legacy	stack	switching	mode.	The		IST		mechanism	provides	up	to	seven		IST		pointers
in	the	Task	State	Segment	or		TSS		which	is	the	special	structure	which	contains	information
about	a	process.	The		TSS		is	used	for	stack	switching	during	the	execution	of	an	interrupt	or
exception	handler	in	the	Linux	kernel.	Each	pointer	is	referenced	by	an	interrupt	gate	from
the		IDT	.

The		Interrupt	Descriptor	Table		represented	by	the	array	of	the		gate_desc		structures:

extern	gate_desc	idt_table[];

where		gate_desc		is:

#ifdef	CONFIG_X86_64

...

...

...

typedef	struct	gate_struct64	gate_desc;

...

...

...

#endif

and		gate_struct64		defined	as:

struct	gate_struct64	{

								u16	offset_low;

								u16	segment;

								unsigned	ist	:	3,	zero0	:	5,	type	:	5,	dpl	:	2,	p	:	1;

								u16	offset_middle;

								u32	offset_high;

								u32	zero1;

}	__attribute__((packed));

Introduction

238

http://en.wikipedia.org/wiki/Task_state_segment

Each	active	thread	has	a	large	stack	in	the	Linux	kernel	for	the		x86_64		architecture.	The
stack	size	is	defined	as		THREAD_SIZE		and	is	equal	to:

#define	PAGE_SHIFT						12

#define	PAGE_SIZE							(_AC(1,UL)	<<	PAGE_SHIFT)

...

...

...

#define	THREAD_SIZE_ORDER							(2	+	KASAN_STACK_ORDER)

#define	THREAD_SIZE		(PAGE_SIZE	<<	THREAD_SIZE_ORDER)

The		PAGE_SIZE		is		4096	-bytes	and	the		THREAD_SIZE_ORDER		depends	on	the
	KASAN_STACK_ORDER	.	As	we	can	see,	the		KASAN_STACK		depends	on	the		CONFIG_KASAN		kernel
configuration	parameter	and	is	defined	as:

#ifdef	CONFIG_KASAN

				#define	KASAN_STACK_ORDER	1

#else

				#define	KASAN_STACK_ORDER	0

#endif

	KASan		is	a	runtime	memory	debugger.	So...	the		THREAD_SIZE		will	be		16384		bytes	if
	CONFIG_KASAN		is	disabled	or		32768		if	this	kernel	configuration	option	is	enabled.	These
stacks	contain	useful	data	as	long	as	a	thread	is	alive	or	in	a	zombie	state.	While	the	thread
is	in	user-space,	the	kernel	stack	is	empty	except	for	the		thread_info		structure	(details
about	this	structure	are	available	in	the	fourth	part	of	the	Linux	kernel	initialization	process)
at	the	bottom	of	the	stack.	The	active	or	zombie	threads	aren't	the	only	threads	with	their
own	stack.	There	also	exist	specialized	stacks	that	are	associated	with	each	available	CPU.
These	stacks	are	active	when	the	kernel	is	executing	on	that	CPU.	When	the	user-space	is
executing	on	the	CPU,	these	stacks	do	not	contain	any	useful	information.	Each	CPU	has	a
few	special	per-cpu	stacks	as	well.	The	first	is	the		interrupt	stack		used	for	the	external
hardware	interrupts.	Its	size	is	determined	as	follows:

#define	IRQ_STACK_ORDER	(2	+	KASAN_STACK_ORDER)

#define	IRQ_STACK_SIZE	(PAGE_SIZE	<<	IRQ_STACK_ORDER)

or		16384		bytes.	The	per-cpu	interrupt	stack	represented	by	the		irq_stack_union		union	in
the	Linux	kernel	for		x86_64	:

Introduction

239

http://lwn.net/Articles/618180/
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html

union	irq_stack_union	{

				char	irq_stack[IRQ_STACK_SIZE];

				struct	{

								char	gs_base[40];

								unsigned	long	stack_canary;

				};

};

The	first		irq_stack		field	is	a	16	kilobytes	array.	Also	you	can	see	that		irq_stack_union	
contains	a	structure	with	the	two	fields:

	gs_base		-	The		gs		register	always	points	to	the	bottom	of	the		irqstack		union.	On	the
	x86_64	,	the		gs		register	is	shared	by	per-cpu	area	and	stack	canary	(more	about		per-
cpu		variables	you	can	read	in	the	special	part).	All	per-cpu	symbols	are	zero	based	and
the		gs		points	to	the	base	of	the	per-cpu	area.	You	already	know	that	segmented
memory	model	is	abolished	in	the	long	mode,	but	we	can	set	the	base	address	for	the
two	segment	registers	-		fs		and		gs		with	the	Model	specific	registers	and	these
registers	can	be	still	be	used	as	address	registers.	If	you	remember	the	first	part	of	the
Linux	kernel	initialization	process,	you	can	remember	that	we	have	set	the		gs		register:

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

where		initial_gs		points	to	the		irq_stack_union	:

GLOBAL(initial_gs)

.quad				INIT_PER_CPU_VAR(irq_stack_union)

	stack_canary		-	Stack	canary	for	the	interrupt	stack	is	a		stack	protector		to	verify	that
the	stack	hasn't	been	overwritten.	Note	that		gs_base		is	a	40	bytes	array.		GCC		requires
that	stack	canary	will	be	on	the	fixed	offset	from	the	base	of	the		gs		and	its	value	must
be		40		for	the		x86_64		and		20		for	the		x86	.

The		irq_stack_union		is	the	first	datum	in	the		percpu		area,	we	can	see	it	in	the
	System.map	:

Introduction

240

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Model-specific_register
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries

0000000000000000	D	__per_cpu_start

0000000000000000	D	irq_stack_union

0000000000004000	d	exception_stacks

0000000000009000	D	gdt_page

...

...

...

We	can	see	its	definition	in	the	code:

DECLARE_PER_CPU_FIRST(union	irq_stack_union,	irq_stack_union)	__visible;

Now,	it's	time	to	look	at	the	initialization	of	the		irq_stack_union	.	Besides	the
	irq_stack_union		definition,	we	can	see	the	definition	of	the	following	per-cpu	variables	in
the	arch/x86/include/asm/processor.h:

DECLARE_PER_CPU(char	*,	irq_stack_ptr);

DECLARE_PER_CPU(unsigned	int,	irq_count);

The	first	is	the		irq_stack_ptr	.	From	the	variable's	name,	it	is	obvious	that	this	is	a	pointer	to
the	top	of	the	stack.	The	second	-		irq_count		is	used	to	check	if	a	CPU	is	already	on	an
interrupt	stack	or	not.	Initialization	of	the		irq_stack_ptr		is	located	in	the
	setup_per_cpu_areas		function	in	arch/x86/kernel/setup_percpu.c:

void	__init	setup_per_cpu_areas(void)

{

...

...

#ifdef	CONFIG_X86_64

for_each_possible_cpu(cpu)	{

				...

				...

				...

				per_cpu(irq_stack_ptr,	cpu)	=

												per_cpu(irq_stack_union.irq_stack,	cpu)	+

												IRQ_STACK_SIZE	-	64;

				...

				...

				...

#endif

...

...

}

Introduction

241

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/processor.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c

Here	we	go	over	all	the	CPUs	one-by-one	and	setup		irq_stack_ptr	.	This	turns	out	to	be
equal	to	the	top	of	the	interrupt	stack	minus		64	.	Why		64	?TODO
arch/x86/kernel/cpu/common.c	source	code	file	is	following:

void	load_percpu_segment(int	cpu)

{

								...

								...

								...

								loadsegment(gs,	0);

								wrmsrl(MSR_GS_BASE,	(unsigned	long)per_cpu(irq_stack_union.gs_base,	cpu));

}

and	as	we	already	know	the		gs		register	points	to	the	bottom	of	the	interrupt	stack:

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

				GLOBAL(initial_gs)

				.quad				INIT_PER_CPU_VAR(irq_stack_union)

Here	we	can	see	the		wrmsr		instruction	which	loads	the	data	from		edx:eax		into	the	Model
specific	register	pointed	by	the		ecx		register.	In	our	case	the	model	specific	register	is
	MSR_GS_BASE		which	contains	the	base	address	of	the	memory	segment	pointed	by	the		gs	
register.		edx:eax		points	to	the	address	of	the		initial_gs		which	is	the	base	address	of	our
	irq_stack_union	.

We	already	know	that		x86_64		has	a	feature	called		Interrupt	Stack	Table		or		IST		and	this
feature	provides	the	ability	to	switch	to	a	new	stack	for	events	non-maskable	interrupt,
double	fault	and	etc...	There	can	be	up	to	seven		IST		entries	per-cpu.	Some	of	them	are:

	DOUBLEFAULT_STACK	

	NMI_STACK	

	DEBUG_STACK	

	MCE_STACK	

or

#define	DOUBLEFAULT_STACK	1

#define	NMI_STACK	2

#define	DEBUG_STACK	3

#define	MCE_STACK	4

Introduction

242

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c
http://en.wikipedia.org/wiki/Model-specific_register

All	interrupt-gate	descriptors	which	switch	to	a	new	stack	with	the		IST		are	initialized	with
the		set_intr_gate_ist		function.	For	example:

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

...

...

...

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

where		&nmi		and		&double_fault		are	addresses	of	the	entries	to	the	given	interrupt
handlers:

asmlinkage	void	nmi(void);

asmlinkage	void	double_fault(void);

defined	in	the	arch/x86/kernel/entry_64.S

idtentry	double_fault	do_double_fault	has_error_code=1	paranoid=2

...

...

...

ENTRY(nmi)

...

...

...

END(nmi)

When	an	interrupt	or	an	exception	occurs,	the	new		ss		selector	is	forced	to		NULL		and	the
	ss		selector’s		rpl		field	is	set	to	the	new		cpl	.	The	old		ss	,		rsp	,	register	flags,		cs	,
	rip		are	pushed	onto	the	new	stack.	In	64-bit	mode,	the	size	of	interrupt	stack-frame
pushes	is	fixed	at	8-bytes,	so	we	will	get	the	following	stack:

+---------------+

|															|

|						SS							|	40

|						RSP						|	32

|					RFLAGS				|	24

|						CS							|	16

|						RIP						|	8

|			Error	code		|	0

|															|

+---------------+

Introduction

243

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S

If	the		IST		field	in	the	interrupt	gate	is	not		0	,	we	read	the		IST		pointer	into		rsp	.	If	the
interrupt	vector	number	has	an	error	code	associated	with	it,	we	then	push	the	error	code
onto	the	stack.	If	the	interrupt	vector	number	has	no	error	code,	we	go	ahead	and	push	the
dummy	error	code	on	to	the	stack.	We	need	to	do	this	to	ensure	stack	consistency.	Next	we
load	the	segment-selector	field	from	the	gate	descriptor	into	the	CS	register	and	must	verify
that	the	target	code-segment	is	a	64-bit	mode	code	segment	by	the	checking	bit		21		i.e.	the
	L		bit	in	the		Global	Descriptor	Table	.	Finally	we	load	the	offset	field	from	the	gate
descriptor	into		rip		which	will	be	the	entry-point	of	the	interrupt	handler.	After	this	the
interrupt	handler	begins	to	execute.	After	an	interrupt	handler	finishes	its	execution,	it	must
return	control	to	the	interrupted	process	with	the		iret		instruction.	The		iret		instruction
unconditionally	pops	the	stack	pointer	(ss:rsp)	to	restore	the	stack	of	the	interrupted
process	and	does	not	depend	on	the		cpl		change.

That's	all.

Conclusion
It	is	the	end	of	the	first	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We
saw	some	theory	and	the	first	steps	of	the	initialization	of	stuff	related	to	interrupts	and
exceptions.	In	the	next	part	we	will	continue	to	dive	into	interrupts	and	interrupts	handling	-
into	the	more	practical	aspects	of	it.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	a	PR	to	linux-insides.

Links
PIC
Advanced	Programmable	Interrupt	Controller
protected	mode
long	mode
kernel	stacks
Task	State	Segment
segmented	memory	model
Model	specific	registers
Stack	canary
Previous	chapter

Introduction

244

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Long_mode
https://www.kernel.org/doc/Documentation/x86/kernel-stacks
http://en.wikipedia.org/wiki/Task_state_segment
http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html

Introduction

245

Interrupts	and	Interrupt	Handling.	Part	2.

Start	to	dive	into	interrupt	and	exceptions
handling	in	the	Linux	kernel
We	saw	some	theory	about	interrupts	and	exception	handling	in	the	previous	part	and	as	I
already	wrote	in	that	part,	we	will	start	to	dive	into	interrupts	and	exceptions	in	the	Linux
kernel	source	code	in	this	part.	As	you	already	can	note,	the	previous	part	mostly	described
theoretical	aspects	and	in	this	part	we	will	start	to	dive	directly	into	the	Linux	kernel	source
code.	We	will	start	to	do	it	as	we	did	it	in	other	chapters,	from	the	very	early	places.	We	will
not	see	the	Linux	kernel	source	code	from	the	earliest	code	lines	as	we	saw	it	for	example	in
the	Linux	kernel	booting	process	chapter,	but	we	will	start	from	the	earliest	code	which	is
related	to	the	interrupts	and	exceptions.	In	this	part	we	will	try	to	go	through	the	all	interrupts
and	exceptions	related	stuff	which	we	can	find	in	the	Linux	kernel	source	code.

If	you've	read	the	previous	parts,	you	can	remember	that	the	earliest	place	in	the	Linux
kernel		x86_64		architecture-specific	source	code	which	is	related	to	the	interrupt	is	located	in
the	arch/x86/boot/pm.c	source	code	file	and	represents	the	first	setup	of	the	Interrupt
Descriptor	Table.	It	occurs	right	before	the	transition	into	the	protected	mode	in	the
	go_to_protected_mode		function	by	the	call	of	the		setup_idt	:

void	go_to_protected_mode(void)

{

				...

				setup_idt();

				...

}

The		setup_idt		function	is	defined	in	the	same	source	code	file	as	the
	go_to_protected_mode		function	and	just	loads	the	address	of	the		NULL		interrupts	descriptor
table:

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

Start	to	dive	into	interrupts

246

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L292
http://0xax.gitbooks.io/linux-insides/content/Booting/index.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pm.c
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Protected_mode

where		gdt_ptr		represents	a	special	48-bit		GDTR		register	which	must	contain	the	base
address	of	the		Global	Descriptor	Table	:

struct	gdt_ptr	{

				u16	len;

				u32	ptr;

}	__attribute__((packed));

Of	course	in	our	case	the		gdt_ptr		does	not	represent	the		GDTR		register,	but		IDTR		since
we	set		Interrupt	Descriptor	Table	.	You	will	not	find	an		idt_ptr		structure,	because	if	it	had
been	in	the	Linux	kernel	source	code,	it	would	have	been	the	same	as		gdt_ptr		but	with
different	name.	So,	as	you	can	understand	there	is	no	sense	to	have	two	similar	structures
which	differ	only	by	name.	You	can	note	here,	that	we	do	not	fill	the		Interrupt	Descriptor
Table		with	entries,	because	it	is	too	early	to	handle	any	interrupts	or	exceptions	at	this	point.
That's	why	we	just	fill	the		IDT		with		NULL	.

After	the	setup	of	the	Interrupt	descriptor	table,	Global	Descriptor	Table	and	other	stuff	we
jump	into	protected	mode	in	the	-	arch/x86/boot/pmjump.S.	You	can	read	more	about	it	in
the	part	which	describes	the	transition	to	protected	mode.

We	already	know	from	the	earliest	parts	that	entry	to	protected	mode	is	located	in	the
	boot_params.hdr.code32_start		and	you	can	see	that	we	pass	the	entry	of	the	protected
mode	and		boot_params		to	the		protected_mode_jump		in	the	end	of	the	arch/x86/boot/pm.c:

protected_mode_jump(boot_params.hdr.code32_start,

																(u32)&boot_params	+	(ds()	<<	4));

The		protected_mode_jump		is	defined	in	the	arch/x86/boot/pmjump.S	and	gets	these	two
parameters	in	the		ax		and		dx		registers	using	one	of	the	8086	calling	conventions:

GLOBAL(protected_mode_jump)

				...

				...

				...

				.byte				0x66,	0xea								#	ljmpl	opcode

2:				.long				in_pm32												#	offset

				.word				__BOOT_CS								#	segment

...

...

...

ENDPROC(protected_mode_jump)

where		in_pm32		contains	a	jump	to	the	32-bit	entry	point:

Start	to	dive	into	interrupts

247

http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/GDT
http://en.wikipedia.org/wiki/Protected_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pm.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/X86_calling_conventions#List_of_x86_calling_conventions

GLOBAL(in_pm32)

				...

				...

				jmpl				*%eax	//	%eax	contains	address	of	the	`startup_32`

				...

				...

ENDPROC(in_pm32)

As	you	can	remember	the	32-bit	entry	point	is	in	the	arch/x86/boot/compressed/head_64.S
assembly	file,	although	it	contains		_64		in	its	name.	We	can	see	the	two	similar	files	in	the
	arch/x86/boot/compressed		directory:

	arch/x86/boot/compressed/head_32.S	.
	arch/x86/boot/compressed/head_64.S	;

But	the	32-bit	mode	entry	point	is	the	second	file	in	our	case.	The	first	file	is	not	even
compiled	for		x86_64	.	Let's	look	at	the	arch/x86/boot/compressed/Makefile:

vmlinux-objs-y	:=	$(obj)/vmlinux.lds	$(obj)/head_$(BITS).o	$(obj)/misc.o	\

...

...

We	can	see	here	that		head_*		depends	on	the		$(BITS)		variable	which	depends	on	the
architecture.	You	can	find	it	in	the	arch/x86/Makefile:

ifeq	($(CONFIG_X86_32),y)

...

				BITS	:=	32

else

				BITS	:=	64

				...

endif

Now	as	we	jumped	on	the		startup_32		from	the	arch/x86/boot/compressed/head_64.S	we
will	not	find	anything	related	to	the	interrupt	handling	here.	The		startup_32		contains	code
that	makes	preparations	before	the	transition	into	long	mode	and	directly	jumps	in	to	it.	The
	long	mode		entry	is	located	in		startup_64		and	it	makes	preparations	before	the	kernel
decompression	that	occurs	in	the		decompress_kernel		from	the
arch/x86/boot/compressed/misc.c.	After	the	kernel	is	decompressed,	we	jump	on	the
	startup_64		from	the	arch/x86/kernel/head_64.S.	In	the		startup_64		we	start	to	build
identity-mapped	pages.	After	we	have	built	identity-mapped	pages,	checked	the	NX	bit,
setup	the		Extended	Feature	Enable	Register		(see	in	links),	and	updated	the	early		Global
Descriptor	Table		with	the		lgdt		instruction,	we	need	to	setup		gs		register	with	the	following
code:

Start	to	dive	into	interrupts

248

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
http://en.wikipedia.org/wiki/Long_mode
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
http://en.wikipedia.org/wiki/NX_bit

movl				$MSR_GS_BASE,%ecx

movl				initial_gs(%rip),%eax

movl				initial_gs+4(%rip),%edx

wrmsr

We	already	saw	this	code	in	the	previous	part.	First	of	all	pay	attention	on	the	last		wrmsr	
instruction.	This	instruction	writes	data	from	the		edx:eax		registers	to	the	model	specific
register	specified	by	the		ecx		register.	We	can	see	that		ecx		contains		$MSR_GS_BASE		which
is	declared	in	the	arch/x86/include/uapi/asm/msr-index.h	and	looks	like:

#define	MSR_GS_BASE													0xc0000101

From	this	we	can	understand	that		MSR_GS_BASE		defines	the	number	of	the		model	specific
register	.	Since	registers		cs	,		ds	,		es	,	and		ss		are	not	used	in	the	64-bit	mode,	their
fields	are	ignored.	But	we	can	access	memory	over		fs		and		gs		registers.	The	model
specific	register	provides	a		back	door		to	the	hidden	parts	of	these	segment	registers	and
allows	to	use	64-bit	base	address	for	segment	register	addressed	by	the		fs		and		gs	.	So
the		MSR_GS_BASE		is	the	hidden	part	and	this	part	is	mapped	on	the		GS.base		field.	Let's	look
on	the		initial_gs	:

GLOBAL(initial_gs)

				.quad				INIT_PER_CPU_VAR(irq_stack_union)

We	pass		irq_stack_union		symbol	to	the		INIT_PER_CPU_VAR		macro	which	just	concatenates
the		init_per_cpu__		prefix	with	the	given	symbol.	In	our	case	we	will	get	the
	init_per_cpu__irq_stack_union		symbol.	Let's	look	at	the	linker	script.	There	we	can	see
following	definition:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(irq_stack_union);

It	tells	us	that	the	address	of	the		init_per_cpu__irq_stack_union		will	be		irq_stack_union	+
__per_cpu_load	.	Now	we	need	to	understand	where		init_per_cpu__irq_stack_union		and
	__per_cpu_load		are	what	they	mean.	The	first		irq_stack_union		is	defined	in	the
arch/x86/include/asm/processor.h	with	the		DECLARE_INIT_PER_CPU		macro	which	expands	to
call	the		init_per_cpu_var		macro:

Start	to	dive	into	interrupts

249

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
http://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/msr-index.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/processor.h

DECLARE_INIT_PER_CPU(irq_stack_union);

#define	DECLARE_INIT_PER_CPU(var)	\

							extern	typeof(per_cpu_var(var))	init_per_cpu_var(var)

#define	init_per_cpu_var(var)		init_per_cpu__##var

If	we	expand	all	macros	we	will	get	the	same		init_per_cpu__irq_stack_union		as	we	got	after
expanding	the		INIT_PER_CPU		macro,	but	you	can	note	that	it	is	not	just	a	symbol,	but	a
variable.	Let's	look	at	the		typeof(per_cpu_var(var))		expression.	Our		var		is
	irq_stack_union		and	the		per_cpu_var		macro	is	defined	in	the
arch/x86/include/asm/percpu.h:

#define	PER_CPU_VAR(var)								%__percpu_seg:var

where:

#ifdef	CONFIG_X86_64

				#define	__percpu_seg	gs

endif

So,	we	are	accessing		gs:irq_stack_union		and	getting	its	type	which	is		irq_union	.	Ok,	we
defined	the	first	variable	and	know	its	address,	now	let's	look	at	the	second		__per_cpu_load	
symbol.	There	are	a	couple	of		per-cpu		variables	which	are	located	after	this	symbol.	The
	__per_cpu_load		is	defined	in	the	include/asm-generic/sections.h:

extern	char	__per_cpu_load[],	__per_cpu_start[],	__per_cpu_end[];

and	presented	base	address	of	the		per-cpu		variables	from	the	data	area.	So,	we	know	the
address	of	the		irq_stack_union	,		__per_cpu_load		and	we	know	that
	init_per_cpu__irq_stack_union		must	be	placed	right	after		__per_cpu_load	.	And	we	can	see
it	in	the	System.map:

...

...

...

ffffffff819ed000	D	__init_begin

ffffffff819ed000	D	__per_cpu_load

ffffffff819ed000	A	init_per_cpu__irq_stack_union

...

...

...

Start	to	dive	into	interrupts

250

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/percpu.h
https://github.com/torvalds/linux/blob/master/include/asm-generic-sections.h
http://en.wikipedia.org/wiki/System.map

Now	we	know	about		initial_gs	,	so	let's	look	at	the	code:

movl				$MSR_GS_BASE,%ecx

movl				initial_gs(%rip),%eax

movl				initial_gs+4(%rip),%edx

wrmsr

Here	we	specified	a	model	specific	register	with		MSR_GS_BASE	,	put	the	64-bit	address	of	the
	initial_gs		to	the		edx:eax		pair	and	execute	the		wrmsr		instruction	for	filling	the		gs	
register	with	the	base	address	of	the		init_per_cpu__irq_stack_union		which	will	be	at	the
bottom	of	the	interrupt	stack.	After	this	we	will	jump	to	the	C	code	on	the
	x86_64_start_kernel		from	the	arch/x86/kernel/head64.c.	In	the		x86_64_start_kernel	
function	we	do	the	last	preparations	before	we	jump	into	the	generic	and	architecture-
independent	kernel	code	and	one	of	these	preparations	is	filling	the	early		Interrupt
Descriptor	Table		with	the	interrupts	handlers	entries	or		early_idt_handlers	.	You	can
remember	it,	if	you	have	read	the	part	about	the	Early	interrupt	and	exception	handling	and
can	remember	following	code:

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handlers[i]);

load_idt((const	struct	desc_ptr	*)&idt_descr);

but	I	wrote		Early	interrupt	and	exception	handling		part	when	Linux	kernel	version	was	-
	3.18	.	For	this	day	actual	version	of	the	Linux	kernel	is		4.1.0-rc6+		and		Andy	Lutomirski	
sent	the	patch	and	soon	it	will	be	in	the	mainline	kernel	that	changes	behaviour	for	the
	early_idt_handlers	.	NOTE	While	I	wrote	this	part	the	patch	already	turned	in	the	Linux
kernel	source	code.	Let's	look	on	it.	Now	the	same	part	looks	like:

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handler_array[i]);

load_idt((const	struct	desc_ptr	*)&idt_descr);

AS	you	can	see	it	has	only	one	difference	in	the	name	of	the	array	of	the	interrupts	handlers
entry	points.	Now	it	is		early_idt_handler_arry	:

extern	const	char	early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZ

E];

where		NUM_EXCEPTION_VECTORS		and		EARLY_IDT_HANDLER_SIZE		are	defined	as:

Start	to	dive	into	interrupts

251

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
https://lkml.org/lkml/2015/6/2/106
https://github.com/torvalds/linux/commit/425be5679fd292a3c36cb1fe423086708a99f11a

#define	NUM_EXCEPTION_VECTORS	32

#define	EARLY_IDT_HANDLER_SIZE	9

So,	the		early_idt_handler_array		is	an	array	of	the	interrupts	handlers	entry	points	and
contains	one	entry	point	on	every	nine	bytes.	You	can	remember	that	previous
	early_idt_handlers		was	defined	in	the	arch/x86/kernel/head_64.S.	The
	early_idt_handler_array		is	defined	in	the	same	source	code	file	too:

ENTRY(early_idt_handler_array)

...

...

...

ENDPROC(early_idt_handler_common)

It	fills		early_idt_handler_arry		with	the		.rept	NUM_EXCEPTION_VECTORS		and	contains	entry	of
the		early_make_pgtable		interrupt	handler	(more	about	its	implementation	you	can	read	in
the	part	about	Early	interrupt	and	exception	handling).	For	now	we	come	to	the	end	of	the
	x86_64		architecture-specific	code	and	the	next	part	is	the	generic	kernel	code.	Of	course
you	already	can	know	that	we	will	return	to	the	architecture-specific	code	in	the		setup_arch	
function	and	other	places,	but	this	is	the	end	of	the		x86_64		early	code.

Setting	stack	canary	for	the	interrupt	stack
The	next	stop	after	the	arch/x86/kernel/head_64.S	is	the	biggest		start_kernel		function
from	the	init/main.c.	If	you've	read	the	previous	chapter	about	the	Linux	kernel	initialization
process,	you	must	remember	it.	This	function	does	all	initialization	stuff	before	kernel	will
launch	first		init		process	with	the	pid	-		1	.	The	first	thing	that	is	related	to	the	interrupts
and	exceptions	handling	is	the	call	of	the		boot_init_stack_canary		function.

This	function	sets	the	canary	value	to	protect	interrupt	stack	overflow.	We	already	saw	a	little
some	details	about	implementation	of	the		boot_init_stack_canary		in	the	previous	part	and
now	let's	take	a	closer	look	on	it.	You	can	find	implementation	of	this	function	in	the
arch/x86/include/asm/stackprotector.h	and	its	depends	on	the		CONFIG_CC_STACKPROTECTOR	
kernel	configuration	option.	If	this	option	is	not	set	this	function	will	not	do	anything:

Start	to	dive	into	interrupts

252

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://en.wikipedia.org/wiki/Process_identifier
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/stackprotector.h

#ifdef	CONFIG_CC_STACKPROTECTOR

...

...

...

#else

static	inline	void	boot_init_stack_canary(void)

{

}

#endif

If	the		CONFIG_CC_STACKPROTECTOR		kernel	configuration	option	is	set,	the
	boot_init_stack_canary		function	starts	from	the	check	stat		irq_stack_union		that	represents
per-cpu	interrupt	stack	has	offset	equal	to	forty	bytes	from	the		stack_canary		value:

#ifdef	CONFIG_X86_64

								BUILD_BUG_ON(offsetof(union	irq_stack_union,	stack_canary)	!=	40);

#endif

As	we	can	read	in	the	previous	part	the		irq_stack_union		represented	by	the	following
union:

union	irq_stack_union	{

				char	irq_stack[IRQ_STACK_SIZE];

				struct	{

								char	gs_base[40];

								unsigned	long	stack_canary;

				};

};

which	defined	in	the	arch/x86/include/asm/processor.h.	We	know	that	union	in	the	C
programming	language	is	a	data	structure	which	stores	only	one	field	in	a	memory.	We	can
see	here	that	structure	has	first	field	-		gs_base		which	is	40	bytes	size	and	represents
bottom	of	the		irq_stack	.	So,	after	this	our	check	with	the		BUILD_BUG_ON		macro	should	end
successfully.	(you	can	read	the	first	part	about	Linux	kernel	initialization	process	if	you're
interesting	about	the		BUILD_BUG_ON		macro).

After	this	we	calculate	new		canary		value	based	on	the	random	number	and	Time	Stamp
Counter:

get_random_bytes(&canary,	sizeof(canary));

tsc	=	__native_read_tsc();

canary	+=	tsc	+	(tsc	<<	32UL);

Start	to	dive	into	interrupts

253

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/processor.h
http://en.wikipedia.org/wiki/Union_type
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
http://en.wikipedia.org/wiki/Time_Stamp_Counter

and	write		canary		value	to	the		irq_stack_union		with	the		this_cpu_write		macro:

this_cpu_write(irq_stack_union.stack_canary,	canary);

more	about		this_cpu_*		operation	you	can	read	in	the	Linux	kernel	documentation.

Disabling/Enabling	local	interrupts
The	next	step	in	the	init/main.c	which	is	related	to	the	interrupts	and	interrupts	handling	after
we	have	set	the		canary		value	to	the	interrupt	stack	-	is	the	call	of	the		local_irq_disable	
macro.

This	macro	defined	in	the	include/linux/irqflags.h	header	file	and	as	you	can	understand,	we
can	disable	interrupts	for	the	CPU	with	the	call	of	this	macro.	Let's	look	on	its
implementation.	First	of	all	note	that	it	depends	on	the		CONFIG_TRACE_IRQFLAGS_SUPPORT	
kernel	configuration	option:

#ifdef	CONFIG_TRACE_IRQFLAGS_SUPPORT

...

#define	local_irq_disable()	\

									do	{	raw_local_irq_disable();	trace_hardirqs_off();	}	while	(0)

...

#else

...

#define	local_irq_disable()					do	{	raw_local_irq_disable();	}	while	(0)

...

#endif

They	are	both	similar	and	as	you	can	see	have	only	one	difference:	the		local_irq_disable	
macro	contains	call	of	the		trace_hardirqs_off		when		CONFIG_TRACE_IRQFLAGS_SUPPORT		is
enabled.	There	is	special	feature	in	the	lockdep	subsystem	-		irq-flags	tracing		for	tracing
	hardirq		and		softirq		state.	In	our	case		lockdep		subsystem	can	give	us	interesting
information	about	hard/soft	irqs	on/off	events	which	are	occurs	in	the	system.	The
	trace_hardirqs_off		function	defined	in	the	kernel/locking/lockdep.c:

void	trace_hardirqs_off(void)

{

									trace_hardirqs_off_caller(CALLER_ADDR0);

}

EXPORT_SYMBOL(trace_hardirqs_off);

Start	to	dive	into	interrupts

254

https://github.com/torvalds/linux/blob/master/Documentation/this_cpu_ops.txt
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/irqflags.h
http://lwn.net/Articles/321663/
https://github.com/torvalds/linux/blob/master/kernel/locking/lockdep.c

and	just	calls		trace_hardirqs_off_caller		function.	The		trace_hardirqs_off_caller		checks
the		hardirqs_enabled		field	of	the	current	process	and	increases	the
	redundant_hardirqs_off		if	call	of	the		local_irq_disable		was	redundant	or	the
	hardirqs_off_events		if	it	was	not.	These	two	fields	and	other		lockdep		statistic	related	fields
are	defined	in	the	kernel/locking/lockdep_insides.h	and	located	in	the		lockdep_stats	
structure:

struct	lockdep_stats	{

...

...

...

int					softirqs_off_events;

int					redundant_softirqs_off;

...

...

...

}

If	you	will	set		CONFIG_DEBUG_LOCKDEP		kernel	configuration	option,	the
	lockdep_stats_debug_show		function	will	write	all	tracing	information	to	the		/proc/lockdep	:

static	void	lockdep_stats_debug_show(struct	seq_file	*m)

{

#ifdef	CONFIG_DEBUG_LOCKDEP

				unsigned	long	long	hi1	=	debug_atomic_read(hardirqs_on_events),

																													hi2	=	debug_atomic_read(hardirqs_off_events),

																													hr1	=	debug_atomic_read(redundant_hardirqs_on),

				...

				...

				...

				seq_printf(m,	"	hardirq	on	events:													%11llu\n",	hi1);

				seq_printf(m,	"	hardirq	off	events:												%11llu\n",	hi2);

				seq_printf(m,	"	redundant	hardirq	ons:									%11llu\n",	hr1);

#endif

}

and	you	can	see	its	result	with	the:

$	sudo	cat	/proc/lockdep

	hardirq	on	events:													12838248974

	hardirq	off	events:												12838248979

	redundant	hardirq	ons:															67792

	redundant	hardirq	offs:									3836339146

	softirq	on	events:																38002159

	softirq	off	events:															38002187

	redundant	softirq	ons:																			0

	redundant	softirq	offs:																		0

Start	to	dive	into	interrupts

255

https://github.com/torvalds/linux/blob/master/kernel/locking/lockdep_insides.h

Ok,	now	we	know	a	little	about	tracing,	but	more	info	will	be	in	the	separate	part	about
	lockdep		and		tracing	.	You	can	see	that	the	both		local_disable_irq		macros	have	the
same	part	-		raw_local_irq_disable	.	This	macro	defined	in	the
arch/x86/include/asm/irqflags.h	and	expands	to	the	call	of	the:

static	inline	void	native_irq_disable(void)

{

								asm	volatile("cli":	:	:"memory");

}

And	you	already	must	remember	that		cli		instruction	clears	the	IF	flag	which	determines
ability	of	a	processor	to	handle	an	interrupt	or	an	exception.	Besides	the		local_irq_disable	,
as	you	already	can	know	there	is	an	inverse	macro	-		local_irq_enable	.	This	macro	has	the
same	tracing	mechanism	and	very	similar	on	the		local_irq_enable	,	but	as	you	can
understand	from	its	name,	it	enables	interrupts	with	the		sti		instruction:

static	inline	void	native_irq_enable(void)

{

								asm	volatile("sti":	:	:"memory");

}

Now	we	know	how		local_irq_disable		and		local_irq_enable		work.	It	was	the	first	call	of
the		local_irq_disable		macro,	but	we	will	meet	these	macros	many	times	in	the	Linux
kernel	source	code.	But	for	now	we	are	in	the		start_kernel		function	from	the	init/main.c
and	we	just	disabled		local		interrupts.	Why	local	and	why	we	did	it?	Previously	kernel
provided	a	method	to	disable	interrupts	on	all	processors	and	it	was	called		cli	.	This
function	was	removed	and	now	we	have		local_irq_{enabled,disable}		to	disable	or	enable
interrupts	on	the	current	processor.	After	we've	disabled	the	interrupts	with	the
	local_irq_disable		macro,	we	set	the:

early_boot_irqs_disabled	=	true;

The		early_boot_irqs_disabled		variable	defined	in	the	include/linux/kernel.h:

extern	bool	early_boot_irqs_disabled;

and	used	in	the	different	places.	For	example	it	used	in	the		smp_call_function_many		function
from	the	kernel/smp.c	for	the	checking	possible	deadlock	when	interrupts	are	disabled:

WARN_ON_ONCE(cpu_online(this_cpu)	&&	irqs_disabled()

																					&&	!oops_in_progress	&&	!early_boot_irqs_disabled);

Start	to	dive	into	interrupts

256

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irqflags.h
http://en.wikipedia.org/wiki/Interrupt_flag
https://github.com/torvalds/linux/blob/master/init/main.c
https://lwn.net/Articles/291956/
https://github.com/torvalds/linux/blob/master/include/linux/kernel.h
https://github.com/torvalds/linux/blob/master/kernel/smp.c

Early	trap	initialization	during	kernel
initialization
The	next	functions	after	the		local_disable_irq		are		boot_cpu_init		and		page_address_init	,
but	they	are	not	related	to	the	interrupts	and	exceptions	(more	about	this	functions	you	can
read	in	the	chapter	about	Linux	kernel	initialization	process).	The	next	is	the		setup_arch	
function.	As	you	can	remember	this	function	located	in	the	arch/x86/kernel/setup.c	source
code	file	and	makes	initialization	of	many	different	architecture-dependent	stuff.	The	first
interrupts	related	function	which	we	can	see	in	the		setup_arch		is	the	-		early_trap_init	
function.	This	function	defined	in	the	arch/x86/kernel/traps.c	and	fills		Interrupt	Descriptor
Table		with	the	couple	of	entries:

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

#ifdef	CONFIG_X86_32

								set_intr_gate(X86_TRAP_PF,	page_fault);

#endif

								load_idt(&idt_descr);

}

Here	we	can	see	calls	of	three	different	functions:

	set_intr_gate_ist	

	set_system_intr_gate_ist	

	set_intr_gate	

All	of	these	functions	defined	in	the	arch/x86/include/asm/desc.h	and	do	the	similar	thing	but
not	the	same.	The	first		set_intr_gate_ist		function	inserts	new	an	interrupt	gate	in	the		IDT	.
Let's	look	on	its	implementation:

static	inline	void	set_intr_gate_ist(int	n,	void	*addr,	unsigned	ist)

{

								BUG_ON((unsigned)n	>	0xFF);

								_set_gate(n,	GATE_INTERRUPT,	addr,	0,	ist,	__KERNEL_CS);

}

First	of	all	we	can	see	the	check	that		n		which	is	vector	number	of	the	interrupt	is	not
greater	than		0xff		or	255.	We	need	to	check	it	because	we	remember	from	the	previous
part	that	vector	number	of	an	interrupt	must	be	between		0		and		255	.	In	the	next	step	we
can	see	the	call	of	the		_set_gate		function	that	sets	a	given	interrupt	gate	to	the		IDT		table:

Start	to	dive	into	interrupts

257

http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel.setup.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
http://en.wikipedia.org/wiki/Interrupt_vector_table
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html

static	inline	void	_set_gate(int	gate,	unsigned	type,	void	*addr,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate_desc	s;

								pack_gate(&s,	type,	(unsigned	long)addr,	dpl,	ist,	seg);

								write_idt_entry(idt_table,	gate,	&s);

								write_trace_idt_entry(gate,	&s);

}

Here	we	start	from	the		pack_gate		function	which	takes	clean		IDT		entry	represented	by	the
	gate_desc		structure	and	fills	it	with	the	base	address	and	limit,	Interrupt	Stack	Table,
Privilege	level,	type	of	an	interrupt	which	can	be	one	of	the	following	values:

	GATE_INTERRUPT	

	GATE_TRAP	

	GATE_CALL	

	GATE_TASK	

and	set	the	present	bit	for	the	given		IDT		entry:

static	inline	void	pack_gate(gate_desc	*gate,	unsigned	type,	unsigned	long	func,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate->offset_low								=	PTR_LOW(func);

								gate->segment											=	__KERNEL_CS;

								gate->ist															=	ist;

								gate->p																	=	1;

								gate->dpl															=	dpl;

								gate->zero0													=	0;

								gate->zero1													=	0;

								gate->type														=	type;

								gate->offset_middle					=	PTR_MIDDLE(func);

								gate->offset_high							=	PTR_HIGH(func);

}

After	this	we	write	just	filled	interrupt	gate	to	the		IDT		with	the		write_idt_entry		macro
which	expands	to	the		native_write_idt_entry		and	just	copy	the	interrupt	gate	to	the
	idt_table		table	by	the	given	index:

Start	to	dive	into	interrupts

258

https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level

#define	write_idt_entry(dt,	entry,	g)											native_write_idt_entry(dt,	entry,	g)

static	inline	void	native_write_idt_entry(gate_desc	*idt,	int	entry,	const	gate_desc	*

gate)

{

								memcpy(&idt[entry],	gate,	sizeof(*gate));

}

where		idt_table		is	just	array	of		gate_desc	:

extern	gate_desc	idt_table[];

That's	all.	The	second		set_system_intr_gate_ist		function	has	only	one	difference	from	the
	set_intr_gate_ist	:

static	inline	void	set_system_intr_gate_ist(int	n,	void	*addr,	unsigned	ist)

{

								BUG_ON((unsigned)n	>	0xFF);

								_set_gate(n,	GATE_INTERRUPT,	addr,	0x3,	ist,	__KERNEL_CS);

}

Do	you	see	it?	Look	on	the	fourth	parameter	of	the		_set_gate	.	It	is		0x3	.	In	the
	set_intr_gate		it	was		0x0	.	We	know	that	this	parameter	represent		DPL		or	privilege	level.
We	also	know	that		0		is	the	highest	privilege	level	and		3		is	the	lowest.Now	we	know	how
	set_system_intr_gate_ist	,		set_intr_gate_ist	,		set_intr_gate		are	work	and	we	can	return
to	the		early_trap_init		function.	Let's	look	on	it	again:

set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

We	set	two		IDT		entries	for	the		#DB		interrupt	and		int3	.	These	functions	takes	the	same
set	of	parameters:

vector	number	of	an	interrupt;
address	of	an	interrupt	handler;
interrupt	stack	table	index.

That's	all.	More	about	interrupts	and	handlers	you	will	know	in	the	next	parts.

Conclusion

Start	to	dive	into	interrupts

259

It	is	the	end	of	the	second	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.
We	saw	the	some	theory	in	the	previous	part	and	started	to	dive	into	interrupts	and
exceptions	handling	in	the	current	part.	We	have	started	from	the	earliest	parts	in	the	Linux
kernel	source	code	which	are	related	to	the	interrupts.	In	the	next	part	we	will	continue	to
dive	into	this	interesting	theme	and	will	know	more	about	interrupt	handling	process.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
IDT
Protected	mode
List	of	x86	calling	conventions
8086
Long	mode
NX
Extended	Feature	Enable	Register
Model-specific	register
Process	identifier
lockdep
irqflags	tracing
IF
Stack	canary
Union	type
thiscpu*	operations
vector	number
Interrupt	Stack	Table
Privilege	level
Previous	part

Start	to	dive	into	interrupts

260

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/X86_calling_conventions#List_of_x86_calling_conventions
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Control_register#Additional_Control_registers_in_x86-64_series
http://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Process_identifier
http://lwn.net/Articles/321663/
https://www.kernel.org/doc/Documentation/irqflags-tracing.txt
http://en.wikipedia.org/wiki/Interrupt_flag
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
http://en.wikipedia.org/wiki/Union_type
https://github.com/torvalds/linux/blob/master/Documentation/this_cpu_ops.txt
http://en.wikipedia.org/wiki/Interrupt_vector_table
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html

Interrupts	and	Interrupt	Handling.	Part	3.

Interrupt	handlers
This	is	the	third	part	of	the	chapter	about	an	interrupts	and	an	exceptions	handling	and	in	the
previous	part	we	stopped	in	the		setup_arch		function	from	the	arch/x86/kernel/setup.c	on	the
setting	of	the	two	exceptions	handlers	for	the	two	following	exceptions:

	#DB		-	debug	exception,	transfers	control	from	the	interrupted	process	to	the	debug
handler;
	#BP		-	breakpoint	exception,	caused	by	the		int	3		instruction.

These	exceptions	allow	the		x86_64		architecture	to	have	early	exception	processing	for	the
purpose	of	debugging	via	the	kgdb.

As	you	can	remember	we	set	these	exceptions	handlers	in	the		early_trap_init		function:

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

								load_idt(&idt_descr);

}

from	the	arch/x86/kernel/traps.c.	We	already	saw	implementation	of	the		set_intr_gate_ist	
and		set_system_intr_gate_ist		functions	in	the	previous	part	and	now	we	will	look	on	the
implementation	of	these	early	exceptions	handlers.

Debug	and	Breakpoint	exceptions
Ok,	we	set	the	interrupts	gates	in	the		early_trap_init		function	for	the		#DB		and		#BP	
exceptions	and	now	time	is	to	look	on	their	handlers.	But	first	of	all	let's	look	on	these
exceptions.	The	first	exceptions	-		#DB		or	debug	exception	occurs	when	a	debug	event
occurs,	for	example	attempt	to	change	the	contents	of	a	debug	register.	Debug	registers	are
special	registers	which	present	in	processors	starting	from	the	Intel	80386	and	as	you	can
understand	from	its	name	they	are	used	for	debugging.	These	registers	allow	to	set
breakpoints	on	the	code	and	read	or	write	data	to	trace,	thus	tracking	the	place	of	errors.
The	debug	registers	are	privileged	resources	available	and	the	program	in	either	real-

Interrupt	handlers

261

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://github.com/torvalds/linux/blame/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/KGDB
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
http://en.wikipedia.org/wiki/X86_debug_register
http://en.wikipedia.org/wiki/Intel_80386

address	or	protected	mode	at		CPL		is		0	,	that's	why	we	have	used		set_intr_gate_ist		for
the		#DB	,	but	not	the		set_system_intr_gate_ist	.	The	verctor	number	of	the		#DB		exceptions
is		1		(we	pass	it	as		X86_TRAP_DB)	and	has	no	error	code:

--

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																									

							|

--

|1					|	#DB				|Reserved												|F/T		|NO								|																															

							|

--

The	second	is		#BP		or	breakpoint	exception	occurs	when	processor	executes	the	INT	3
instruction.	We	can	add	it	anywhere	in	our	code,	for	example	let's	look	on	the	simple
program:

//	breakpoint.c

#include	<stdio.h>

int	main()	{

				int	i;

				while	(i	<	6){

								printf("i	equal	to:	%d\n",	i);

								__asm__("int3");

								++i;

				}

}

If	we	will	compile	and	run	this	program,	we	will	see	following	output:

$	gcc	breakpoint.c	-o	breakpoint

i	equal	to:	0

Trace/breakpoint	trap

But	if	will	run	it	with	gdb,	we	will	see	our	breakpoint	and	can	continue	execution	of	our
program:

Interrupt	handlers

262

http://en.wikipedia.org/wiki/INT_%28x86_instruction%29#INT_3

$	gdb	breakpoint

...

...

...

(gdb)	run

Starting	program:	/home/alex/breakpoints	

i	equal	to:	0

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

(gdb)	c

Continuing.

i	equal	to:	1

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

(gdb)	c

Continuing.

i	equal	to:	2

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

...

...

...

Now	we	know	a	little	about	these	two	exceptions	and	we	can	move	on	to	consideration	of
their	handlers.

Preparation	before	an	interrupt	handler
As	you	can	note,	the		set_intr_gate_ist		and		set_system_intr_gate_ist		functions	takes	an
addresses	of	the	exceptions	handlers	in	the	second	parameter:

	&debug	;
	&int3	.

You	will	not	find	these	functions	in	the	C	code.	All	that	can	be	found	in	the		*.c/*.h		files	only
definition	of	this	functions	in	the	arch/x86/include/asm/traps.h:

asmlinkage	void	debug(void);

asmlinkage	void	int3(void);

Interrupt	handlers

263

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/traps.h

But	we	can	see		asmlinkage		descriptor	here.	The		asmlinkage		is	the	special	specificator	of
the	gcc.	Actually	for	a		C		functions	which	are	called	from	assembly,	we	need	in	explicit
declaration	of	the	function	calling	convention.	In	our	case,	if	function	maked	with
	asmlinkage		descriptor,	then		gcc		will	compile	the	function	to	retrieve	parameters	from
stack.	So,	both	handlers	are	defined	in	the	arch/x86/kernel/entry_64.S	assembly	source
code	file	with	the		idtentry		macro:

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

idtentry	int3	do_int3	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

Actually		debug		and		int3		are	not	interrupts	handlers.	Remember	that	before	we	can
execute	an	interrupt/exception	handler,	we	need	to	do	some	preparations	as:

When	an	interrupt	or	exception	occurred,	the	processor	uses	an	exception	or	interrupt
vector	as	an	index	to	a	descriptor	in	the		IDT	;
In	legacy	mode		ss:esp		registers	are	pushed	on	the	stack	only	if	privilege	level
changed.	In	64-bit	mode		ss:rsp		pushed	on	the	stack	everytime;
During	stack	switching	with		IST		the	new		ss		selector	is	forced	to	null.	Old		ss		and
	rsp		are	pushed	on	the	new	stack.
The		rflags	,		cs	,		rip		and	error	code	pushed	on	the	stack;
Control	transferred	to	an	interrupt	handler;
After	an	interrupt	handler	will	finish	its	work	and	finishes	with	the		iret		instruction,	old
	ss		will	be	poped	from	the	stack	and	loaded	to	the		ss		register.
	ss:rsp		will	be	popped	from	the	stack	unconditionally	in	the	64-bit	mode	and	will	be
popped	only	if	there	is	a	privilege	level	change	in	legacy	mode.
	iret		instruction	will	restore		rip	,		cs		and		rflags	;
Interrupted	program	will	continue	its	execution.

				+--------------------+

+40	|								ss										|

+32	|							rsp										|

+24	|						rflags								|

+16	|								cs										|

	+8	|							rip										|

		0	|				error	code						|

				+--------------------+

Now	we	can	see	on	the	preparations	before	a	process	will	transfer	control	to	an
interrupt/exception	handler	from	practical	side.	As	I	already	wrote	above	the	first	thirteen
exceptions	handlers	defined	in	the	arch/x86/kernel/entry_64.S	assembly	file	with	the	idtentry
macro:

Interrupt	handlers

264

http://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S#L967

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

...

...

...

END(\sym)

.endm

This	macro	defines	an	exception	entry	point	and	as	we	can	see	it	takes		five		arguments:

	sym		-	defines	global	symbol	with	the		.globl	name	.
	do_sym		-	an	interrupt	handler.
	has_error_code:req		-	information	about	error	code,	The		:req		qualifier	tells	the
assembler	that	the	argument	is	required;
	paranoid		-	shows	us	how	we	need	to	check	current	mode;
	shift_ist		-	shows	us	what's	stack	to	use;

As	we	can	see	our	exceptions	handlers	are	almost	the	same:

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

idtentry	int3	do_int3	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

The	differences	are	only	in	the	global	name	and	name	of	exceptions	handlers.	Now	let's	look
how		idtentry		macro	implemented.	It	starts	from	the	two	checks:

				.if	\shift_ist	!=	-1	&&	\paranoid	==	0

				.error	"using	shift_ist	requires	paranoid=1"

				.endif

				.if	\has_error_code

				XCPT_FRAME

				.else

				INTR_FRAME

				.endif

First	check	makes	the	check	that	an	exceptions	uses		Interrupt	stack	table		and		paranoid	
is	set,	in	other	way	it	emits	the	erorr	with	the	.error	directive.	The	second		if		clause	checks
existence	of	an	error	code	and	calls		XCPT_FRAME		or		INTR_FRAME		macros	depends	on	it.
These	macros	just	expand	to	the	set	of	CFI	directives	which	are	used	by		GNU	AS		to	manage
call	frames.	The		CFI		directives	are	used	only	to	generate	dwarf2	unwind	information	for
better	backtraces	and	they	don't	change	any	code,	so	we	will	not	go	into	detail	about	it	and
from	this	point	I	will	skip	all	code	which	is	related	to	these	directives.	In	the	next	step	we
check	error	code	again	and	push	it	on	the	stack	if	an	exception	has	it	with	the:

Interrupt	handlers

265

https://sourceware.org/binutils/docs/as/Error.html#Error
https://sourceware.org/binutils/docs/as/CFI-directives.html
http://en.wikipedia.org/wiki/DWARF

.ifeq	\has_error_code

				pushq_cfi	$-1

.endif

The		pushq_cfi		macro	defined	in	the	arch/x86/include/asm/dwarf2.h	and	expands	to	the
	pushq		instruction	which	pushes	given	error	code:

				.macro	pushq_cfi	reg

				pushq	\reg

				CFI_ADJUST_CFA_OFFSET	8

				.endm

Pay	attention	on	the		$-1	.	We	already	know	that	when	an	exception	occurs,	the	processor
pushes		ss	,		rsp	,		rflags	,		cs		and		rip		on	the	stack:

#define	RIP								16*8

#define	CS								17*8

#define	EFLAGS				18*8

#define	RSP								19*8

#define	SS								20*8

With	the		pushq	\reg		we	denote	that	place	before	the		RIP		will	contain	error	code	of	an
exception:

#define	ORIG_RAX				15*8

The		ORIG_RAX		will	contain	error	code	of	an	exception,	IRQ	number	on	a	hardware	interrupt
and	system	call	number	on	system	call	entry.	In	the	next	step	we	can	see	the
	ALLOC_PT_GPREGS_ON_STACK		macro	which	allocates	space	for	the	15	general	purpose	registers
on	the	stack:

.macro	ALLOC_PT_GPREGS_ON_STACK	addskip=0

subq				$15*8+\addskip,	%rsp

CFI_ADJUST_CFA_OFFSET	15*8+\addskip

.endm

After	this	we	check		paranoid		and	if	it	is	set	we	check	first	three		CPL		bits.	We	compare	it
with	the		3		and	it	allows	us	to	know	did	we	come	from	userspace	or	not:

Interrupt	handlers

266

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/dwarf2.h
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/System_call

.if	\paranoid

		.if	\paranoid	==	1

				CFI_REMEMBER_STATE

				testl	$3,	CS(%rsp)

				jnz	1f

		.endif

		call	paranoid_entry

.else

		call	error_entry

.endif

If	we	came	from	userspace	we	jump	on	the	label		1		which	starts	from	the		call	error_entry	
instruction.	The		error_entry		saves	all	registers	in	the		pt_regs		structure	which	presents	an
interrupt/exception	stack	frame	and	defined	in	the	arch/x86/include/uapi/asm/ptrace.h.	It
saves	common	and	extra	registers	on	the	stack	with	the:

SAVE_C_REGS	8

SAVE_EXTRA_REGS	8

from		rdi		to		r15		and	executes	swapgs	instruction.	This	instruction	provides	a	method	for
the	Linux	kernel	to	obtain	a	pointer	to	the	kernel	data	structures	and	save	the	user's
	gsbase	.	After	this	we	will	exit	from	the		error_entry		with	the		ret		instruction.	After	the
	error_entry		finished	to	execute,	since	we	came	from	userspace	we	need	to	switch	on
kernel	interrupt	stack:

				movq	%rsp,%rdi

				call	sync_regs

We	just	save	all	registers	to	the		error_entry		in	the		error_entry	,	we	put	address	of	the
	pt_regs		to	the		rdi		and	call		sync_regs		function	from	the	arch/x86/kernel/traps.c:

asmlinkage	__visible	notrace	struct	pt_regs	*sync_regs(struct	pt_regs	*eregs)

{

				struct	pt_regs	*regs	=	task_pt_regs(current);

				*regs	=	*eregs;

				return	regs;

}

This	function	switchs	off	the		IST		stack	if	we	came	from	usermode.	After	this	we	switch	on
the	stack	which	we	got	from	the		sync_regs	:

movq	%rax,%rsp

movq	%rsp,%rdi

Interrupt	handlers

267

https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/ptrace.h
http://www.felixcloutier.com/x86/SWAPGS.html
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

and	put	pointer	of	the		pt_regs		again	in	the		rdi	,	and	in	the	last	step	we	call	an	exception
handler:

call	\do_sym

So,	real	exceptions	handlers	are		do_debug		and		do_int3		functions.	We	will	see	these
function	in	this	part,	but	little	later.	First	of	all	let's	look	on	the	preparations	before	a
processor	will	transfer	control	to	an	interrupt	handler.	In	another	way	if		paranoid		is	set,	but
it	is	not	1,	we	call		paranoid_entry		which	makes	almost	the	same	that		error_entry	,	but	it
checks	current	mode	with	more	slow	but	accurate	way:

ENTRY(paranoid_entry)

				SAVE_C_REGS	8

				SAVE_EXTRA_REGS	8

				...

				...

				movl	$MSR_GS_BASE,%ecx

				rdmsr

				testl	%edx,%edx

				js	1f				/*	negative	->	in	kernel	*/

				SWAPGS

				...

				...

				ret

END(paranoid_entry)

If		edx		wll	be	negative,	we	are	in	the	kernel	mode.	As	we	store	all	registers	on	the	stack,
check	that	we	are	in	the	kernel	mode,	we	need	to	setup		IST		stack	if	it	is	set	for	a	given
exception,	call	an	exception	handler	and	restore	the	exception	stack:

				.if	\shift_ist	!=	-1

				subq	$EXCEPTION_STKSZ,	CPU_TSS_IST(\shift_ist)

				.endif

				call	\do_sym

				.if	\shift_ist	!=	-1

				addq	$EXCEPTION_STKSZ,	CPU_TSS_IST(\shift_ist)

				.endif

The	last	step	when	an	exception	handler	will	finish	it's	work	all	registers	will	be	restored	from
the	stack	with	the		RESTORE_C_REGS		and		RESTORE_EXTRA_REGS		macros	and	control	will	be
returned	an	interrupted	task.	That's	all.	Now	we	know	about	preparation	before	an
interrupt/exception	handler	will	start	to	execute	and	we	can	go	directly	to	the	implementation
of	the	handlers.

Interrupt	handlers

268

Implementation	of	ainterrupts	and	exceptions
handlers
Both	handlers		do_debug		and		do_int3		defined	in	the	arch/x86/kernel/traps.c	source	code
file	and	have	two	similar	things:	All	interrupts/exceptions	handlers	marked	with	the
	dotraplinkage		prefix	that	expands	to	the:

#define	dotraplinkage	__visible

#define	__visible	__attribute__((externally_visible))

which	tells	to	compiler	that	something	else	uses	this	function	(in	our	case	these	functions	are
called	from	the	assembly	interrupt	preparation	code).	And	also	they	takes	two	parameters:

pointer	to	the		pt_regs		structure	which	contains	registers	of	the	interrupted	task;
error	code.

First	of	all	let's	consider		do_debug		handler.	This	function	starts	from	the	getting	previous
state	with	the		ist_enter		function	from	the	arch/x86/kernel/traps.c.	We	call	it	because	we
need	to	know,	did	we	come	to	the	interrupt	handler	from	the	kernel	mode	or	user	mode.

prev_state	=	ist_enter(regs);

The		ist_enter		function	returns	previous	state	context	state	and	executes	a	couple
preprartions	before	we	continue	to	handle	an	exception.	It	starts	from	the	check	of	the
previous	mode	with	the		user_mode_vm		macro.	It	takes		pt_regs		structure	which	contains	a
set	of	registers	of	the	interrupted	task	and	returns		1		if	we	came	from	userspace	and		0		if
we	came	from	kernel	space.	According	to	the	previous	mode	we	execute		exception_enter		if
we	are	from	the	userspace	or	inform	RCU	if	we	are	from	krenel	space:

...

if	(user_mode_vm(regs))	{

				prev_state	=	exception_enter();

}	else	{

				rcu_nmi_enter();

				prev_state	=	IN_KERNEL;

}

...

...

...

return	prev_state;

After	this	we	load	the		DR6		debug	registers	to	the		dr6		variable	with	the	call	of	the
	get_debugreg		macro	from	the	arch/x86/include/asm/debugreg.h:

Interrupt	handlers

269

https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/debugreg.h

get_debugreg(dr6,	6);

dr6	&=	~DR6_RESERVED;

The		DR6		debug	register	is	debug	status	register	contains	information	about	the	reason	for
stopping	the		#DB		or	debug	exception	handler.	After	we	loaded	its	value	to	the		dr6		variable
we	filter	out	all	reserved	bits	(4:12		bits).	In	the	next	step	we	check		dr6		register	and
previous	state	with	the	following		if		condition	expression:

if	(!dr6	&&	user_mode_vm(regs))

				user_icebp	=	1;

If		dr6		does	not	show	any	reasons	why	we	caught	this	trap	we	set		user_icebp		to	one
which	means	that	user-code	wants	to	get	SIGTRAP	signal.	In	the	next	step	we	check	was	it
kmemcheck	trap	and	if	yes	we	go	to	exit:

if	((dr6	&	DR_STEP)	&&	kmemcheck_trap(regs))

				goto	exit;

After	we	did	all	these	checks,	we	clear	the		dr6		register,	clear	the		DEBUGCTLMSR_BTF		flag
which	provides	single-step	on	branches	debugging,	set		dr6		register	for	the	current	thread
and	increase		debug_stack_usage		per-cpu)	variable	with	the:

set_debugreg(0,	6);

clear_tsk_thread_flag(tsk,	TIF_BLOCKSTEP);

tsk->thread.debugreg6	=	dr6;

debug_stack_usage_inc();

As	we	saved		dr6	,	we	can	allow	irqs:

static	inline	void	preempt_conditional_sti(struct	pt_regs	*regs)

{

								preempt_count_inc();

								if	(regs->flags	&	X86_EFLAGS_IF)

																local_irq_enable();

}

more	about		local_irq_enabled		and	related	stuff	you	can	read	in	the	second	part	about
interrupts	handling	in	the	Linux	kernel.	In	the	next	step	we	check	the	previous	mode	was
virtual	8086	and	handle	the	trap:

Interrupt	handlers

270

https://en.wikipedia.org/wiki/Unix_signal#SIGTRAP
https://www.kernel.org/doc/Documentation/kmemcheck.txt
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-2.html
https://en.wikipedia.org/wiki/Virtual_8086_mode

if	(regs->flags	&	X86_VM_MASK)	{

				handle_vm86_trap((struct	kernel_vm86_regs	*)	regs,	error_code,	X86_TRAP_DB);

						preempt_conditional_cli(regs);

						debug_stack_usage_dec();

						goto	exit;

}

...

...

...

exit:

				ist_exit(regs,	prev_state);

If	we	came	not	from	the	virtual	8086	mode,	we	need	to	check		dr6		register	and	previous
mode	as	we	did	it	above.	Here	we	check	if	step	mode	debugging	is	enabled	and	we	are	not
from	the	user	mode,	we	enabled	step	mode	debugging	in	the		dr6		copy	in	the	current
thread,	set		TIF_SINGLE_STEP		flag	and	re-enable	Trap	flag	for	the	user	mode:

if	((dr6	&	DR_STEP)	&&	!user_mode(regs))	{

								tsk->thread.debugreg6	&=	~DR_STEP;

								set_tsk_thread_flag(tsk,	TIF_SINGLESTEP);

								regs->flags	&=	~X86_EFLAGS_TF;

}

Then	we	get		SIGTRAP		signal	code:

si_code	=	get_si_code(tsk->thread.debugreg6);

and	send	it	for	user	icebp	traps:

if	(tsk->thread.debugreg6	&	(DR_STEP	|	DR_TRAP_BITS)	||	user_icebp)

				send_sigtrap(tsk,	regs,	error_code,	si_code);

preempt_conditional_cli(regs);

debug_stack_usage_dec();

exit:

				ist_exit(regs,	prev_state);

In	the	end	we	disable		irqs	,	decrease	value	of	the		debug_stack_usage		and	exit	from	the
exception	handler	with	the		ist_exit		function.

The	second	exception	handler	is		do_int3		defined	in	the	same	source	code	file	-
arch/x86/kernel/traps.c.	In	the		do_int3		we	make	almost	the	same	that	in	the		do_debug	
handler.	We	get	the	previous	state	with	the		ist_enter	,	increase	and	decrease	the

Interrupt	handlers

271

https://en.wikipedia.org/wiki/Trap_flag
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

	debug_stack_usage		per-cpu	variable,	enable	and	disable	local	interrupts.	But	of	course	there
is	one	difference	between	these	two	handlers.	We	need	to	lock	and	then	sync	processor
cores	during	breakpoint	patching.

That's	all.

Conclusion
It	is	the	end	of	the	third	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We
saw	the	initialization	of	the	Interrupt	descriptor	table	in	the	previous	part	with	the		#DB		and
	#BP		gates	and	started	to	dive	into	preparation	before	control	will	be	transferred	to	an
exception	handler	and	implementation	of	some	interrupt	handlers	in	this	part.	In	the	next	part
we	will	continue	to	dive	into	this	theme	and	will	go	next	by	the		setup_arch		function	and	will
try	to	understand	interrupts	handling	related	stuff.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Debug	registers
Intel	80385
INT	3
gcc
TSS
GNU	assembly	.error	directive
dwarf2
CFI	directives
IRQ
system	call
swapgs
SIGTRAP
Per-CPU	variables
kgdb
ACPI
Previous	part

Interrupt	handlers

272

https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/X86_debug_register
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/INT_%28x86_instruction%29#INT_3
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Task_state_segment
https://sourceware.org/binutils/docs/as/Error.html#Error
http://en.wikipedia.org/wiki/DWARF
https://sourceware.org/binutils/docs/as/CFI-directives.html
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/System_call
http://www.felixcloutier.com/x86/SWAPGS.html
https://en.wikipedia.org/wiki/Unix_signal#SIGTRAP
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/KGDB
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html

Interrupt	handlers

273

Interrupts	and	Interrupt	Handling.	Part	4.

Initialization	of	non-early	interrupt	gates
This	is	fourth	part	about	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	and	in	the
previous	part	we	saw	first	early		#DB		and		#BP		exceptions	handlers	from	the
arch/x86/kernel/traps.c.	We	stopped	on	the	right	after	the		early_trap_init		function	that
called	in	the		setup_arch		function	which	defined	in	the	arch/x86/kernel/setup.c.	In	this	part
we	will	continue	to	dive	into	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	for
	x86_64		and	continue	to	do	it	from	the	place	where	we	left	off	in	the	last	part.	First	thing
which	is	related	to	the	interrupts	and	exceptions	handling	is	the	setup	of	the		#PF		or	page
fault	handler	with	the		early_trap_pf_init		function.	Let's	start	from	it.

Early	page	fault	handler
The		early_trap_pf_init		function	defined	in	the	arch/x86/kernel/traps.c.	It	uses
	set_intr_gate		macro	that	fills	Interrupt	Descriptor	Table	with	the	given	entry:

void	__init	early_trap_pf_init(void)

{

#ifdef	CONFIG_X86_64

									set_intr_gate(X86_TRAP_PF,	page_fault);

#endif

}

This	macro	defined	in	the	arch/x86/include/asm/desc.h.	We	already	saw	macros	like	this	in
the	previous	part	-		set_system_intr_gate		and		set_intr_gate_ist	.	This	macro	checks	that
given	vector	number	is	not	greater	than		255		(maximum	vector	number)	and	calls
	_set_gate		function	as		set_system_intr_gate		and		set_intr_gate_ist		did	it:

#define	set_intr_gate(n,	addr)																																		\

do	{																																																												\

								BUG_ON((unsigned)n	>	0xFF);																													\

								_set_gate(n,	GATE_INTERRUPT,	(void	*)addr,	0,	0,								\

																		__KERNEL_CS);																																	\

								_trace_set_gate(n,	GATE_INTERRUPT,	(void	*)trace_##addr,\

																								0,	0,	__KERNEL_CS);																					\

}	while	(0)

Initialization	of	non-early	interrupt	gates

274

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

The		set_intr_gate		macro	takes	two	parameters:

vector	number	of	a	interrupt;
address	of	an	interrupt	handler;

In	our	case	they	are:

	X86_TRAP_PF		-		14	;
	page_fault		-	the	interrupt	handler	entry	point.

The		X86_TRAP_PF		is	the	element	of	enum	which	defined	in	the
arch/x86/include/asm/traprs.h:

enum	{

				...

				...

				...

				...

				X86_TRAP_PF,												/*	14,	Page	Fault	*/

				...

				...

				...

}

When	the		early_trap_pf_init		will	be	called,	the		set_intr_gate		will	be	expanded	to	the	call
of	the		_set_gate		which	will	fill	the		IDT		with	the	handler	for	the	page	fault.	Now	let's	look	on
the	implementation	of	the		page_fault		handler.	The		page_fault		handler	defined	in	the
arch/x86/kernel/entry_64.S	assembly	source	code	file	as	all	exceptions	handlers.	Let's	look
on	it:

trace_idtentry	page_fault	do_page_fault	has_error_code=1

We	saw	in	the	previous	part	how		#DB		and		#BP		handlers	defined.	They	were	defined	with
the		idtentry		macro,	but	here	we	can	see		trace_idtentry	.	This	macro	defined	in	the	same
source	code	file	and	depends	on	the		CONFIG_TRACING		kernel	configuration	option:

#ifdef	CONFIG_TRACING

.macro	trace_idtentry	sym	do_sym	has_error_code:req

idtentry	trace(\sym)	trace(\do_sym)	has_error_code=\has_error_code

idtentry	\sym	\do_sym	has_error_code=\has_error_code

.endm

#else

.macro	trace_idtentry	sym	do_sym	has_error_code:req

idtentry	\sym	\do_sym	has_error_code=\has_error_code

.endm

#endif

Initialization	of	non-early	interrupt	gates

275

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/traprs.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/entry_64.S
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

We	will	not	dive	into	exceptions	Tracing	now.	If		CONFIG_TRACING		is	not	set,	we	can	see	that
	trace_idtentry		macro	just	expands	to	the	normal		idtentry	.	We	already	saw
implementation	of	the		idtentry		macro	in	the	previous	part,	so	let's	start	from	the
	page_fault		exception	handler.

As	we	can	see	in	the		idtentry		definition,	the	handler	of	the		page_fault		is		do_page_fault	
function	which	defined	in	the	arch/x86/mm/fault.c	and	as	all	exceptions	handlers	it	takes	two
arguments:

	regs		-		pt_regs		structure	that	holds	state	of	an	interrupted	process;
	error_code		-	error	code	of	the	page	fault	exception.

Let's	look	inside	this	function.	First	of	all	we	read	content	of	the	cr2	control	register:

dotraplinkage	void	notrace

do_page_fault(struct	pt_regs	*regs,	unsigned	long	error_code)

{

				unsigned	long	address	=	read_cr2();

				...

				...

				...

}

This	register	contains	a	linear	address	which	caused		page	fault	.	In	the	next	step	we	make
a	call	of	the		exception_enter		function	from	the	include/linux/context_tracking.h.	The
	exception_enter		and		exception_exit		are	functions	from	context	tracking	subsystem	in	the
Linux	kernel	used	by	the	RCU	to	remove	its	dependency	on	the	timer	tick	while	a	processor
runs	in	userspace.	Almost	in	the	every	exception	handler	we	will	see	similar	code:

enum	ctx_state	prev_state;

prev_state	=	exception_enter();

...

...	//	exception	handler	here

...

exception_exit(prev_state);

The		exception_enter		function	checks	that		context	tracking		is	enabled	with	the
	context_tracking_is_enabled		and	if	it	is	in	enabled	state,	we	get	previous	context	with	the
	this_cpu_read		(more	about		this_cpu_*		operations	you	can	read	in	the	Documentation).
After	this	it	calls		context_tracking_user_exit		function	which	informs	the	context	tracking	that
the	processor	is	exiting	userspace	mode	and	entering	the	kernel:

Initialization	of	non-early	interrupt	gates

276

https://en.wikipedia.org/wiki/Tracing_%28software%29
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/master/arch/x86/mm/fault.c
https://en.wikipedia.org/wiki/Control_register
https://github.com/torvalds/linux/blob/master/include/context_tracking.h
https://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/Documentation/this_cpu_ops.txt

static	inline	enum	ctx_state	exception_enter(void)

{

								enum	ctx_state	prev_ctx;

								if	(!context_tracking_is_enabled())

																return	0;

								prev_ctx	=	this_cpu_read(context_tracking.state);

								context_tracking_user_exit();

								return	prev_ctx;

}

The	state	can	be	one	of	the:

enum	ctx_state	{

				IN_KERNEL	=	0,

				IN_USER,

}	state;

And	in	the	end	we	return	previous	context.	Between	the		exception_enter		and
	exception_exit		we	call	actual	page	fault	handler:

__do_page_fault(regs,	error_code,	address);

The		__do_page_fault		is	defined	in	the	same	source	code	file	as		do_page_fault		-
arch/x86/mm/fault.c.	In	the	beginning	of	the		__do_page_fault		we	check	state	of	the
kmemcheck	checker.	The		kmemcheck		detects	warns	about	some	uses	of	uninitialized
memory.	We	need	to	check	it	because	page	fault	can	be	caused	by	kmemcheck:

if	(kmemcheck_active(regs))

								kmemcheck_hide(regs);

				prefetchw(&mm->mmap_sem);

After	this	we	can	see	the	call	of	the		prefetchw		which	executes	instruction	with	the	same
name	which	fetches	X86_FEATURE_3DNOW	to	get	exclusive	cache	line.	The	main	purpose
of	prefetching	is	to	hide	the	latency	of	a	memory	access.	In	the	next	step	we	check	that	we
got	page	fault	not	in	the	kernel	space	with	the	following	condition:

if	(unlikely(fault_in_kernel_space(address)))	{

...

...

...

}

Initialization	of	non-early	interrupt	gates

277

https://github.com/torvalds/linux/blob/master/arch/x86/mm/fault.c
https://www.kernel.org/doc/Documentation/kmemcheck.txt
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/?title=3DNow!
https://en.wikipedia.org/wiki/CPU_cache

where		fault_in_kernel_space		is:

static	int	fault_in_kernel_space(unsigned	long	address)

{

								return	address	>=	TASK_SIZE_MAX;

}

The		TASK_SIZE_MAX		macro	expands	to	the:

#define	TASK_SIZE_MAX			((1UL	<<	47)	-	PAGE_SIZE)

or		0x00007ffffffff000	.	Pay	attention	on		unlikely		macro.	There	are	two	macros	in	the
Linux	kernel:

#define	likely(x)						__builtin_expect(!!(x),	1)

#define	unlikely(x)				__builtin_expect(!!(x),	0)

You	can	often	find	these	macros	in	the	code	of	the	Linux	kernel.	Main	purpose	of	these
macros	is	optimization.	Sometimes	this	situation	is	that	we	need	to	check	the	condition	of
the	code	and	we	know	that	it	will	rarely	be		true		or		false	.	With	these	macros	we	can	tell
to	the	compiler	about	this.	For	example

static	int	proc_root_readdir(struct	file	*file,	struct	dir_context	*ctx)

{

								if	(ctx->pos	<	FIRST_PROCESS_ENTRY)	{

																int	error	=	proc_readdir(file,	ctx);

																if	(unlikely(error	<=	0))

																								return	error;

...

...

...

}

Here	we	can	see		proc_root_readdir		function	which	will	be	called	when	the	Linux	VFS
needs	to	read	the		root		directory	contents.	If	condition	marked	with		unlikely	,	compiler
can	put		false		code	right	after	branching.	Now	let's	back	to	the	our	address	check.
Comparison	between	the	given	address	and	the		0x00007ffffffff000		will	give	us	to	know,
was	page	fault	in	the	kernel	mode	or	user	mode.	After	this	check	we	know	it.	After	this
	__do_page_fault		routine	will	try	to	understand	the	problem	that	provoked	page	fault
exception	and	then	will	pass	address	to	the	appropriate	routine.	It	can	be		kmemcheck		fault,
spurious	fault,	kprobes	fault	and	etc.	Will	not	dive	into	implementation	details	of	the	page

Initialization	of	non-early	interrupt	gates

278

http://lxr.free-electrons.com/ident?i=unlikely
https://en.wikipedia.org/wiki/Virtual_file_system
https://www.kernel.org/doc/Documentation/kprobes.txt

fault	exception	handler	in	this	part,	because	we	need	to	know	many	different	concepts	which
are	provided	by	the	Linux	kernel,	but	will	see	it	in	the	chapter	about	the	memory
management	in	the	Linux	kernel.

Back	to	start_kernel
There	are	many	different	function	calls	after	the		early_trap_pf_init		in	the		setup_arch	
function	from	different	kernel	subsystems,	but	there	are	no	one	interrupts	and	exceptions
handling	related.	So,	we	have	to	go	back	where	we	came	from	-		start_kernel		function	from
the	init/main.c.	The	first	things	after	the		setup_arch		is	the		trap_init		function	from	the
arch/x86/kernel/traps.c.	This	function	makes	initialization	of	the	remaining	exceptions
handlers	(remember	that	we	already	setup	3	handlers	for	the		#DB		-	debug	exception,		#BP	
-	breakpoint	exception	and		#PF		-	page	fault	exception).	The		trap_init		function	starts	from
the	check	of	the	Extended	Industry	Standard	Architecture:

#ifdef	CONFIG_EISA

								void	__iomem	*p	=	early_ioremap(0x0FFFD9,	4);

								if	(readl(p)	==	'E'	+	('I'<<8)	+	('S'<<16)	+	('A'<<24))

																EISA_bus	=	1;

								early_iounmap(p,	4);

#endif

Note	that	it	depends	on	the		CONFIG_EISA		kernel	configuration	parameter	which	represents
	EISA		support.	Here	we	use		early_ioremap		function	to	map		I/O		memory	on	the	page
tables.	We	use		readl		function	to	read	first		4		bytes	from	the	mapped	region	and	if	they	are
equal	to		EISA		string	we	set		EISA_bus		to	one.	In	the	end	we	just	unmap	previously	mapped
region.	More	about		early_ioremap		you	can	read	in	the	part	which	describes	Fix-Mapped
Addresses	and	ioremap.

After	this	we	start	to	fill	the		Interrupt	Descriptor	Table		with	the	different	interrupt	gates.
First	of	all	we	set		#DE		or		Divide	Error		and		#NMI		or		Non-maskable	Interrupt	:

set_intr_gate(X86_TRAP_DE,	divide_error);

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

We	use		set_intr_gate		macro	to	set	the	interrupt	gate	for	the		#DE		exception	and
	set_intr_gate_ist		for	the		#NMI	.	You	can	remember	that	we	already	used	these	macros
when	we	have	set	the	interrupts	gates	for	the	page	fault	handler,	debug	handler	and	etc,	you
can	find	explanation	of	it	in	the	previous	part.	After	this	we	setup	exception	gates	for	the
following	exceptions:

Initialization	of	non-early	interrupt	gates

279

http://0xax.gitbooks.io/linux-insides/content/mm/index.html
https://github.com/torvalds/linux/blob/master/init/main.c#L492
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture
http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

set_system_intr_gate(X86_TRAP_OF,	&overflow);

set_intr_gate(X86_TRAP_BR,	bounds);

set_intr_gate(X86_TRAP_UD,	invalid_op);

set_intr_gate(X86_TRAP_NM,	device_not_available);

Here	we	can	see:

	#OF		or		Overflow		exception.	This	exception	indicates	that	an	overflow	trap	occurred
when	an	special	INTO	instruction	was	executed;
	#BR		or		BOUND	Range	exceeded		exception.	This	exception	indicates	that	a		BOUND-range-
exceed		fault	occurred	when	a	BOUND	instruction	was	executed;
	#UD		or		Invalid	Opcode		exception.	Occurs	when	a	processor	attempted	to	execute
invalid	or	reserved	opcode,	processor	attempted	to	execute	instruction	with	invalid
operand(s)	and	etc;
	#NM		or		Device	Not	Available		exception.	Occurs	when	the	processor	tries	to	execute
	x87	FPU		floating	point	instruction	while		EM		flag	in	the	control	register		cr0		was	set.

In	the	next	step	we	set	the	interrupt	gate	for	the		#DF		or		Double	fault		exception:

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

This	exception	occurs	when	processor	detected	a	second	exception	while	calling	an
exception	handler	for	a	prior	exception.	In	usual	way	when	the	processor	detects	another
exception	while	trying	to	call	an	exception	handler,	the	two	exceptions	can	be	handled
serially.	If	the	processor	cannot	handle	them	serially,	it	signals	the	double-fault	or		#DF	
exception.

The	following	set	of	the	interrupt	gates	is:

set_intr_gate(X86_TRAP_OLD_MF,	&coprocessor_segment_overrun);

set_intr_gate(X86_TRAP_TS,	&invalid_TSS);

set_intr_gate(X86_TRAP_NP,	&segment_not_present);

set_intr_gate_ist(X86_TRAP_SS,	&stack_segment,	STACKFAULT_STACK);

set_intr_gate(X86_TRAP_GP,	&general_protection);

set_intr_gate(X86_TRAP_SPURIOUS,	&spurious_interrupt_bug);

set_intr_gate(X86_TRAP_MF,	&coprocessor_error);

set_intr_gate(X86_TRAP_AC,	&alignment_check);

Here	we	can	see	setup	for	the	following	exception	handlers:

	#CSO		or		Coprocessor	Segment	Overrun		-	this	exception	indicates	that	math	coprocessor
of	an	old	processor	detected	a	page	or	segment	violation.	Modern	processors	do	not
generate	this	exception
	#TS		or		Invalid	TSS		exception	-	indicates	that	there	was	an	error	related	to	the	Task

Initialization	of	non-early	interrupt	gates

280

http://x86.renejeschke.de/html/file_module_x86_id_142.html
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/?title=Opcode
https://en.wikipedia.org/wiki/Control_register#CR0
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Task_state_segment

State	Segment.
	#NP		or		Segment	Not	Present		exception	indicates	that	the		present	flag		of	a	segment
or	gate	descriptor	is	clear	during	attempt	to	load	one	of		cs	,		ds	,		es	,		fs	,	or		gs	
register.
	#SS		or		Stack	Fault		exception	indicates	one	of	the	stack	related	conditions	was
detected,	for	example	a	not-present	stack	segment	is	detected	when	attempting	to	load
the		ss		register.
	#GP		or		General	Protection		exception	indicates	that	the	processor	detected	one	of	a
class	of	protection	violations	called	general-protection	violations.	There	are	many
different	conditions	that	can	cause	general-protection	exception.	For	example	loading
the		ss	,		ds	,		es	,		fs	,	or		gs		register	with	a	segment	selector	for	a	system	segment,
writing	to	a	code	segment	or	a	read-only	data	segment,	referencing	an	entry	in	the
	Interrupt	Descriptor	Table		(following	an	interrupt	or	exception)	that	is	not	an	interrupt,
trap,	or	task	gate	and	many	many	more.
	Spurious	Interrupt		-	a	hardware	interrupt	that	is	unwanted.
	#MF		or		x87	FPU	Floating-Point	Error		exception	caused	when	the	x87	FPU	has
detected	a	floating	point	error.
	#AC		or		Alignment	Check		exception	Indicates	that	the	processor	detected	an	unaligned
memory	operand	when	alignment	checking	was	enabled.

After	that	we	setup	this	exception	gates,	we	can	see	setup	of	the		Machine-Check		exception:

#ifdef	CONFIG_X86_MCE

				set_intr_gate_ist(X86_TRAP_MC,	&machine_check,	MCE_STACK);

#endif

Note	that	it	depends	on	the		CONFIG_X86_MCE		kernel	configuration	option	and	indicates	that
the	processor	detected	an	internal	machine	error	or	a	bus	error,	or	that	an	external	agent
detected	a	bus	error.	The	next	exception	gate	is	for	the	SIMD	Floating-Point	exception:

set_intr_gate(X86_TRAP_XF,	&simd_coprocessor_error);

which	indicates	the	processor	has	detected	an		SSE		or		SSE2		or		SSE3		SIMD	floating-point
exception.	There	are	six	classes	of	numeric	exception	conditions	that	can	occur	while
executing	an	SIMD	floating-point	instruction:

Invalid	operation
Divide-by-zero
Denormal	operand
Numeric	overflow
Numeric	underflow

Initialization	of	non-early	interrupt	gates

281

https://en.wikipedia.org/wiki/X86_instruction_listings#x87_floating-point_instructions
https://en.wikipedia.org/wiki/Machine-check_exception
https://en.wikipedia.org/?title=SIMD

Inexact	result	(Precision)

In	the	next	step	we	fill	the		used_vectors		array	which	defined	in	the
arch/x86/include/asm/desc.h	header	file	and	represents		bitmap	:

DECLARE_BITMAP(used_vectors,	NR_VECTORS);

of	the	first		32		interrupts	(more	about	bitmaps	in	the	Linux	kernel	you	can	read	in	the	part
which	describes	cpumasks	and	bitmaps)

for	(i	=	0;	i	<	FIRST_EXTERNAL_VECTOR;	i++)

				set_bit(i,	used_vectors)

where		FIRST_EXTERNAL_VECTOR		is:

#define	FIRST_EXTERNAL_VECTOR											0x20

After	this	we	setup	the	interrupt	gate	for	the		ia32_syscall		and	add		0x80		to	the
	used_vectors		bitmap:

#ifdef	CONFIG_IA32_EMULATION

								set_system_intr_gate(IA32_SYSCALL_VECTOR,	ia32_syscall);

								set_bit(IA32_SYSCALL_VECTOR,	used_vectors);

#endif

There	is		CONFIG_IA32_EMULATION		kernel	configuration	option	on		x86_64		Linux	kernels.	This
option	provides	ability	to	execute	32-bit	processes	in	compatibility-mode.	In	the	next	parts
we	will	see	how	it	works,	in	the	meantime	we	need	only	to	know	that	there	is	yet	another
interrupt	gate	in	the		IDT		with	the	vector	number		0x80	.	In	the	next	step	we	maps		IDT		to
the	fixmap	area:

__set_fixmap(FIX_RO_IDT,	__pa_symbol(idt_table),	PAGE_KERNEL_RO);

idt_descr.address	=	fix_to_virt(FIX_RO_IDT);

and	write	its	address	to	the		idt_descr.address		(more	about	fix-mapped	addresses	you	can
read	in	the	second	part	of	the	Linux	kernel	memory	management	chapter).	After	this	we	can
see	the	call	of	the		cpu_init		function	that	defined	in	the	arch/x86/kernel/cpu/common.c.	This
function	makes	initialization	of	the	all		per-cpu		state.	In	the	beginning	of	the		cpu_init		we
do	the	following	things:	First	of	all	we	wait	while	current	cpu	is	initialized	and	than	we	call	the
	cr4_init_shadow		function	which	stores	shadow	copy	of	the		cr4		control	register	for	the
current	cpu	and	load	CPU	microcode	if	need	with	the	following	function	calls:

Initialization	of	non-early	interrupt	gates

282

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c

wait_for_master_cpu(cpu);

cr4_init_shadow();

load_ucode_ap();

Next	we	get	the		Task	State	Segment		for	the	current	cpu	and		orig_ist		structure	which
represents	origin		Interrupt	Stack	Table		values	with	the:

t	=	&per_cpu(cpu_tss,	cpu);

oist	=	&per_cpu(orig_ist,	cpu);

As	we	got	values	of	the		Task	State	Segment		and		Interrupt	Stack	Table		for	the	current
processor,	we	clear	following	bits	in	the		cr4		control	register:

cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);

with	this	we	disable		vm86		extension,	virtual	interrupts,	timestamp	(RDTSC	can	only	be
executed	with	the	highest	privilege)	and	debug	extension.	After	this	we	reload	the		Global
Descriptor	Table		and		Interrupt	Descriptor	table		with	the:

				switch_to_new_gdt(cpu);

				loadsegment(fs,	0);

				load_current_idt();

After	this	we	setup	array	of	the	Thread-Local	Storage	Descriptors,	configure	NX	and	load
CPU	microcode.	Now	is	time	to	setup	and	load		per-cpu		Task	State	Segments.	We	are
going	in	a	loop	through	the	all	exception	stack	which	is		N_EXCEPTION_STACKS		or		4		and	fill	it
with		Interrupt	Stack	Tables	:

				if	(!oist->ist[0])	{

								char	*estacks	=	per_cpu(exception_stacks,	cpu);

								for	(v	=	0;	v	<	N_EXCEPTION_STACKS;	v++)	{

												estacks	+=	exception_stack_sizes[v];

												oist->ist[v]	=	t->x86_tss.ist[v]	=

																				(unsigned	long)estacks;

												if	(v	==	DEBUG_STACK-1)

																per_cpu(debug_stack_addr,	cpu)	=	(unsigned	long)estacks;

								}

				}

As	we	have	filled		Task	State	Segments		with	the		Interrupt	Stack	Tables		we	can	set		TSS	
descriptor	for	the	current	processor	and	load	it	with	the:

Initialization	of	non-early	interrupt	gates

283

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/NX_bit

set_tss_desc(cpu,	t);

load_TR_desc();

where		set_tss_desc		macro	from	the	arch/x86/include/asm/desc.h	writes	given	descriptor	to
the		Global	Descriptor	Table		of	the	given	processor:

#define	set_tss_desc(cpu,	addr)	__set_tss_desc(cpu,	GDT_ENTRY_TSS,	addr)

static	inline	void	__set_tss_desc(unsigned	cpu,	unsigned	int	entry,	void	*addr)

{

								struct	desc_struct	*d	=	get_cpu_gdt_table(cpu);

								tss_desc	tss;

								set_tssldt_descriptor(&tss,	(unsigned	long)addr,	DESC_TSS,

																														IO_BITMAP_OFFSET	+	IO_BITMAP_BYTES	+

																														sizeof(unsigned	long)	-	1);

								write_gdt_entry(d,	entry,	&tss,	DESC_TSS);

}

and		load_TR_desc		macro	expands	to	the		ltr		or		Load	Task	Register		instruction:

#define	load_TR_desc()																										native_load_tr_desc()

static	inline	void	native_load_tr_desc(void)

{

								asm	volatile("ltr	%w0"::"q"	(GDT_ENTRY_TSS*8));

}

In	the	end	of	the		trap_init		function	we	can	see	the	following	code:

set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

...

...

...

#ifdef	CONFIG_X86_64

								memcpy(&nmi_idt_table,	&idt_table,	IDT_ENTRIES	*	16);

								set_nmi_gate(X86_TRAP_DB,	&debug);

								set_nmi_gate(X86_TRAP_BP,	&int3);

#endif

Here	we	copy		idt_table		to	the		nmi_dit_table		and	setup	exception	handlers	for	the		#DB	
or		Debug	exception		and		#BR		or		Breakpoint	exception	.	You	can	remember	that	we	already
set	these	interrupt	gates	in	the	previous	part,	so	why	do	we	need	to	setup	it	again?	We
setup	it	again	because	when	we	initialized	it	before	in	the		early_trap_init		function,	the
	Task	State	Segment		was	not	ready	yet,	but	now	it	is	ready	after	the	call	of	the		cpu_init	
function.

Initialization	of	non-early	interrupt	gates

284

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

That's	all.	Soon	we	will	consider	all	handlers	of	these	interrupts/exceptions.

Conclusion
It	is	the	end	of	the	fourth	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We
saw	the	initialization	of	the	Task	State	Segment	in	this	part	and	initialization	of	the	different
interrupt	handlers	as		Divide	Error	,		Page	Fault		exception	and	etc.	You	can	note	that	we
saw	just	initialization	stuff,	and	will	dive	into	details	about	handlers	for	these	exceptions.	In
the	next	part	we	will	start	to	do	it.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
page	fault
Interrupt	Descriptor	Table
Tracing
cr2
RCU
thiscpu*	operations
kmemcheck
prefetchw
3DNow
CPU	caches
VFS
Linux	kernel	memory	management
Fix-Mapped	Addresses	and	ioremap
Extended	Industry	Standard	Architecture
INT	isntruction
INTO
BOUND
opcode
control	register
x87	FPU
MCE	exception
SIMD
cpumasks	and	bitmaps

Initialization	of	non-early	interrupt	gates

285

https://en.wikipedia.org/wiki/Task_state_segment
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://en.wikipedia.org/wiki/Tracing_%28software%29
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/Documentation/this_cpu_ops.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/?title=3DNow!
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Virtual_file_system
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture
https://en.wikipedia.org/wiki/INT_%28x86_instruction%29
http://x86.renejeschke.de/html/file_module_x86_id_142.html
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/?title=Opcode
https://en.wikipedia.org/wiki/Control_register#CR0
https://en.wikipedia.org/wiki/X86_instruction_listings#x87_floating-point_instructions
https://en.wikipedia.org/wiki/Machine-check_exception
https://en.wikipedia.org/?title=SIMD
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html

NX
Task	State	Segment
Previous	part

Initialization	of	non-early	interrupt	gates

286

https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Task_state_segment
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

Interrupts	and	Interrupt	Handling.	Part	5.

Implementation	of	exception	handlers
This	is	the	fifth	part	about	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	and	in
the	previous	part	we	stopped	on	the	setting	of	interrupt	gates	to	the	Interrupt	descriptor
Table.	We	did	it	in	the		trap_init		function	from	the	arch/x86/kernel/traps.c	source	code	file.
We	saw	only	setting	of	these	interrupt	gates	in	the	previous	part	and	in	the	current	part	we
will	see	implementation	of	the	exception	handlers	for	these	gates.	The	preparation	before	an
exception	handler	will	be	executed	is	in	the	arch/x86/entry/entry_64.S	assembly	file	and
occurs	in	the	idtentry	macro	that	defines	exceptions	entry	points:

idtentry	divide_error																				do_divide_error																			has_error_c

ode=0

idtentry	overflow																								do_overflow																							has_error_c

ode=0

idtentry	invalid_op																								do_invalid_op																			has_error_c

ode=0

idtentry	bounds																												do_bounds																							has_error_c

ode=0

idtentry	device_not_available												do_device_not_available											has_error_c

ode=0

idtentry	coprocessor_segment_overrun				do_coprocessor_segment_overrun	has_error_code=

0

idtentry	invalid_TSS																				do_invalid_TSS																			has_error_cod

e=1

idtentry	segment_not_present												do_segment_not_present											has_error_cod

e=1

idtentry	spurious_interrupt_bug												do_spurious_interrupt_bug							has_error_c

ode=0

idtentry	coprocessor_error																do_coprocessor_error											has_error_cod

e=0

idtentry	alignment_check																do_alignment_check															has_error_cod

e=1

idtentry	simd_coprocessor_error												do_simd_coprocessor_error							has_error_c

ode=0

The		idtentry		macro	does	following	preparation	before	an	actual	exception	handler
(do_divide_error		for	the		divide_error	,		do_overflow		for	the		overflow		and	etc.)	will	get
control.	In	another	words	the		idtentry		macro	allocates	place	for	the	registers	(pt_regs
structure)	on	the	stack,	pushes	dummy	error	code	for	the	stack	consistency	if	an

Implementation	of	some	exception	handlers

287

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-4.html
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S#L820
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/ptrace.h#L43

interrupt/exception	has	no	error	code,	checks	the	segment	selector	in	the		cs		segment
register	and	switches	depends	on	the	previous	state(userspace	or	kernelspace).	After	all	of
these	preparations	it	makes	a	call	of	an	actual	interrupt/exception	handler:

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

				...

				...

				...

				call				\do_sym

				...

				...

				...

END(\sym)

.endm

After	an	exception	handler	will	finish	its	work,	the		idtentry		macro	restores	stack	and
general	purpose	registers	of	an	interrupted	task	and	executes	iret	instruction:

ENTRY(paranoid_exit)

				...

				...

				...

				RESTORE_EXTRA_REGS

				RESTORE_C_REGS

				REMOVE_PT_GPREGS_FROM_STACK	8

				INTERRUPT_RETURN

END(paranoid_exit)

where		INTERRUPT_RETURN		is:

#define	INTERRUPT_RETURN				jmp	native_iret

...

ENTRY(native_iret)

.global	native_irq_return_iret

native_irq_return_iret:

iretq

More	about	the		idtentry		macro	you	can	read	in	the	third	part	of	the
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html	chapter.	Ok,	now	we
saw	the	preparation	before	an	exception	handler	will	be	executed	and	now	time	to	look	on
the	handlers.	First	of	all	let's	look	on	the	following	handlers:

divide_error
overflow
invalid_op

Implementation	of	some	exception	handlers

288

http://x86.renejeschke.de/html/file_module_x86_id_145.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

coprocessor_segment_overrun
invalid_TSS
segment_not_present
stack_segment
alignment_check

All	these	handlers	defined	in	the	arch/x86/kernel/traps.c	source	code	file	with	the		DO_ERROR	
macro:

DO_ERROR(X86_TRAP_DE,					SIGFPE,		"divide	error",																divide_error)

DO_ERROR(X86_TRAP_OF,					SIGSEGV,	"overflow",																				overflow)

DO_ERROR(X86_TRAP_UD,					SIGILL,		"invalid	opcode",														invalid_op)

DO_ERROR(X86_TRAP_OLD_MF,	SIGFPE,		"coprocessor	segment	overrun",	coprocessor_segment_

overrun)

DO_ERROR(X86_TRAP_TS,					SIGSEGV,	"invalid	TSS",																	invalid_TSS)

DO_ERROR(X86_TRAP_NP,					SIGBUS,		"segment	not	present",									segment_not_present)

DO_ERROR(X86_TRAP_SS,					SIGBUS,		"stack	segment",															stack_segment)

DO_ERROR(X86_TRAP_AC,					SIGBUS,		"alignment	check",													alignment_check)

As	we	can	see	the		DO_ERROR		macro	takes	4	parameters:

Vector	number	of	an	interrupt;
Signal	number	which	will	be	sent	to	the	interrupted	process;
String	which	describes	an	exception;
Exception	handler	entry	point.

This	macro	defined	in	the	same	source	code	file	and	expands	to	the	function	with	the
	do_handler		name:

#define	DO_ERROR(trapnr,	signr,	str,	name)																														\

dotraplinkage	void	do_##name(struct	pt_regs	*regs,	long	error_code)					\

{																																																																							\

								do_error_trap(regs,	error_code,	str,	trapnr,	signr);												\

}

Note	on	the		##		tokens.	This	is	special	feature	-	GCC	macro	Concatenation	which
concatenates	two	given	strings.	For	example,	first		DO_ERROR		in	our	example	will	expands	to
the:

dotraplinkage	void	do_divide_error(struct	pt_regs	*regs,	long	error_code)					\

{

				...

}

Implementation	of	some	exception	handlers

289

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation

We	can	see	that	all	functions	which	are	generated	by	the		DO_ERROR		macro	just	make	a	call
of	the		do_error_trap		function	from	the	arch/x86/kernel/traps.c.	Let's	look	on	implementation
of	the		do_error_trap		function.

Trap	handlers
The		do_error_trap		function	starts	and	ends	from	the	two	following	functions:

enum	ctx_state	prev_state	=	exception_enter();

...

...

...

exception_exit(prev_state);

from	the	include/linux/context_tracking.h.	The	context	tracking	in	the	Linux	kernel	subsystem
which	provide	kernel	boundaries	probes	to	keep	track	of	the	transitions	between	level
contexts	with	two	basic	initial	contexts:		user		or		kernel	.	The		exception_enter		function
checks	that	context	tracking	is	enabled.	After	this	if	it	is	enabled,	the		exception_enter		reads
previous	context	and	compares	it	with	the		CONTEXT_KERNEL	.	If	the	previous	context	is		user	,
we	call		context_tracking_exit		function	from	the	kernel/context_tracking.c	which	inform	the
context	tracking	subsystem	that	a	processor	is	exiting	user	mode	and	entering	the	kernel
mode:

if	(!context_tracking_is_enabled())

				return	0;

prev_ctx	=	this_cpu_read(context_tracking.state);

if	(prev_ctx	!=	CONTEXT_KERNEL)

				context_tracking_exit(prev_ctx);

return	prev_ctx;

If	previous	context	is	non		user	,	we	just	return	it.	The		pre_ctx		has		enum	ctx_state		type
which	defined	in	the	include/linux/context_tracking_state.h	and	looks	as:

enum	ctx_state	{

				CONTEXT_KERNEL	=	0,

				CONTEXT_USER,

				CONTEXT_GUEST,

}	state;

Implementation	of	some	exception	handlers

290

https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/tree/master/include/linux/context_tracking.h
https://github.com/torvalds/linux/blob/master/kernel/context_tracking.c
https://github.com/torvalds/linux/tree/master/include/linux/context_tracking_state.h

The	second	function	is		exception_exit		defined	in	the	same	include/linux/context_tracking.h
file	and	checks	that	context	tracking	is	enabled	and	call	the		contert_tracking_enter		function
if	the	previous	context	was		user	:

static	inline	void	exception_exit(enum	ctx_state	prev_ctx)

{

				if	(context_tracking_is_enabled())	{

								if	(prev_ctx	!=	CONTEXT_KERNEL)

												context_tracking_enter(prev_ctx);

				}

}

The		context_tracking_enter		function	informs	the	context	tracking	subsystem	that	a
processor	is	going	to	enter	to	the	user	mode	from	the	kernel	mode.	We	can	see	the	following
code	between	the		exception_enter		and		exception_exit	:

if	(notify_die(DIE_TRAP,	str,	regs,	error_code,	trapnr,	signr)	!=

								NOTIFY_STOP)	{

				conditional_sti(regs);

				do_trap(trapnr,	signr,	str,	regs,	error_code,

								fill_trap_info(regs,	signr,	trapnr,	&info));

}

First	of	all	it	calls	the		notify_die		function	which	defined	in	the	kernel/notifier.c.	To	get
notified	for	kernel	panic,	kernel	oops,	Non-Maskable	Interrupt	or	other	events	the	caller
needs	to	insert	itself	in	the		notify_die		chain	and	the		notify_die		function	does	it.	The
Linux	kernel	has	special	mechanism	that	allows	kernel	to	ask	when	something	happens	and
this	mechanism	called		notifiers		or		notifier	chains	.	This	mechanism	used	for	example
for	the		USB		hotplug	events	(look	on	the	drivers/usb/core/notify.c),	for	the	memory	hotplug
(look	on	the	include/linux/memory.h,	the		hotplug_memory_notifier		macro	and	etc...),	system
reboots	and	etc.	A	notifier	chain	is	thus	a	simple,	singly-linked	list.	When	a	Linux	kernel
subsystem	wants	to	be	notified	of	specific	events,	it	fills	out	a	special		notifier_block	
structure	and	passes	it	to	the		notifier_chain_register		function.	An	event	can	be	sent	with
the	call	of	the		notifier_call_chain		function.	First	of	all	the		notify_die		function	fills
	die_args		structure	with	the	trap	number,	trap	string,	registers	and	other	values:

struct	die_args	args	=	{

							.regs			=	regs,

							.str				=	str,

							.err				=	err,

							.trapnr	=	trap,

							.signr		=	sig,

}

Implementation	of	some	exception	handlers

291

https://github.com/torvalds/linux/tree/master/include/linux/context_tracking.h
https://github.com/torvalds/linux/tree/master/kernel/notifier.c
https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://github.com/torvalds/linux/tree/master/drivers/usb/core/notify.c
https://en.wikipedia.org/wiki/Hot_swapping
https://github.com/torvalds/linux/tree/master/include/linux/memory.h

and	returns	the	result	of	the		atomic_notifier_call_chain		function	with	the		die_chain	:

static	ATOMIC_NOTIFIER_HEAD(die_chain);

return	atomic_notifier_call_chain(&die_chain,	val,	&args);

which	just	expands	to	the		atomic_notifier_head		structure	that	contains	lock	and
	notifier_block	:

struct	atomic_notifier_head	{

								spinlock_t	lock;

								struct	notifier_block	__rcu	*head;

};

The		atomic_notifier_call_chain		function	calls	each	function	in	a	notifier	chain	in	turn	and
returns	the	value	of	the	last	notifier	function	called.	If	the		notify_die		in	the		do_error_trap	
does	not	return		NOTIFY_STOP		we	execute		conditional_sti		function	from	the
arch/x86/kernel/traps.c	that	checks	the	value	of	the	interrupt	flag	and	enables	interrupt
depends	on	it:

static	inline	void	conditional_sti(struct	pt_regs	*regs)

{

								if	(regs->flags	&	X86_EFLAGS_IF)

																local_irq_enable();

}

more	about		local_irq_enable		macro	you	can	read	in	the	second	part	of	this	chapter.	The
next	and	last	call	in	the		do_error_trap		is	the		do_trap		function.	First	of	all	the		do_trap	
function	defined	the		tsk		variable	which	has		task_struct		type	and	represents	the	current
interrupted	process.	After	the	definition	of	the		tsk	,	we	can	see	the	call	of	the
	do_trap_no_signal		function:

struct	task_struct	*tsk	=	current;

if	(!do_trap_no_signal(tsk,	trapnr,	str,	regs,	error_code))

				return;

The		do_trap_no_signal		function	makes	two	checks:

Did	we	come	from	the	Virtual	8086	mode;
Did	we	come	from	the	kernelspace.

Implementation	of	some	exception	handlers

292

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Interrupt_flag
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-2.html
https://en.wikipedia.org/wiki/Virtual_8086_mode

if	(v8086_mode(regs))	{

				...

}

if	(!user_mode(regs))	{

				...

}

return	-1;

We	will	not	consider	first	case	because	the	long	mode	does	not	support	the	Virtual	8086
mode.	In	the	second	case	we	invoke		fixup_exception		function	which	will	try	to	recover	a
fault	and		die		if	we	can't:

if	(!fixup_exception(regs))	{

				tsk->thread.error_code	=	error_code;

				tsk->thread.trap_nr	=	trapnr;

				die(str,	regs,	error_code);

}

The		die		function	defined	in	the	arch/x86/kernel/dumpstack.c	source	code	file,	prints	useful
information	about	stack,	registers,	kernel	modules	and	caused	kernel	oops.	If	we	came	from
the	userspace	the		do_trap_no_signal		function	will	return		-1		and	the	execution	of	the
	do_trap		function	will	continue.	If	we	passed	through	the		do_trap_no_signal		function	and
did	not	exit	from	the		do_trap		after	this,	it	means	that	previous	context	was	-		user	.	Most
exceptions	caused	by	the	processor	are	interpreted	by	Linux	as	error	conditions,	for
example	division	by	zero,	invalid	opcode	and	etc.	When	an	exception	occurs	the	Linux
kernel	sends	a	signal	to	the	interrupted	process	that	caused	the	exception	to	notify	it	of	an
incorrect	condition.	So,	in	the		do_trap		function	we	need	to	send	a	signal	with	the	given
number	(SIGFPE		for	the	divide	error,		SIGILL		for	the	overflow	exception	and	etc...).	First	of
all	we	save	error	code	and	vector	number	in	the	current	interrupts	process	with	the	filling
	thread.error_code		and		thread_trap_nr	:

tsk->thread.error_code	=	error_code;

tsk->thread.trap_nr	=	trapnr;

After	this	we	make	a	check	do	we	need	to	print	information	about	unhandled	signals	for	the
interrupted	process.	We	check	that		show_unhandled_signals		variable	is	set,	that
	unhandled_signal		function	from	the	kernel/signal.c	will	return	unhandled	signal(s)	and	printk
rate	limit:

Implementation	of	some	exception	handlers

293

https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/dumpstack.c
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/master/kernel/signal.c
https://en.wikipedia.org/wiki/Printk

#ifdef	CONFIG_X86_64

				if	(show_unhandled_signals	&&	unhandled_signal(tsk,	signr)	&&

								printk_ratelimit())	{

								pr_info("%s[%d]	trap	%s	ip:%lx	sp:%lx	error:%lx",

												tsk->comm,	tsk->pid,	str,

												regs->ip,	regs->sp,	error_code);

								print_vma_addr("	in	",	regs->ip);

								pr_cont("\n");

				}

#endif

And	send	a	given	signal	to	interrupted	process:

force_sig_info(signr,	info	?:	SEND_SIG_PRIV,	tsk);

This	is	the	end	of	the		do_trap	.	We	just	saw	generic	implementation	for	eight	different
exceptions	which	are	defined	with	the		DO_ERROR		macro.	Now	let's	look	on	another	exception
handlers.

Double	fault
The	next	exception	is		#DF		or		Double	fault	.	This	exception	occurs	when	the	processor
detected	a	second	exception	while	calling	an	exception	handler	for	a	prior	exception.	We	set
the	trap	gate	for	this	exception	in	the	previous	part:

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

Note	that	this	exception	runs	on	the		DOUBLEFAULT_STACK		Interrupt	Stack	Table	which	has
index	-		1	:

#define	DOUBLEFAULT_STACK	1

The		double_fault		is	handler	for	this	exception	and	defined	in	the	arch/x86/kernel/traps.c.
The		double_fault		handler	starts	from	the	definition	of	two	variables:	string	that	describes
exception	and	interrupted	process,	as	other	exception	handlers:

static	const	char	str[]	=	"double	fault";

struct	task_struct	*tsk	=	current;

Implementation	of	some	exception	handlers

294

https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

The	handler	of	the	double	fault	exception	split	on	two	parts.	The	first	part	is	the	check	which
checks	that	a	fault	is	a		non-IST		fault	on	the		espfix64		stack.	Actually	the		iret		instruction
restores	only	the	bottom		16		bits	when	returning	to	a		16		bit	segment.	The		espfix		feature
solves	this	problem.	So	if	the		non-IST		fault	on	the	espfix64	stack	we	modify	the	stack	to
make	it	look	like		General	Protection	Fault	:

struct	pt_regs	*normal_regs	=	task_pt_regs(current);

memmove(&normal_regs->ip,	(void	*)regs->sp,	5*8);

ormal_regs->orig_ax	=	0;

regs->ip	=	(unsigned	long)general_protection;

regs->sp	=	(unsigned	long)&normal_regs->orig_ax;

return;

In	the	second	case	we	do	almost	the	same	that	we	did	in	the	previous	exception	handlers.
The	first	is	the	call	of	the		ist_enter		function	that	discards	previous	context,		user		in	our
case:

ist_enter(regs);

And	after	this	we	fill	the	interrupted	process	with	the	vector	number	of	the		Double	fault	
exception	and	error	code	as	we	did	it	in	the	previous	handlers:

tsk->thread.error_code	=	error_code;

tsk->thread.trap_nr	=	X86_TRAP_DF;

Next	we	print	useful	information	about	the	double	fault	(PID	number,	registers	content):

#ifdef	CONFIG_DOUBLEFAULT

				df_debug(regs,	error_code);

#endif

And	die:

				for	(;;)

								die(str,	regs,	error_code);

That's	all.

Device	not	available	exception	handler

Implementation	of	some	exception	handlers

295

https://en.wikipedia.org/wiki/Process_identifier

The	next	exception	is	the		#NM		or		Device	not	available	.	The		Device	not	available	
exception	can	occur	depending	on	these	things:

The	processor	executed	an	x87	FPU	floating-point	instruction	while	the	EM	flag	in
control	register		cr0		was	set;
The	processor	executed	a		wait		or		fwait		instruction	while	the		MP		and		TS		flags	of
register		cr0		were	set;
The	processor	executed	an	x87	FPU,	MMX	or	SSE	instruction	while	the		TS		flag	in
control	register		cr0		was	set	and	the		EM		flag	is	clear.

The	handler	of	the		Device	not	available		exception	is	the		do_device_not_available		function
and	it	defined	in	the	arch/x86/kernel/traps.c	source	code	file	too.	It	starts	and	ends	from	the
getting	of	the	previous	context,	as	other	traps	which	we	saw	in	the	beginning	of	this	part:

enum	ctx_state	prev_state;

prev_state	=	exception_enter();

...

...

...

exception_exit(prev_state);

In	the	next	step	we	check	that		FPU		is	not	eager:

BUG_ON(use_eager_fpu());

When	we	switch	into	a	task	or	interrupt	we	may	avoid	loading	the		FPU		state.	If	a	task	will
use	it,	we	catch		Device	not	Available	exception		exception.	If	we	loading	the		FPU		state
during	task	switching,	the		FPU		is	eager.	In	the	next	step	we	check		cr0		control	register	on
the		EM		flag	which	can	show	us	is		x87		floating	point	unit	present	(flag	clear)	or	not	(flag
set):

#ifdef	CONFIG_MATH_EMULATION

				if	(read_cr0()	&	X86_CR0_EM)	{

								struct	math_emu_info	info	=	{	};

								conditional_sti(regs);

								info.regs	=	regs;

								math_emulate(&info);

								exception_exit(prev_state);

								return;

				}

#endif

Implementation	of	some	exception	handlers

296

https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/MMX_%28instruction_set%29
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

If	the		x87		floating	point	unit	not	presented,	we	enable	interrupts	with	the		conditional_sti	,
fill	the		math_emu_info		(defined	in	the	arch/x86/include/asm/math_emu.h)	structure	with	the
registers	of	an	interrupt	task	and	call		math_emulate		function	from	the	arch/x86/math-
emu/fpu_entry.c.	As	you	can	understand	from	function's	name,	it	emulates		X87	FPU		unit
(more	about	the		x87		we	will	know	in	the	special	chapter).	In	other	way,	if		X86_CR0_EM		flag
is	clear	which	means	that		x87	FPU		unit	is	presented,	we	call	the		fpu__restore		function
from	the	arch/x86/kernel/fpu/core.c	which	copies	the		FPU		registers	from	the		fpustate		to
the	live	hardware	registers.	After	this		FPU		instructions	can	be	used:

fpu__restore(¤t->thread.fpu);

General	protection	fault	exception	handler
The	next	exception	is	the		#GP		or		General	protection	fault	.	This	exception	occurs	when
the	processor	detected	one	of	a	class	of	protection	violations	called		general-protection
violations	.	It	can	be:

Exceeding	the	segment	limit	when	accessing	the		cs	,		ds	,		es	,		fs		or		gs		segments;
Loading	the		ss	,		ds	,		es	,		fs		or		gs		register	with	a	segment	selector	for	a	system
segment.;
Violating	any	of	the	privilege	rules;
and	other...

The	exception	handler	for	this	exception	is	the		do_general_protection		from	the
arch/x86/kernel/traps.c.	The		do_general_protection		function	starts	and	ends	as	other
exception	handlers	from	the	getting	of	the	previous	context:

prev_state	=	exception_enter();

...

exception_exit(prev_state);

After	this	we	enable	interrupts	if	they	were	disabled	and	check	that	we	came	from	the	Virtual
8086	mode:

conditional_sti(regs);

if	(v8086_mode(regs))	{

				local_irq_enable();

				handle_vm86_fault((struct	kernel_vm86_regs	*)	regs,	error_code);

				goto	exit;

}

Implementation	of	some	exception	handlers

297

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/math_emu.h
https://github.com/torvalds/linux/tree/master/arch/x86/math-emu/fpu_entry.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/fpu/core.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Virtual_8086_mode

As	long	mode	does	not	support	this	mode,	we	will	not	consider	exception	handling	for	this
case.	In	the	next	step	check	that	previous	mode	was	kernel	mode	and	try	to	fix	the	trap.	If
we	can't	fix	the	current	general	protection	fault	exception	we	fill	the	interrupted	process	with
the	vector	number	and	error	code	of	the	exception	and	add	it	to	the		notify_die		chain:

if	(!user_mode(regs))	{

				if	(fixup_exception(regs))

								goto	exit;

				tsk->thread.error_code	=	error_code;

				tsk->thread.trap_nr	=	X86_TRAP_GP;

				if	(notify_die(DIE_GPF,	"general	protection	fault",	regs,	error_code,

															X86_TRAP_GP,	SIGSEGV)	!=	NOTIFY_STOP)

								die("general	protection	fault",	regs,	error_code);

				goto	exit;

}

If	we	can	fix	exception	we	go	to	the		exit		label	which	exits	from	exception	state:

exit:

				exception_exit(prev_state);

If	we	came	from	user	mode	we	send		SIGSEGV		signal	to	the	interrupted	process	from	user
mode	as	we	did	it	in	the		do_trap		function:

if	(show_unhandled_signals	&&	unhandled_signal(tsk,	SIGSEGV)	&&

								printk_ratelimit())	{

				pr_info("%s[%d]	general	protection	ip:%lx	sp:%lx	error:%lx",

								tsk->comm,	task_pid_nr(tsk),

								regs->ip,	regs->sp,	error_code);

				print_vma_addr("	in	",	regs->ip);

				pr_cont("\n");

}

force_sig_info(SIGSEGV,	SEND_SIG_PRIV,	tsk);

That's	all.

Conclusion
It	is	the	end	of	the	fifth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	saw
implementation	of	some	interrupt	handlers	in	this	part.	In	the	next	part	we	will	continue	to
dive	into	interrupt	and	exception	handlers	and	will	see	handler	for	the	Non-Maskable

Implementation	of	some	exception	handlers

298

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://en.wikipedia.org/wiki/Non-maskable_interrupt

Interrupts,	handling	of	the	math	coprocessor	and	SIMD	coprocessor	exceptions	and	many
many	more.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Interrupt	descriptor	Table
iret	instruction
GCC	macro	Concatenation
kernel	panic
kernel	oops
Non-Maskable	Interrupt
hotplug
interrupt	flag
long	mode
signal
printk
coprocessor
SIMD
Interrupt	Stack	Table
PID
x87	FPU
control	register
MMX
Previous	part

Implementation	of	some	exception	handlers

299

https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://x86.renejeschke.de/html/file_module_x86_id_145.html
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation
https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/MMX_%28instruction_set%29
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-4.html

Interrupts	and	Interrupt	Handling.	Part	6.

Non-maskable	interrupt	handler
It	is	sixth	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in	the
previous	part	we	saw	implementation	of	some	exception	handlers	for	the	General	Protection
Fault	exception,	divide	exception,	invalid	opcode	exceptions	and	etc.	As	I	wrote	in	the
previous	part	we	will	see	implementations	of	the	rest	exceptions	in	this	part.	We	will	see
implementation	of	the	following	handlers:

Non-Maskable	interrupt;
BOUND	Range	Exceeded	Exception;
Coprocessor	exception;
SIMD	coprocessor	exception.

in	this	part.	So,	let's	start.

Non-Maskable	interrupt	handling
A	Non-Maskable	interrupt	is	a	hardware	interrupt	that	cannot	be	ignored	by	standard
masking	techniques.	In	a	general	way,	a	non-maskable	interrupt	can	be	generated	in	either
of	two	ways:

External	hardware	asserts	the	non-maskable	interrupt	pin	on	the	CPU.
The	processor	receives	a	message	on	the	system	bus	or	the	APIC	serial	bus	with	a
delivery	mode		NMI	.

When	the	processor	receives	a		NMI		from	one	of	these	sources,	the	processor	handles	it
immediately	by	calling	the		NMI		handler	pointed	to	by	interrupt	vector	which	has	number		2	
(see	table	in	the	first	part).	We	already	filled	the	Interrupt	Descriptor	Table	with	the	vector
number,	address	of	the		nmi		interrupt	handler	and		NMI_STACK		Interrupt	Stack	Table	entry:

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

in	the		trap_init		function	which	defined	in	the	arch/x86/kernel/traps.c	source	code	file.	In
the	previous	parts	we	saw	that	entry	points	of	the	all	interrupt	handlers	are	defined	with	the:

Handling	Non-Maskable	interrupts

300

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Non-maskable_interrupt
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/CPU_socket
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://en.wikipedia.org/wiki/Interrupt_vector_table
https://github.com/torvalds/linux/blob/master/Documentation/x86/kernel-stacks
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

...

...

...

END(\sym)

.endm

macro	from	the	arch/x86/entry/entry_64.S	assembly	source	code	file.	But	the	handler	of	the
	Non-Maskable		interrupts	is	not	defined	with	this	macro.	It	has	own	entry	point:

ENTRY(nmi)

...

...

...

END(nmi)

in	the	same	arch/x86/entry/entry_64.S	assembly	file.	Lets	dive	into	it	and	will	try	to
understand	how		Non-Maskable		interrupt	handler	works.	The		nmi		handlers	starts	from	the
call	of	the:

PARAVIRT_ADJUST_EXCEPTION_FRAME

macro	but	we	will	not	dive	into	details	about	it	in	this	part,	because	this	macro	related	to	the
Paravirtualization	stuff	which	we	will	see	in	another	chapter.	After	this	save	the	content	of	the
	rdx		register	on	the	stack:

pushq				%rdx

And	allocated	check	that		cs		was	not	the	kernel	segment	when	an	non-maskable	interrupt
occurs:

cmpl				$__KERNEL_CS,	16(%rsp)

jne				first_nmi

The		__KERNEL_CS		macro	defined	in	the	arch/x86/include/asm/segment.h	and	represented
second	descriptor	in	the	Global	Descriptor	Table:

#define	GDT_ENTRY_KERNEL_CS				2

#define	__KERNEL_CS				(GDT_ENTRY_KERNEL_CS*8)

Handling	Non-Maskable	interrupts

301

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Paravirtualization
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/segment.h
https://en.wikipedia.org/wiki/Global_Descriptor_Table

more	about		GDT		you	can	read	in	the	second	part	of	the	Linux	kernel	booting	process
chapter.	If		cs		is	not	kernel	segment,	it	means	that	it	is	not	nested		NMI		and	we	jump	on	the
	first_nmi		label.	Let's	consider	this	case.	First	of	all	we	put	address	of	the	current	stack
pointer	to	the		rdx		and	pushes		1		to	the	stack	in	the		first_nmi		label:

first_nmi:

				movq				(%rsp),	%rdx

				pushq				$1

Why	do	we	push		1		on	the	stack?	As	the	comment	says:		We	allow	breakpoints	in	NMIs	.
On	the	x86_64,	like	other	architectures,	the	CPU	will	not	execute	another		NMI		until	the	first
	NMI		is	completed.	A		NMI		interrupt	finished	with	the	iret	instruction	like	other	interrupts	and
exceptions	do	it.	If	the		NMI		handler	triggers	either	a	page	fault	or	breakpoint	or	another
exception	which	are	use		iret		instruction	too.	If	this	happens	while	in		NMI		context,	the
CPU	will	leave		NMI		context	and	a	new		NMI		may	come	in.	The		iret		used	to	return	from
those	exceptions	will	re-enable		NMIs		and	we	will	get	nested	non-maskable	interrupts.	The
problem	the		NMI		handler	will	not	return	to	the	state	that	it	was,	when	the	exception
triggered,	but	instead	it	will	return	to	a	state	that	will	allow	new		NMIs		to	preempt	the	running
	NMI		handler.	If	another		NMI		comes	in	before	the	first	NMI	handler	is	complete,	the	new
NMI	will	write	all	over	the	preempted		NMIs		stack.	We	can	have	nested		NMIs		where	the
next		NMI		is	using	the	top	of	the	stack	of	the	previous		NMI	.	It	means	that	we	cannot
execute	it	because	a	nested	non-maskable	interrupt	will	corrupt	stack	of	a	previous	non-
maskable	interrupt.	That's	why	we	have	allocated	space	on	the	stack	for	temporary	variable.
We	will	check	this	variable	that	it	was	set	when	a	previous		NMI		is	executing	and	clear	if	it	is
not	nested		NMI	.	We	push		1		here	to	the	previously	allocated	space	on	the	stack	to	denote
that	a		non-maskable		interrupt	executed	currently.	Remember	that	when	and		NMI		or	another
exception	occurs	we	have	the	following	stack	frame:

+------------------------+

|									SS													|

|									RSP												|

|								RFLAGS										|

|									CS													|

|									RIP												|

+------------------------+

and	also	an	error	code	if	an	exception	has	it.	So,	after	all	of	these	manipulations	our	stack
frame	will	look	like	this:

Handling	Non-Maskable	interrupts

302

http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
https://en.wikipedia.org/wiki/X86-64
http://faydoc.tripod.com/cpu/iret.htm
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Breakpoint
https://en.wikipedia.org/wiki/Call_stack

+------------------------+

|									SS													|

|									RSP												|

|								RFLAGS										|

|									CS													|

|									RIP												|

|									RDX												|

|										1													|

+------------------------+

In	the	next	step	we	allocate	yet	another		40		bytes	on	the	stack:

subq				$(5*8),	%rsp

and	pushes	the	copy	of	the	original	stack	frame	after	the	allocated	space:

.rept	5

pushq				11*8(%rsp)

.endr

with	the	.rept	assembly	directive.	We	need	in	the	copy	of	the	original	stack	frame.	Generally
we	need	in	two	copies	of	the	interrupt	stack.	First	is		copied		interrupts	stack:		saved		stack
frame	and		copied		stack	frame.	Now	we	pushes	original	stack	frame	to	the		saved		stack
frame	which	locates	after	the	just	allocated		40		bytes	(copied		stack	frame).	This	stack
frame	is	used	to	fixup	the		copied		stack	frame	that	a	nested	NMI	may	change.	The	second	-
	copied		stack	frame	modified	by	any	nested		NMIs		to	let	the	first		NMI		know	that	we
triggered	a	second		NMI		and	we	should	repeat	the	first		NMI		handler.	Ok,	we	have	made
first	copy	of	the	original	stack	frame,	now	time	to	make	second	copy:

addq				$(10*8),	%rsp

.rept	5

pushq				-6*8(%rsp)

.endr

subq				$(5*8),	%rsp

After	all	of	these	manipulations	our	stack	frame	will	be	like	this:

Handling	Non-Maskable	interrupts

303

http://tigcc.ticalc.org/doc/gnuasm.html#SEC116

+-------------------------+

|	original	SS													|

|	original	Return	RSP					|

|	original	RFLAGS									|

|	original	CS													|

|	original	RIP												|

+-------------------------+

|	temp	storage	for	rdx				|

+-------------------------+

|	NMI	executing	variable		|

+-------------------------+

|	copied	SS															|

|	copied	Return	RSP							|

|	copied	RFLAGS											|

|	copied	CS															|

|	copied	RIP														|

+-------------------------+

|	Saved	SS																|

|	Saved	Return	RSP								|

|	Saved	RFLAGS												|

|	Saved	CS																|

|	Saved	RIP															|

+-------------------------+

After	this	we	push	dummy	error	code	on	the	stack	as	we	did	it	already	in	the	previous
exception	handlers	and	allocate	space	for	the	general	purpose	registers	on	the	stack:

pushq				$-1

ALLOC_PT_GPREGS_ON_STACK

We	already	saw	implementation	of	the		ALLOC_PT_GREGS_ON_STACK		macro	in	the	third	part	of
the	interrupts	chapter.	This	macro	defined	in	the	arch/x86/entry/calling.h	and	yet	another
allocates		120		bytes	on	stack	for	the	general	purpose	registers,	from	the		rdi		to	the		r15	:

.macro	ALLOC_PT_GPREGS_ON_STACK	addskip=0

addq				$-(15*8+\addskip),	%rsp

.endm

After	space	allocation	for	the	general	registers	we	can	see	call	of	the		paranoid_entry	:

call				paranoid_entry

We	can	remember	from	the	previous	parts	this	label.	It	pushes	general	purpose	registers	on
the	stack,	reads		MSR_GS_BASE		Model	Specific	register	and	checks	its	value.	If	the	value	of
the		MSR_GS_BASE		is	negative,	we	came	from	the	kernel	mode	and	just	return	from	the

Handling	Non-Maskable	interrupts

304

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/calling.h
https://en.wikipedia.org/wiki/Model-specific_register

	paranoid_entry	,	in	other	way	it	means	that	we	came	from	the	usermode	and	need	to
execute		swapgs		instruction	which	will	change	user		gs		with	the	kernel		gs	:

ENTRY(paranoid_entry)

				cld

				SAVE_C_REGS	8

				SAVE_EXTRA_REGS	8

				movl				$1,	%ebx

				movl				$MSR_GS_BASE,	%ecx

				rdmsr

				testl				%edx,	%edx

				js				1f

				SWAPGS

				xorl				%ebx,	%ebx

1:				ret

END(paranoid_entry)

Note	that	after	the		swapgs		instruction	we	zeroed	the		ebx		register.	Next	time	we	will	check
content	of	this	register	and	if	we	executed		swapgs		than		ebx		must	contain		0		and		1		in
other	way.	In	the	next	step	we	store	value	of	the		cr2		control	register	to	the		r12		register,
because	the		NMI		handler	can	cause		page	fault		and	corrupt	the	value	of	this	control
register:

movq				%cr2,	%r12

Now	time	to	call	actual		NMI		handler.	We	push	the	address	of	the		pt_regs		to	the		rdi	,
error	code	to	the		rsi		and	call	the		do_nmi		handler:

movq				%rsp,	%rdi

movq				$-1,	%rsi

call				do_nmi

We	will	back	to	the		do_nmi		little	later	in	this	part,	but	now	let's	look	what	occurs	after	the
	do_nmi		will	finish	its	execution.	After	the		do_nmi		handler	will	be	finished	we	check	the		cr2	
register,	because	we	can	got	page	fault	during		do_nmi		performed	and	if	we	got	it	we	restore
original		cr2	,	in	other	way	we	jump	on	the	label		1	.	After	this	we	test	content	of	the		ebx	
register	(remember	it	must	contain		0		if	we	have	used		swapgs		instruction	and		1		if	we
didn't	use	it)	and	execute		SWAPGS_UNSAFE_STACK		if	it	contains		1		or	jump	to	the		nmi_restore	
label.	The		SWAPGS_UNSAFE_STACK		macro	just	expands	to	the		swapgs		instruction.	In	the
	nmi_restore		label	we	restore	general	purpose	registers,	clear	allocated	space	on	the	stack
for	this	registers,	clear	our	temporary	variable	and	exit	from	the	interrupt	handler	with	the
	INTERRUPT_RETURN		macro:

Handling	Non-Maskable	interrupts

305

https://en.wikipedia.org/wiki/Control_register

				movq				%cr2,	%rcx

				cmpq				%rcx,	%r12

				je				1f

				movq				%r12,	%cr2

1:

				testl				%ebx,	%ebx

				jnz				nmi_restore

nmi_swapgs:

				SWAPGS_UNSAFE_STACK

nmi_restore:

				RESTORE_EXTRA_REGS

				RESTORE_C_REGS

				/*	Pop	the	extra	iret	frame	at	once	*/

				REMOVE_PT_GPREGS_FROM_STACK	6*8

				/*	Clear	the	NMI	executing	stack	variable	*/

				movq				$0,	5*8(%rsp)

				INTERRUPT_RETURN

where		INTERRUPT_RETURN		is	defined	in	the	arch/x86/include/irqflags.h	and	just	expands	to	the
	iret		instruction.	That's	all.

Now	let's	consider	case	when	another		NMI		interrupt	occurred	when	previous		NMI		interrupt
didn't	finish	its	execution.	You	can	remember	from	the	beginning	of	this	part	that	we've	made
a	check	that	we	came	from	userspace	and	jump	on	the		first_nmi		in	this	case:

cmpl				$__KERNEL_CS,	16(%rsp)

jne				first_nmi

Note	that	in	this	case	it	is	first		NMI		every	time,	because	if	the	first		NMI		catched	page	fault,
breakpoint	or	another	exception	it	will	be	executed	in	the	kernel	mode.	If	we	didn't	come
from	userspace,	first	of	all	we	test	our	temporary	variable:

cmpl				$1,	-8(%rsp)

je				nested_nmi

and	if	it	is	set	to		1		we	jump	to	the		nested_nmi		label.	If	it	is	not		1	,	we	test	the		IST		stack.
In	the	case	of	nested		NMIs		we	check	that	we	are	above	the		repeat_nmi	.	In	this	case	we
ignore	it,	in	other	way	we	check	that	we	above	than		end_repeat_nmi		and	jump	on	the
	nested_nmi_out		label.

Now	let's	look	on	the		do_nmi		exception	handler.	This	function	defined	in	the
arch/x86/kernel/nmi.c	source	code	file	and	takes	two	parameters:

address	of	the		pt_regs	;
error	code.

Handling	Non-Maskable	interrupts

306

https://github.com/torvalds/linux/blob/master/arch/x86/include/irqflags.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/nmi.c

as	all	exception	handlers.	The		do_nmi		starts	from	the	call	of	the		nmi_nesting_preprocess	
function	and	ends	with	the	call	of	the		nmi_nesting_postprocess	.	The
	nmi_nesting_preprocess		function	checks	that	we	likely	do	not	work	with	the	debug	stack	and
if	we	on	the	debug	stack	set	the		update_debug_stack		per-cpu	variable	to		1		and	call	the
	debug_stack_set_zero		function	from	the	arch/x86/kernel/cpu/common.c.	This	function
increases	the		debug_stack_use_ctr		per-cpu	variable	and	loads	new		Interrupt	Descriptor
Table	:

static	inline	void	nmi_nesting_preprocess(struct	pt_regs	*regs)

{

								if	(unlikely(is_debug_stack(regs->sp)))	{

																debug_stack_set_zero();

																this_cpu_write(update_debug_stack,	1);

								}

}

The		nmi_nesting_postprocess		function	checks	the		update_debug_stack		per-cpu	variable
which	we	set	in	the		nmi_nesting_preprocess		and	resets	debug	stack	or	in	another	words	it
loads	origin		Interrupt	Descriptor	Table	.	After	the	call	of	the		nmi_nesting_preprocess	
function,	we	can	see	the	call	of	the		nmi_enter		in	the		do_nmi	.	The		nmi_enter		increases
	lockdep_recursion		field	of	the	interrupted	process,	update	preempt	counter	and	informs	the
RCU	subsystem	about		NMI	.	There	is	also		nmi_exit		function	that	does	the	same	stuff	as
	nmi_enter	,	but	vice-versa.	After	the		nmi_enter		we	increase		__nmi_count		in	the		irq_stat	
structure	and	call	the		default_do_nmi		function.	First	of	all	in	the		default_do_nmi		we	check
the	address	of	the	previous	nmi	and	update	address	of	the	last	nmi	to	the	actual:

if	(regs->ip	==	__this_cpu_read(last_nmi_rip))

				b2b	=	true;

else

				__this_cpu_write(swallow_nmi,	false);

__this_cpu_write(last_nmi_rip,	regs->ip);

After	this	first	of	all	we	need	to	handle	CPU-specific		NMIs	:

handled	=	nmi_handle(NMI_LOCAL,	regs,	b2b);

__this_cpu_add(nmi_stats.normal,	handled);

And	then	non-specific		NMIs		depends	on	its	reason:

Handling	Non-Maskable	interrupts

307

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c
https://en.wikipedia.org/wiki/Read-copy-update

reason	=	x86_platform.get_nmi_reason();

if	(reason	&	NMI_REASON_MASK)	{

				if	(reason	&	NMI_REASON_SERR)

								pci_serr_error(reason,	regs);

				else	if	(reason	&	NMI_REASON_IOCHK)

								io_check_error(reason,	regs);

				__this_cpu_add(nmi_stats.external,	1);

				return;

}

That's	all.

Range	Exceeded	Exception
The	next	exception	is	the		BOUND		range	exceeded	exception.	The		BOUND		instruction
determines	if	the	first	operand	(array	index)	is	within	the	bounds	of	an	array	specified	the
second	operand	(bounds	operand).	If	the	index	is	not	within	bounds,	a		BOUND		range
exceeded	exception	or		#BR		is	occurred.	The	handler	of	the		#BR		exception	is	the
	do_bounds		function	that	defined	in	the	arch/x86/kernel/traps.c.	The		do_bounds		handler
starts	with	the	call	of	the		exception_enter		function	and	ends	with	the	call	of	the
	exception_exit	:

prev_state	=	exception_enter();

if	(notify_die(DIE_TRAP,	"bounds",	regs,	error_code,

															X86_TRAP_BR,	SIGSEGV)	==	NOTIFY_STOP)

				goto	exit;

...

...

...

exception_exit(prev_state);

return;

After	we	have	got	the	state	of	the	previous	context,	we	add	the	exception	to	the		notify_die	
chain	and	if	it	will	return		NOTIFY_STOP		we	return	from	the	exception.	More	about	notify	chains
and	the		context	tracking		functions	you	can	read	in	the	previous	part.	In	the	next	step	we
enable	interrupts	if	they	were	disabled	with	the		contidional_sti		function	that	checks		IF	
flag	and	call	the		local_irq_enable		depends	on	its	value:

Handling	Non-Maskable	interrupts

308

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html

conditional_sti(regs);

if	(!user_mode(regs))

				die("bounds",	regs,	error_code);

and	check	that	if	we	didn't	came	from	user	mode	we	send		SIGSEGV		signal	with	the		die	
function.	After	this	we	check	is	MPX	enabled	or	not,	and	if	this	feature	is	disabled	we	jump
on	the		exit_trap		label:

if	(!cpu_feature_enabled(X86_FEATURE_MPX))	{

				goto	exit_trap;

}

where	we	execute	`do_trap`	function	(more	about	it	you	can	find	in	the	previous	part):

```C

exit_trap:

				do_trap(X86_TRAP_BR,	SIGSEGV,	"bounds",	regs,	error_code,	NULL);

				exception_exit(prev_state);

If		MPX		feature	is	enabled	we	check	the		BNDSTATUS		with	the		get_xsave_field_ptr		function
and	if	it	is	zero,	it	means	that	the		MPX		was	not	responsible	for	this	exception:

bndcsr	=	get_xsave_field_ptr(XSTATE_BNDCSR);

if	(!bndcsr)

								goto	exit_trap;

After	all	of	this,	there	is	still	only	one	way	when		MPX		is	responsible	for	this	exception.	We
will	not	dive	into	the	details	about	Intel	Memory	Protection	Extensions	in	this	part,	but	will
see	it	in	another	chapter.

Coprocessor	exception	and	SIMD	exception
The	next	two	exceptions	are	x87	FPU	Floating-Point	Error	exception	or		#MF		and	SIMD
Floating-Point	Exception	or		#XF	.	The	first	exception	occurs	when	the		x87	FPU		has
detected	floating	point	error.	For	example	divide	by	zero,	numeric	overflow	and	etc.	The
second	exception	occurs	when	the	processor	has	detected	SSE/SSE2/SSE3		SIMD		floating-
point	exception.	It	can	be	the	same	as	for	the		x87	FPU	.	The	handlers	for	these	exceptions
are		do_coprocessor_error		and		do_simd_coprocessor_error		are	defined	in	the
arch/x86/kernel/traps.c	and	very	similar	on	each	other.	They	both	make	a	call	of	the
	math_error		function	from	the	same	source	code	file	but	pass	different	vector	number.	The
	do_coprocessor_error		passes		X86_TRAP_MF		vector	number	to	the		math_error	:

Handling	Non-Maskable	interrupts

309

https://en.wikipedia.org/wiki/Intel_MPX
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SSE3
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c


dotraplinkage	void	do_coprocessor_error(struct	pt_regs	*regs,	long	error_code)

{

				enum	ctx_state	prev_state;

				prev_state	=	exception_enter();

				math_error(regs,	error_code,	X86_TRAP_MF);

				exception_exit(prev_state);

}

and		do_simd_coprocessor_error		passes		X86_TRAP_XF		to	the		math_error		function:

dotraplinkage	void

do_simd_coprocessor_error(struct	pt_regs	*regs,	long	error_code)

{

				enum	ctx_state	prev_state;

				prev_state	=	exception_enter();

				math_error(regs,	error_code,	X86_TRAP_XF);

				exception_exit(prev_state);

}

First	of	all	the		math_error		function	defines	current	interrupted	task,	address	of	its	fpu,	string
which	describes	an	exception,	add	it	to	the		notify_die		chain	and	return	from	the	exception
handler	if	it	will	return		NOTIFY_STOP	:

				struct	task_struct	*task	=	current;

				struct	fpu	*fpu	=	&task->thread.fpu;

				siginfo_t	info;

				char	*str	=	(trapnr	==	X86_TRAP_MF)	?	"fpu	exception"	:

																								"simd	exception";

				if	(notify_die(DIE_TRAP,	str,	regs,	error_code,	trapnr,	SIGFPE)	==	NOTIFY_STOP)

								return;

After	this	we	check	that	we	are	from	the	kernel	mode	and	if	yes	we	will	try	to	fix	an	excetpion
with	the		fixup_exception		function.	If	we	cannot	we	fill	the	task	with	the	exception's	error
code	and	vector	number	and	die:

if	(!user_mode(regs))	{

				if	(!fixup_exception(regs))	{

								task->thread.error_code	=	error_code;

								task->thread.trap_nr	=	trapnr;

								die(str,	regs,	error_code);

				}

				return;

}

Handling	Non-Maskable	interrupts

310



If	we	came	from	the	user	mode,	we	save	the		fpu		state,	fill	the	task	structure	with	the	vector
number	of	an	exception	and		siginfo_t		with	the	number	of	signal,		errno	,	the	address
where	exception	occurred	and	signal	code:

fpu__save(fpu);

task->thread.trap_nr				=	trapnr;

task->thread.error_code	=	error_code;

info.si_signo								=	SIGFPE;

info.si_errno								=	0;

info.si_addr								=	(void	__user	*)uprobe_get_trap_addr(regs);

info.si_code	=	fpu__exception_code(fpu,	trapnr);

After	this	we	check	the	signal	code	and	if	it	is	non-zero	we	return:

if	(!info.si_code)

				return;

Or	send	the		SIGFPE		signal	in	the	end:

force_sig_info(SIGFPE,	&info,	task);

That's	all.

Conclusion
It	is	the	end	of	the	sixth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	saw
implementation	of	some	exception	handlers	in	this	part,	like		non-maskable		interrupt,	SIMD
and	x87	FPU	floating	point	exception.	Finally	we	have	finsihed	with	the		trap_init		function
in	this	part	and	will	go	ahead	in	the	next	part.	The	next	our	point	is	the	external	interrupts
and	the		early_irq_init		function	from	the	init/main.c.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
General	Protection	Fault
opcode

Handling	Non-Maskable	interrupts

311

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/X87
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Opcode


Non-Maskable
BOUND	instruction
CPU	socket
Interrupt	Descriptor	Table
Interrupt	Stack	Table
Paravirtualization
.rept
SIMD
Coprocessor
x86_64
iret
page	fault
breakpoint
Global	Descriptor	Table
stack	frame
Model	Specific	regiser
percpu
RCU
MPX
x87	FPU
Previous	part

Handling	Non-Maskable	interrupts

312

https://en.wikipedia.org/wiki/Non-maskable_interrupt
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/blob/master/Documentation/x86/kernel-stacks
https://en.wikipedia.org/wiki/Paravirtualization
http://tigcc.ticalc.org/doc/gnuasm.html#SEC116
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/X86-64
http://faydoc.tripod.com/cpu/iret.htm
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Breakpoint
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Model-specific_register
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Intel_MPX
https://en.wikipedia.org/wiki/X87
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html


Interrupts	and	Interrupt	Handling.	Part	7.

Introduction	to	external	interrupts
This	is	the	seventh	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter
and	in	the	previous	part	we	have	finished	with	the	exceptions	which	are	generated	by	the
processor.	In	this	part	we	will	continue	to	dive	to	the	interrupt	handling	and	will	start	with	the
external	hardware	interrupt	handling.	As	you	can	remember,	in	the	previous	part	we	have
finished	with	the		trap_init		function	from	the	arch/x86/kernel/trap.c	and	the	next	step	is	the
call	of	the		early_irq_init		function	from	the	init/main.c.

Interrupts	are	signal	that	are	sent	across	IRQ	or		Interrupt	Request	Line		by	a	hardware	or
software.	External	hardware	interrupts	allow	devices	like	keyboard,	mouse	and	etc,	to
indicate	that	it	needs	attention	of	the	processor.	Once	the	processor	receives	the		Interrupt
Request	,	it	will	temporary	stop	execution	of	the	running	program	and	invoke	special	routine
which	depends	on	an	interrupt.	We	already	know	that	this	routine	is	called	interrupt	handler
(or	how	we	will	call	it		ISR		or		Interrupt	Service	Routine		from	this	part).	The		ISR		or
	Interrupt	Handler	Routine		can	be	found	in	Interrupt	Vector	table	that	is	located	at	fixed
address	in	the	memory.	After	the	interrupt	is	handled	processor	resumes	the	interrupted
process.	At	the	boot/initialization	time,	the	Linux	kernel	identifies	all	devices	in	the	machine,
and	appropriate	interrupt	handlers	are	loaded	into	the	interrupt	table.	As	we	saw	in	the
previous	parts,	most	exceptions	are	handled	simply	by	the	sending	a	Unix	signal	to	the
interrupted	process.	That's	why	kernel	is	can	handle	an	exception	quickly.	Unfortunately	we
can	not	use	this	approach	for	the	external	hardware	interrupts,	because	often	they	arrive
after	(and	sometimes	long	after)	the	process	to	which	they	are	related	has	been	suspended.
So	it	would	make	no	sense	to	send	a	Unix	signal	to	the	current	process.	External	interrupt
handling	depends	on	the	type	of	an	interrupt:

	I/O		interrupts;
Timer	interrupts;
Interprocessor	interrupts.

I	will	try	to	describe	all	types	of	interrupts	in	this	book.

Generally,	a	handler	of	an		I/O		interrupt	must	be	flexible	enough	to	service	several	devices
at	the	same	time.	For	example	in	the	PCI	bus	architecture	several	devices	may	share	the
same		IRQ		line.	In	the	simplest	way	the	Linux	kernel	must	do	following	thing	when	an		I/O	
interrupt	occurred:

Save	the	value	of	an		IRQ		and	the	register's	contents	on	the	kernel	stack;

Dive	into	external	hardware	interrupts

313

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-6.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/master/init/main.c
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Conventional_PCI


Send	an	acknowledgment	to	the	hardware	controller	which	is	servicing	the		IRQ		line;
Execute	the	interrupt	service	routine	(next	we	will	call	it		ISR	)	which	is	associated	with
the	device;
Restore	registers	and	return	from	an	interrupt;

Ok,	we	know	a	little	theory	and	now	let's	start	with	the		early_irq_init		function.	The
implementation	of	the		early_irq_init		function	is	in	the	kernel/irq/irqdesc.c.	This	function
make	early	initialization	of	the		irq_desc		structure.	The		irq_desc		structure	is	the	foundation
of	interrupt	management	code	in	the	Linux	kernel.	An	array	of	this	structure,	which	has	the
same	name	-		irq_desc	,	keeps	track	of	every	interrupt	request	source	in	the	Linux	kernel.
This	structure	defined	in	the	include/linux/irqdesc.h	and	as	you	can	note	it	depends	on	the
	CONFIG_SPARSE_IRQ		kernel	configuration	option.	This	kernel	configuration	option	enables
support	for	sparse	irqs.	The		irq_desc		structure	contains	many	different	files:

	irq_common_data		-	per	irq	and	chip	data	passed	down	to	chip	functions;
	status_use_accessors		-	contains	status	of	the	interrupt	source	which	is	combination	of
the	values	from	the		enum		from	the	include/linux/irq.h	and	different	macros	which	are
defined	in	the	same	source	code	file;
	kstat_irqs		-	irq	stats	per-cpu;
	handle_irq		-	highlevel	irq-events	handler;
	action		-	identifies	the	interrupt	service	routines	to	be	invoked	when	the	IRQ	occurs;
	irq_count		-	counter	of	interrupt	occurrences	on	the	IRQ	line;
	depth		-		0		if	the	IRQ	line	is	enabled	and	a	positive	value	if	it	has	been	disabled	at
least	once;
	last_unhandled		-	aging	timer	for	unhandled	count;
	irqs_unhandled		-	count	of	the	unhandled	interrupts;
	lock		-	a	spin	lock	used	to	serialize	the	accesses	to	the		IRQ		descriptor;
	pending_mask		-	pending	rebalanced	interrupts;
	owner		-	an	owner	of	interrupt	descriptor.	Interrupt	descriptors	can	be	allocated	from
modules.	This	field	is	need	to	proved	refcount	on	the	module	which	provides	the
interrupts;
and	etc.

Of	course	it	is	not	all	fields	of	the		irq_desc		structure,	because	it	is	too	long	to	describe	each
field	of	this	structure,	but	we	will	see	it	all	soon.	Now	let's	start	to	dive	into	the
implementation	of	the		early_irq_init		function.

Early	external	interrupts	initialization

Dive	into	external	hardware	interrupts

314

https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/master/include/linux/irqdesc.h
https://github.com/torvalds/linux/blob/master/include/linux/irq.h
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29


Now,	let's	look	on	the	implementation	of	the		early_irq_init		function.	Note	that
implementation	of	the		early_irq_init		function	depends	on	the		CONFIG_SPARSE_IRQ		kernel
configuration	option.	Now	we	consider	implementation	of	the		early_irq_init		function	when
the		CONFIG_SPARSE_IRQ		kernel	configuration	option	is	not	set.	This	function	starts	from	the
declaration	of	the	following	variables:		irq		descriptors	counter,	loop	counter,	memory	node
and	the		irq_desc		descriptor:

int	__init	early_irq_init(void)

{

								int	count,	i,	node	=	first_online_node;

								struct	irq_desc	*desc;

								...

								...

								...

}

The		node		is	an	online	NUMA	node	which	depends	on	the		MAX_NUMNODES		value	which
depends	on	the		CONFIG_NODES_SHIFT		kernel	configuration	parameter:

#define	MAX_NUMNODES				(1	<<	NODES_SHIFT)

...

...

...

#ifdef	CONFIG_NODES_SHIFT

				#define	NODES_SHIFT					CONFIG_NODES_SHIFT

#else

				#define	NODES_SHIFT					0

#endif

As	I	already	wrote,	implementation	of	the		first_online_node		macro	depends	on	the
	MAX_NUMNODES		value:

#if	MAX_NUMNODES	>	1

		#define	first_online_node							first_node(node_states[N_ONLINE])

#else

		#define	first_online_node							0

The		node_states		is	the	enum	which	defined	in	the	include/linux/nodemask.h	and	represent
the	set	of	the	states	of	a	node.	In	our	case	we	are	searching	an	online	node	and	it	will	be		0	
if		MAX_NUMNODES		is	one	or	zero.	If	the		MAX_NUMNODES		is	greater	than	one,	the
	node_states[N_ONLINE]		will	return		1		and	the		first_node		macro	will	be	expands	to	the	call
of	the		__first_node		function	which	will	return		minimal		or	the	first	online	node:

Dive	into	external	hardware	interrupts

315

https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Enumerated_type
https://github.com/torvalds/linux/blob/master/include/linux/nodemask.h


#define	first_node(src)	__first_node(&(src))

static	inline	int	__first_node(const	nodemask_t	*srcp)

{

								return	min_t(int,	MAX_NUMNODES,	find_first_bit(srcp->bits,	MAX_NUMNODES));

}

More	about	this	will	be	in	the	another	chapter	about	the		NUMA	.	The	next	step	after	the
declaration	of	these	local	variables	is	the	call	of	the:

init_irq_default_affinity();

function.	The		init_irq_default_affinity		function	defined	in	the	same	source	code	file	and
depends	on	the		CONFIG_SMP		kernel	configuration	option	allocates	a	given	cpumask	structure
(in	our	case	it	is	the		irq_default_affinity	):

#if	defined(CONFIG_SMP)

cpumask_var_t	irq_default_affinity;

static	void	__init	init_irq_default_affinity(void)

{

								alloc_cpumask_var(&irq_default_affinity,	GFP_NOWAIT);

								cpumask_setall(irq_default_affinity);

}

#else

static	void	__init	init_irq_default_affinity(void)

{

}

#endif

We	know	that	when	a	hardware,	such	as	disk	controller	or	keyboard,	needs	attention	from
the	processor,	it	throws	an	interrupt.	The	interrupt	tells	to	the	processor	that	something	has
happened	and	that	the	processor	should	interrupt	current	process	and	handle	an	incoming
event.	In	order	to	prevent	multiple	devices	from	sending	the	same	interrupts,	the	IRQ	system
was	established	where	each	device	in	a	computer	system	is	assigned	its	own	special	IRQ	so
that	its	interrupts	are	unique.	Linux	kernel	can	assign	certain		IRQs		to	specific	processors.
This	is	known	as		SMP	IRQ	affinity	,	and	it	allows	you	control	how	your	system	will	respond
to	various	hardware	events	(that's	why	it	has	certain	implementation	only	if	the		CONFIG_SMP	
kernel	configuration	option	is	set).	After	we	allocated		irq_default_affinity		cpumask,	we
can	see		printk		output:

printk(KERN_INFO	"NR_IRQS:%d\n",	NR_IRQS);

Dive	into	external	hardware	interrupts

316

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29


which	prints		NR_IRQS	:

~$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352

The		NR_IRQS		is	the	maximum	number	of	the		irq		descriptors	or	in	another	words	maximum
number	of	interrupts.	Its	value	depends	on	the	state	of	the		CONFIG_X86_IO_APIC		kernel
configuration	option.	If	the		CONFIG_X86_IO_APIC		is	not	set	and	the	Linux	kernel	uses	an	old
PIC	chip,	the		NR_IRQS		is:

#define	NR_IRQS_LEGACY																				16

#ifdef	CONFIG_X86_IO_APIC

...

...

...

#else

#	define	NR_IRQS																								NR_IRQS_LEGACY

#endif

In	other	way,	when	the		CONFIG_X86_IO_APIC		kernel	configuration	option	is	set,	the		NR_IRQS	
depends	on	the	amount	of	the	processors	and	amount	of	the	interrupt	vectors:

#define	CPU_VECTOR_LIMIT															(64	*	NR_CPUS)

#define	NR_VECTORS																					256

#define	IO_APIC_VECTOR_LIMIT											(	32	*	MAX_IO_APICS	)

#define	MAX_IO_APICS																			128

#	define	NR_IRQS																																							\

								(CPU_VECTOR_LIMIT	>	IO_APIC_VECTOR_LIMIT	?					\

																(NR_VECTORS	+	CPU_VECTOR_LIMIT)		:					\

																(NR_VECTORS	+	IO_APIC_VECTOR_LIMIT))

...

...

...

We	remember	from	the	previous	parts,	that	the	amount	of	processors	we	can	set	during
Linux	kernel	configuration	process	with	the		CONFIG_NR_CPUS		configuration	option:

Dive	into	external	hardware	interrupts

317

https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller


In	the	first	case	(	CPU_VECTOR_LIMIT	>	IO_APIC_VECTOR_LIMIT	),	the		NR_IRQS		will	be		4352	,	in
the	second	case	(	CPU_VECTOR_LIMIT	<	IO_APIC_VECTOR_LIMIT	),	the		NR_IRQS		will	be		768	.	In
my	case	the		NR_CPUS		is		8		as	you	can	see	in	the	my	configuration,	the		CPU_VECTOR_LIMIT	
is		512		and	the		IO_APIC_VECTOR_LIMIT		is		4096	.	So		NR_IRQS		for	my	configuration	is		4352	:

~$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352

In	the	next	step	we	assign	array	of	the	IRQ	descriptors	to	the		irq_desc		variable	which	we
defined	in	the	start	of	the		early_irq_init		function	and	calculate	count	of	the		irq_desc	
array	with	the		ARRAY_SIZE		macro:

desc	=	irq_desc;

count	=	ARRAY_SIZE(irq_desc);

The		irq_desc		array	defined	in	the	same	source	code	file	and	looks	like:

struct	irq_desc	irq_desc[NR_IRQS]	__cacheline_aligned_in_smp	=	{

								[0	...	NR_IRQS-1]	=	{

																.handle_irq					=	handle_bad_irq,

																.depth										=	1,

																.lock											=	__RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),

								}

};

The		irq_desc		is	array	of	the		irq		descriptors.	It	has	three	already	initialized	fields:

Dive	into	external	hardware	interrupts

318



	handle_irq		-	as	I	already	wrote	above,	this	field	is	the	highlevel	irq-event	handler.	In
our	case	it	initialized	with	the		handle_bad_irq		function	that	defined	in	the
kernel/irq/handle.c	source	code	file	and	handles	spurious	and	unhandled	irqs;
	depth		-		0		if	the	IRQ	line	is	enabled	and	a	positive	value	if	it	has	been	disabled	at
least	once;
	lock		-	A	spin	lock	used	to	serialize	the	accesses	to	the		IRQ		descriptor.

As	we	calculated	count	of	the	interrupts	and	initialized	our		irq_desc		array,	we	start	to	fill
descriptors	in	the	loop:

for	(i	=	0;	i	<	count;	i++)	{

				desc[i].kstat_irqs	=	alloc_percpu(unsigned	int);

				alloc_masks(&desc[i],	GFP_KERNEL,	node);

				raw_spin_lock_init(&desc[i].lock);

				lockdep_set_class(&desc[i].lock,	&irq_desc_lock_class);

				desc_set_defaults(i,	&desc[i],	node,	NULL);

}

We	are	going	through	the	all	interrupt	descriptors	and	do	the	following	things:

First	of	all	we	allocate	percpu	variable	for	the		irq		kernel	statistic	with	the		alloc_percpu	
macro.	This	macro	allocates	one	instance	of	an	object	of	the	given	type	for	every	processor
on	the	system.	You	can	access	kernel	statistic	from	the	userspace	via		/proc/stat	:

~$	cat	/proc/stat

cpu		207907	68	53904	5427850	14394	0	394	0	0	0

cpu0	25881	11	6684	679131	1351	0	18	0	0	0

cpu1	24791	16	5894	679994	2285	0	24	0	0	0

cpu2	26321	4	7154	678924	664	0	71	0	0	0

cpu3	26648	8	6931	678891	414	0	244	0	0	0

...

...

...

Where	the	sixth	column	is	the	servicing	interrupts.	After	this	we	allocate	cpumask	for	the
given	irq	descriptor	affinity	and	initialize	the	spinlock	for	the	given	interrupt	descriptor.	After
this	before	the	critical	section,	the	lock	will	be	acquired	with	a	call	of	the		raw_spin_lock		and
unlocked	with	the	call	of	the		raw_spin_unlock	.	In	the	next	step	we	call	the
	lockdep_set_class		macro	which	set	the	Lock	validator		irq_desc_lock_class		class	for	the
lock	of	the	given	interrupt	descriptor.	More	about		lockdep	,		spinlock		and	other
synchronization	primitives	will	be	described	in	the	separate	chapter.

In	the	end	of	the	loop	we	call	the		desc_set_defaults		function	from	the	kernel/irq/irqdesc.c.
This	function	takes	four	parameters:

Dive	into	external	hardware	interrupts

319

https://github.com/torvalds/linux/blob/master/kernel/irq/handle.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Critical_section
https://lwn.net/Articles/185666/
https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c


number	of	a	irq;
interrupt	descriptor;
online		NUMA		node;
owner	of	interrupt	descriptor.	Interrupt	descriptors	can	be	allocated	from	modules.	This
field	is	need	to	proved	refcount	on	the	module	which	provides	the	interrupts;

and	fills	the	rest	of	the		irq_desc		fields.	The		desc_set_defaults		function	fills	interrupt
number,		irq		chip,	platform-specific	per-chip	private	data	for	the	chip	methods,	per-IRQ
data	for	the		irq_chip		methods	and	MSI	descriptor	for	the	per		irq		and		irq		chip	data:

desc->irq_data.irq	=	irq;

desc->irq_data.chip	=	&no_irq_chip;

desc->irq_data.chip_data	=	NULL;

desc->irq_data.handler_data	=	NULL;

desc->irq_data.msi_desc	=	NULL;

...

...

...

The		irq_data.chip		structure	provides	general		API		like	the		irq_set_chip	,
	irq_set_irq_type		and	etc,	for	the	irq	controller	drivers.	You	can	find	it	in	the	kernel/irq/chip.c
source	code	file.

After	this	we	set	the	status	of	the	accessor	for	the	given	descriptor	and	set	disabled	state	of
the	interrupts:

...

...

...

irq_settings_clr_and_set(desc,	~0,	_IRQ_DEFAULT_INIT_FLAGS);

irqd_set(&desc->irq_data,	IRQD_IRQ_DISABLED);

...

...

...

In	the	next	step	we	set	the	high	level	interrupt	handlers	to	the		handle_bad_irq		which
handles	spurious	and	unhandled	irqs	(as	the	hardware	stuff	is	not	initialized	yet,	we	set	this
handler),	set		irq_desc.desc		to		1		which	means	that	an		IRQ		is	disabled,	reset	count	of	the
unhandled	interrupts	and	interrupts	in	general:

Dive	into	external	hardware	interrupts

320

https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://github.com/torvalds/linux/tree/master/drivers/irqchip
https://github.com/torvalds/linux/blob/master/kernel/irq/chip.c


...

...

...

desc->handle_irq	=	handle_bad_irq;

desc->depth	=	1;

desc->irq_count	=	0;

desc->irqs_unhandled	=	0;

desc->name	=	NULL;

desc->owner	=	owner;

...

...

...

After	this	we	go	through	the	all	possible	processor	with	the	for_each_possible_cpu	helper
and	set	the		kstat_irqs		to	zero	for	the	given	interrupt	descriptor:

				for_each_possible_cpu(cpu)

								*per_cpu_ptr(desc->kstat_irqs,	cpu)	=	0;

and	call	the		desc_smp_init		function	from	the	kernel/irq/irqdesc.c	that	initializes		NUMA		node
of	the	given	interrupt	descriptor,	sets	default		SMP		affinity	and	clears	the		pending_mask		of
the	given	interrupt	descriptor	depends	on	the	value	of	the		CONFIG_GENERIC_PENDING_IRQ	
kernel	configuration	option:

static	void	desc_smp_init(struct	irq_desc	*desc,	int	node)

{

								desc->irq_data.node	=	node;

								cpumask_copy(desc->irq_data.affinity,	irq_default_affinity);

#ifdef	CONFIG_GENERIC_PENDING_IRQ

								cpumask_clear(desc->pending_mask);

#endif

}

In	the	end	of	the		early_irq_init		function	we	return	the	return	value	of	the
	arch_early_irq_init		function:

return	arch_early_irq_init();

This	function	defined	in	the	kernel/apic/vector.c	and	contains	only	one	call	of	the
	arch_early_ioapic_init		function	from	the	kernel/apic/io_apic.c.	As	we	can	understand	from
the		arch_early_ioapic_init		function's	name,	this	function	makes	early	initialization	of	the
I/O	APIC.	First	of	all	it	make	a	check	of	the	number	of	the	legacy	interrupts	wit	the	call	of	the
	nr_legacy_irqs		function.	If	we	have	no	legacy	interrupts	with	the	Intel	8259	programmable
interrupt	controller	we	set		io_apic_irqs		to	the		0xffffffffffffffff	:

Dive	into	external	hardware	interrupts

321

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/master/include/linux/cpumask.h#L714
https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/master/kernel/apic/vector.c
https://github.com/torvalds/linux/blob/master/kernel/apic/io_apic.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Intel_8259


if	(!nr_legacy_irqs())

				io_apic_irqs	=	~0UL;

After	this	we	are	going	through	the	all		I/O	APICs		and	allocate	space	for	the	registers	with
the	call	of	the		alloc_ioapic_saved_registers	:

for_each_ioapic(i)

				alloc_ioapic_saved_registers(i);

And	in	the	end	of	the		arch_early_ioapic_init		function	we	are	going	through	the	all	legacy
irqs	(from		IRQ0		to		IRQ15	)	in	the	loop	and	allocate	space	for	the		irq_cfg		which	represents
configuration	of	an	irq	on	the	given		NUMA		node:

for	(i	=	0;	i	<	nr_legacy_irqs();	i++)	{

				cfg	=	alloc_irq_and_cfg_at(i,	node);

				cfg->vector	=	IRQ0_VECTOR	+	i;

				cpumask_setall(cfg->domain);

}

That's	all.

Sparse	IRQs
We	already	saw	in	the	beginning	of	this	part	that	implementation	of	the		early_irq_init	
function	depends	on	the		CONFIG_SPARSE_IRQ		kernel	configuration	option.	Previously	we	saw
implementation	of	the		early_irq_init		function	when	the		CONFIG_SPARSE_IRQ		configuration
option	is	not	set,	now	let's	look	on	the	its	implementation	when	this	option	is	set.
Implementation	of	this	function	very	similar,	but	little	differ.	We	can	see	the	same	definition	of
variables	and	call	of	the		init_irq_default_affinity		in	the	beginning	of	the		early_irq_init	
function:

Dive	into	external	hardware	interrupts

322



#ifdef	CONFIG_SPARSE_IRQ

int	__init	early_irq_init(void)

{

				int	i,	initcnt,	node	=	first_online_node;

				struct	irq_desc	*desc;

				init_irq_default_affinity();

				...

				...

				...

}

#else

...

...

...

But	after	this	we	can	see	the	following	call:

initcnt	=	arch_probe_nr_irqs();

The		arch_probe_nr_irqs		function	defined	in	the	arch/x86/kernel/apic/vector.c	and	calculates
count	of	the	pre-allocated	irqs	and	update		nr_irqs		with	its	number.	But	stop.	Why	there	are
pre-allocated	irqs?	There	is	alternative	form	of	interrupts	called	-	Message	Signaled
Interrupts	available	in	the	PCI.	Instead	of	assigning	a	fixed	number	of	the	interrupt	request,
the	device	is	allowed	to	record	a	message	at	a	particular	address	of	RAM,	in	fact,	the	display
on	the	Local	APIC.		MSI		permits	a	device	to	allocate		1	,		2	,		4	,		8	,		16		or		32		interrupts
and		MSI-X		permits	a	device	to	allocate	up	to		2048		interrupts.	Now	we	know	that	irqs	can
be	pre-allocated.	More	about		MSI		will	be	in	a	next	part,	but	now	let's	look	on	the
	arch_probe_nr_irqs		function.	We	can	see	the	check	which	assign	amount	of	the	interrupt
vectors	for	the	each	processor	in	the	system	to	the		nr_irqs		if	it	is	greater	and	calculate	the
	nr		which	represents	number	of		MSI		interrupts:

int	nr_irqs	=	NR_IRQS;

if	(nr_irqs	>	(NR_VECTORS	*	nr_cpu_ids))

				nr_irqs	=	NR_VECTORS	*	nr_cpu_ids;

nr	=	(gsi_top	+	nr_legacy_irqs())	+	8	*	nr_cpu_ids;

Take	a	look	on	the		gsi_top		variable.	Each		APIC		is	identified	with	its	own		ID		and	with	the
offset	where	its		IRQ		starts.	It	is	called		GSI		base	or		Global	System	Interrupt		base.	So	the
	gsi_top		represents	it.	We	get	the		Global	System	Interrupt		base	from	the	MultiProcessor
Configuration	Table	table	(you	can	remember	that	we	have	parsed	this	table	in	the	sixth	part
of	the	Linux	Kernel	initialization	process	chapter).

Dive	into	external	hardware	interrupts

323

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/apic/vector.c
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/MultiProcessor_Specification
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html


After	this	we	update	the		nr		depends	on	the	value	of	the		gsi_top	:

#if	defined(CONFIG_PCI_MSI)	||	defined(CONFIG_HT_IRQ)

								if	(gsi_top	<=	NR_IRQS_LEGACY)

																nr	+=		8	*	nr_cpu_ids;

								else

																nr	+=	gsi_top	*	16;

#endif

Update	the		nr_irqs		if	it	less	than		nr		and	return	the	number	of	the	legacy	irqs:

if	(nr	<	nr_irqs)

				nr_irqs	=	nr;

return	nr_legacy_irqs();

}

The	next	after	the		arch_probe_nr_irqs		is	printing	information	about	number	of		IRQs	:

printk(KERN_INFO	"NR_IRQS:%d	nr_irqs:%d	%d\n",	NR_IRQS,	nr_irqs,	initcnt);

We	can	find	it	in	the	dmesg	output:

$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352	nr_irqs:488	16

After	this	we	do	some	checks	that		nr_irqs		and		initcnt		values	is	not	greater	than
maximum	allowable	number	of		irqs	:

if	(WARN_ON(nr_irqs	>	IRQ_BITMAP_BITS))

				nr_irqs	=	IRQ_BITMAP_BITS;

if	(WARN_ON(initcnt	>	IRQ_BITMAP_BITS))

				initcnt	=	IRQ_BITMAP_BITS;

where		IRQ_BITMAP_BITS		is	equal	to	the		NR_IRQS		if	the		CONFIG_SPARSE_IRQ		is	not	set	and
	NR_IRQS	+	8196		in	other	way.	In	the	next	step	we	are	going	over	all	interrupt	descriptors
which	need	to	be	allocated	in	the	loop	and	allocate	space	for	the	descriptor	and	insert	to	the
	irq_desc_tree		radix	tree:

Dive	into	external	hardware	interrupts

324

https://en.wikipedia.org/wiki/Dmesg
http://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html


for	(i	=	0;	i	<	initcnt;	i++)	{

				desc	=	alloc_desc(i,	node,	NULL);

				set_bit(i,	allocated_irqs);

				irq_insert_desc(i,	desc);

}

In	the	end	of	the		early_irq_init		function	we	return	the	value	of	the	call	of	the
	arch_early_irq_init		function	as	we	did	it	already	in	the	previous	variant	when	the
	CONFIG_SPARSE_IRQ		option	was	not	set:

return	arch_early_irq_init();

That's	all.

Conclusion
It	is	the	end	of	the	seventh	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we
started	to	dive	into	external	hardware	interrupts	in	this	part.	We	saw	early	initialization	of	the
	irq_desc		structure	which	represents	description	of	an	external	interrupt	and	contains
information	about	it	like	list	of	irq	actions,	information	about	interrupt	handler,	interrupt's
owner,	count	of	the	unhandled	interrupt	and	etc.	In	the	next	part	we	will	continue	to	research
external	interrupts.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
IRQ
numa
Enum	type
cpumask
percpu
spinlock
critical	section
Lock	validator
MSI
I/O	APIC

Dive	into	external	hardware	interrupts

325

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Enumerated_type
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Critical_section
https://lwn.net/Articles/185666/
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller


Local	APIC
Intel	8259
PIC
MultiProcessor	Configuration	Table
radix	tree
dmesg

Dive	into	external	hardware	interrupts

326

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/MultiProcessor_Specification
http://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html
https://en.wikipedia.org/wiki/Dmesg


Interrupts	and	Interrupt	Handling.	Part	8.

Non-early	initialization	of	the	IRQs
This	is	the	eighth	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and
in	the	previous	part	we	started	to	dive	into	the	external	hardware	interrupts.	We	looked	on
the	implementation	of	the		early_irq_init		function	from	the	kernel/irq/irqdesc.c	source	code
file	and	saw	the	initialization	of	the		irq_desc		structure	in	this	function.	Remind	that
	irq_desc		structure	(defined	in	the	include/linux/irqdesc.h	is	the	foundation	of	interrupt
management	code	in	the	Linux	kernel	and	represents	an	interrupt	descriptor.	In	this	part	we
will	continue	to	dive	into	the	initialization	stuff	which	is	related	to	the	external	hardware
interrupts.

Right	after	the	call	of	the		early_irq_init		function	in	the	init/main.c	we	can	see	the	call	of
the		init_IRQ		function.	This	function	is	architecture-specific	and	defined	in	the
arch/x86/kernel/irqinit.c.	The		init_IRQ		function	makes	initialization	of	the		vector_irq	
percpu	variable	that	defined	in	the	same	arch/x86/kernel/irqinit.c	source	code	file:

...

DEFINE_PER_CPU(vector_irq_t,	vector_irq)	=	{

									[0	...	NR_VECTORS	-	1]	=	-1,

};

...

and	represents		percpu		array	of	the	interrupt	vector	numbers.	The		vector_irq_t		defined	in
the	arch/x86/include/asm/hw_irq.h	and	expands	to	the:

typedef	int	vector_irq_t[NR_VECTORS];

where		NR_VECTORS		is	count	of	the	vector	number	and	as	you	can	remember	from	the	first
part	of	this	chapter	it	is		256		for	the	x86_64:

#define	NR_VECTORS																							256

So,	in	the	start	of	the		init_IRQ		function	we	fill	the		vecto_irq		percpu	array	with	the	vector
number	of	the		legacy		interrupts:

Initialization	of	external	hardware	interrupts	structures

327

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/master/include/linux/irqdesc.h#L46
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/irqinit.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/master/kernel/irqinit.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/hw_irq.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/X86-64
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html


void	__init	init_IRQ(void)

{

				int	i;

				for	(i	=	0;	i	<	nr_legacy_irqs();	i++)

								per_cpu(vector_irq,	0)[IRQ0_VECTOR	+	i]	=	i;

...

...

...

}

This		vector_irq		will	be	used	during	the	first	steps	of	an	external	hardware	interrupt
handling	in	the		do_IRQ		function	from	the	arch/x86/kernel/irq.c:

__visible	unsigned	int	__irq_entry	do_IRQ(struct	pt_regs	*regs)

{

				...

				...

				...

				irq	=	__this_cpu_read(vector_irq[vector]);

				if	(!handle_irq(irq,	regs))	{

								...

								...

								...

				}

				exiting_irq();

				...

				...

				return	1;

}

Why	is		legacy		here?	Actually	all	interrupts	are	handled	by	the	modern	IO-APIC	controller.
But	these	interrupts	(from		0x30		to		0x3f	)	by	legacy	interrupt-controllers	like	Programmable
Interrupt	Controller.	If	these	interrupts	are	handled	by	the		I/O	APIC		then	this	vector	space
will	be	freed	and	re-used.	Let's	look	on	this	code	closer.	First	of	all	the		nr_legacy_irqs	
defined	in	the	arch/x86/include/asm/i8259.h	and	just	returns	the		nr_legacy_irqs		field	from
the		legacy_pic		structure:

static	inline	int	nr_legacy_irqs(void)

{

								return	legacy_pic->nr_legacy_irqs;

}

Initialization	of	external	hardware	interrupts	structures

328

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/i8259.h


This	structure	defined	in	the	same	header	file	and	represents	non-modern	programmable
interrupts	controller:

struct	legacy_pic	{

								int	nr_legacy_irqs;

								struct	irq_chip	*chip;

								void	(*mask)(unsigned	int	irq);

								void	(*unmask)(unsigned	int	irq);

								void	(*mask_all)(void);

								void	(*restore_mask)(void);

								void	(*init)(int	auto_eoi);

								int	(*irq_pending)(unsigned	int	irq);

								void	(*make_irq)(unsigned	int	irq);

};

Actual	default	maximum	number	of	the	legacy	interrupts	represented	by	the		NR_IRQ_LEGACY	
macro	from	the	arch/x86/include/asm/irq_vectors.h:

#define	NR_IRQS_LEGACY																				16

In	the	loop	we	are	accessing	the		vecto_irq		per-cpu	array	with	the		per_cpu		macro	by	the
	IRQ0_VECTOR	+	i		index	and	write	the	legacy	vector	number	there.	The		IRQ0_VECTOR		macro
defined	in	the	arch/x86/include/asm/irq_vectors.h	header	file	and	expands	to	the		0x30	:

#define	FIRST_EXTERNAL_VECTOR											0x20

#define	IRQ0_VECTOR																					((FIRST_EXTERNAL_VECTOR	+	16)	&	~15)

Why	is		0x30		here?	You	can	remember	from	the	first	part	of	this	chapter	that	first	32	vector
numbers	from		0		to		31		are	reserved	by	the	processor	and	used	for	the	processing	of
architecture-defined	exceptions	and	interrupts.	Vector	numbers	from		0x30		to		0x3f		are
reserved	for	the	ISA.	So,	it	means	that	we	fill	the		vector_irq		from	the		IRQ0_VECTOR		which	is
equal	to	the		32		to	the		IRQ0_VECTOR	+	16		(before	the		0x30	).

In	the	end	of	the		init_IRQ		function	we	can	see	the	call	of	the	following	function:

x86_init.irqs.intr_init();

from	the	arch/x86/kernel/x86_init.c	source	code	file.	If	you	have	read	chapter	about	the
Linux	kernel	initialization	process,	you	can	remember	the		x86_init		structure.	This	structure
contains	a	couple	of	files	which	are	points	to	the	function	related	to	the	platform	setup
(	x86_64		in	our	case),	for	example		resources		-	related	with	the	memory	resources,

Initialization	of	external	hardware	interrupts	structures

329

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irq_vectors.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irq_vectors.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html


	mpparse		-	related	with	the	parsing	of	the	MultiProcessor	Configuration	Table	table	and	etc.).
As	we	can	see	the		x86_init		also	contains	the		irqs		field	which	contains	three	following
fields:

struct	x86_init_ops	x86_init	__initdata	

{

				...

				...

				...

				.irqs	=	{

																.pre_vector_init								=	init_ISA_irqs,

																.intr_init														=	native_init_IRQ,

																.trap_init														=	x86_init_noop,

				},

				...

				...

				...

}

Now,	we	are	interesting	in	the		native_init_IRQ	.	As	we	can	note,	the	name	of	the
	native_init_IRQ		function	contains	the		native_		prefix	which	means	that	this	function	is
architecture-specific.	It	defined	in	the	arch/x86/kernel/irqinit.c	and	executes	general
initialization	of	the	Local	APIC	and	initialization	of	the	ISA	irqs.	Let's	look	on	the
implementation	of	the		native_init_IRQ		function	and	will	try	to	understand	what	occurs
there.	The		native_init_IRQ		function	starts	from	the	execution	of	the	following	function:

x86_init.irqs.pre_vector_init();

As	we	can	see	above,	the		pre_vector_init		points	to	the		init_ISA_irqs		function	that
defined	in	the	same	source	code	file	and	as	we	can	understand	from	the	function's	name,	it
makes	initialization	of	the		ISA		related	interrupts.	The		init_ISA_irqs		function	starts	from
the	definition	of	the		chip		variable	which	has	a		irq_chip		type:

void	__init	init_ISA_irqs(void)

{

				struct	irq_chip	*chip	=	legacy_pic->chip;

				...

				...

				...

The		irq_chip		structure	defined	in	the	include/linux/irq.h	header	file	and	represents
hardware	interrupt	chip	descriptor.	It	contains:

	name		-	name	of	a	device.	Used	in	the		/proc/interrupts	:

Initialization	of	external	hardware	interrupts	structures

330

https://en.wikipedia.org/wiki/MultiProcessor_Specification
https://github.com/torvalds/linux/blob/master/kernel/irqinit.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/master/kernel/irqinit.c
https://github.com/torvalds/linux/blob/master/include/linux/irq.h


$	cat	/proc/interrupts

											CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							CPU6					

		CPU7							

		0:									16										0										0										0										0										0										0					

					0			IO-APIC			2-edge						timer

		1:										2										0										0										0										0										0										0					

					0			IO-APIC			1-edge						i8042

		8:										1										0										0										0										0										0										0					

					0			IO-APIC			8-edge						rtc0

look	on	the	last	column;

	(*irq_mask)(struct	irq_data	*data)		-	mask	an	interrupt	source;
	(*irq_ack)(struct	irq_data	*data)		-	start	of	a	new	interrupt;
	(*irq_startup)(struct	irq_data	*data)		-	start	up	the	interrupt;
	(*irq_shutdown)(struct	irq_data	*data)		-	shutdown	the	interrupt
and	etc.

fields.	Note	that	the		irq_data		structure	represents	set	of	the	per	irq	chip	data	passed	down
to	chip	functions.	It	contains		mask		-	precomputed	bitmask	for	accessing	the	chip	registers,
	irq		-	interrupt	number,		hwirq		-	hardware	interrupt	number,	local	to	the	interrupt	domain
chip	low	level	interrupt	hardware	access	and	etc.

After	this	depends	on	the		CONFIG_X86_64		and		CONFIG_X86_LOCAL_APIC		kernel	configuration
option	call	the		init_bsp_APIC		function	from	the	arch/x86/kernel/apic/apic.c:

#if	defined(CONFIG_X86_64)	||	defined(CONFIG_X86_LOCAL_APIC)

				init_bsp_APIC();

#endif

This	function	makes	initialization	of	the	APIC	of		bootstrap	processor		(or	processor	which
starts	first).	It	starts	from	the	check	that	we	found	SMP	config	(read	more	about	it	in	the	sixth
part	of	the	Linux	kernel	initialization	process	chapter)	and	the	processor	has		APIC	:

if	(smp_found_config	||	!cpu_has_apic)

				return;

In	other	way	we	return	from	this	function.	In	the	next	step	we	call	the		clear_local_APIC	
function	from	the	same	source	code	file	that	shutdowns	the	local		APIC		(more	about	it	will	be
in	the	chapter	about	the		Advanced	Programmable	Interrupt	Controller	)	and	enable		APIC		of
the	first	processor	by	the	setting		unsigned	int	value		to	the		APIC_SPIV_APIC_ENABLED	:

Initialization	of	external	hardware	interrupts	structures

331

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/apic/apic.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html


value	=	apic_read(APIC_SPIV);

value	&=	~APIC_VECTOR_MASK;

value	|=	APIC_SPIV_APIC_ENABLED;

and	writing	it	with	the	help	of	the		apic_write		function:

apic_write(APIC_SPIV,	value);

After	we	have	enabled		APIC		for	the	bootstrap	processor,	we	return	to	the		init_ISA_irqs	
function	and	in	the	next	step	we	initialize	legacy		Programmable	Interrupt	Controller		and	set
the	legacy	chip	and	handler	for	the	each	legacy	irq:

legacy_pic->init(0);

for	(i	=	0;	i	<	nr_legacy_irqs();	i++)

				irq_set_chip_and_handler(i,	chip,	handle_level_irq);

Where	can	we	find		init		function?	The		legacy_pic		defined	in	the	arch/x86/kernel/i8259.c
and	it	is:

struct	legacy_pic	*legacy_pic	=	&default_legacy_pic;

Where	the		default_legacy_pic		is:

struct	legacy_pic	default_legacy_pic	=	{

				...

				...

				...

				.init	=	init_8259A,

				...

				...

				...

}

The		init_8259A		function	defined	in	the	same	source	code	file	and	executes	initialization	of
the	Intel	8259	 	̀ Programmable	Interrupt	Controller		(more	about	it	will	be	in	the	separate
chapter	about		Programmable	Interrupt	Controllers		and		APIC	).

Now	we	can	return	to	the		native_init_IRQ		function,	after	the		init_ISA_irqs		function
finished	its	work.	The	next	step	is	the	call	of	the		apic_intr_init		function	that	allocates
special	interrupt	gates	which	are	used	by	the	SMP	architecture	for	the	Inter-processor
interrupt.	The		alloc_intr_gate		macro	from	the	arch/x86/include/asm/desc.h	used	for	the
interrupt	descriptor	allocation:

Initialization	of	external	hardware	interrupts	structures

332

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/i8259.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h


#define	alloc_intr_gate(n,	addr)																								\

do	{																																																				\

								alloc_system_vector(n);																									\

								set_intr_gate(n,	addr);																									\

}	while	(0)

As	we	can	see,	first	of	all	it	expands	to	the	call	of	the		alloc_system_vector		function	that
checks	the	given	vector	number	in	the		user_vectors		bitmap	(read	previous	part	about	it)
and	if	it	is	not	set	in	the		user_vectors		bitmap	we	set	it.	After	this	we	test	that	the
	first_system_vector		is	greater	than	given	interrupt	vector	number	and	if	it	is	greater	we
assign	it:

if	(!test_bit(vector,	used_vectors))	{

				set_bit(vector,	used_vectors);

				if	(first_system_vector	>	vector)

								first_system_vector	=	vector;

}	else	{

				BUG();

}

We	already	saw	the		set_bit		macro,	now	let's	look	on	the		test_bit		and	the
	first_system_vector	.	The	first		test_bit		macro	defined	in	the
arch/x86/include/asm/bitops.h	and	looks	like	this:

#define	test_bit(nr,	addr)																						\

								(__builtin_constant_p((nr))													\

									?	constant_test_bit((nr),	(addr))						\

									:	variable_test_bit((nr),	(addr)))

We	can	see	the	ternary	operator	here	make	a	test	with	the	gcc	built-in	function
	__builtin_constant_p		tests	that	given	vector	number	(	nr	)	is	known	at	compile	time.	If
you're	feeling	misunderstanding	of	the		__builtin_constant_p	,	we	can	make	simple	test:

Initialization	of	external	hardware	interrupts	structures

333

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/bitops.h
https://en.wikipedia.org/wiki/Ternary_operation
https://en.wikipedia.org/wiki/GNU_Compiler_Collection


#include	<stdio.h>

#define	PREDEFINED_VAL	1

int	main()	{

				int	i	=	5;

				printf("__builtin_constant_p(i)	is	%d\n",	__builtin_constant_p(i));

				printf("__builtin_constant_p(PREDEFINED_VAL)	is	%d\n",	__builtin_constant_p(PREDEF

INED_VAL));

				printf("__builtin_constant_p(100)	is	%d\n",	__builtin_constant_p(100));

				return	0;

}

and	look	on	the	result:

$	gcc	test.c	-o	test

$	./test

__builtin_constant_p(i)	is	0

__builtin_constant_p(PREDEFINED_VAL)	is	1

__builtin_constant_p(100)	is	1

Now	I	think	it	must	be	clear	for	you.	Let's	get	back	to	the		test_bit		macro.	If	the
	__builtin_constant_p		will	return	non-zero,	we	call		constant_test_bit		function:

static	inline	int	constant_test_bit(int	nr,	const	void	*addr)

{

				const	u32	*p	=	(const	u32	*)addr;

				return	((1UL	<<	(nr	&	31))	&	(p[nr	>>	5]))	!=	0;

}

and	the		variable_test_bit		in	other	way:

static	inline	int	variable_test_bit(int	nr,	const	void	*addr)

{

								u8	v;

								const	u32	*p	=	(const	u32	*)addr;

								asm("btl	%2,%1;	setc	%0"	:	"=qm"	(v)	:	"m"	(*p),	"Ir"	(nr));

								return	v;

}

What's	the	difference	between	two	these	functions	and	why	do	we	need	in	two	different
functions	for	the	same	purpose?	As	you	already	can	guess	main	purpose	is	optimization.	If
we	will	write	simple	example	with	these	functions:

Initialization	of	external	hardware	interrupts	structures

334



#define	CONST	25

int	main()	{

				int	nr	=	24;

				variable_test_bit(nr,	(int*)0x10000000);

				constant_test_bit(CONST,	(int*)0x10000000)

				return	0;

}

and	will	look	on	the	assembly	output	of	our	example	we	will	see	following	assembly	code:

pushq				%rbp

movq				%rsp,	%rbp

movl				$268435456,	%esi

movl				$25,	%edi

call				constant_test_bit

for	the		constant_test_bit	,	and:

pushq				%rbp

movq				%rsp,	%rbp

subq				$16,	%rsp

movl				$24,	-4(%rbp)

movl				-4(%rbp),	%eax

movl				$268435456,	%esi

movl				%eax,	%edi

call				variable_test_bit

for	the		variable_test_bit	.	These	two	code	listings	starts	with	the	same	part,	first	of	all	we
save	base	of	the	current	stack	frame	in	the		%rbp		register.	But	after	this	code	for	both
examples	is	different.	In	the	first	example	we	put		$268435456		(here	the		$268435456		is	our
second	parameter	-		0x10000000	)	to	the		esi		and		$25		(our	first	parameter)	to	the		edi	
register	and	call		constant_test_bit	.	We	put	function	parameters	to	the		esi		and		edi	
registers	because	as	we	are	learning	Linux	kernel	for	the		x86_64		architecture	we	use
	System	V	AMD64	ABI		calling	convention.	All	is	pretty	simple.	When	we	are	using	predefined
constant,	the	compiler	can	just	substitute	its	value.	Now	let's	look	on	the	second	part.	As	you
can	see	here,	the	compiler	can	not	substitute	value	from	the		nr		variable.	In	this	case
compiler	must	calculate	its	offset	on	the	program's	stack	frame.	We	subtract		16		from	the
	rsp		register	to	allocate	stack	for	the	local	variables	data	and	put	the		$24		(value	of	the		nr	
variable)	to	the		rbp		with	offset		-4	.	Our	stack	frame	will	be	like	this:

Initialization	of	external	hardware	interrupts	structures

335

https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/Call_stack


									<-	stack	grows	

														%[rbp]

																	|

+----------+	+---------+	+---------+	+--------+

|										|	|									|	|	return		|	|								|

|				nr				|-|									|-|									|-|		argc		|

|										|	|									|	|	address	|	|								|

+----------+	+---------+	+---------+	+--------+

																	|

														%[rsp]

After	this	we	put	this	value	to	the		eax	,	so		eax		register	now	contains	value	of	the		nr	.	In
the	end	we	do	the	same	that	in	the	first	example,	we	put	the		$268435456		(the	first	parameter
of	the		variable_test_bit		function)	and	the	value	of	the		eax		(value	of		nr	)	to	the		edi	
register	(the	second	parameter	of	the		variable_test_bit	function	).

The	next	step	after	the		apic_intr_init		function	will	finish	its	work	is	the	setting	interrupt
gates	from	the		FIRST_EXTERNAL_VECTOR		or		0x20		to	the		0x256	:

i	=	FIRST_EXTERNAL_VECTOR;

#ifndef	CONFIG_X86_LOCAL_APIC

#define	first_system_vector	NR_VECTORS

#endif

for_each_clear_bit_from(i,	used_vectors,	first_system_vector)	{

				set_intr_gate(i,	irq_entries_start	+	8	*	(i	-	FIRST_EXTERNAL_VECTOR));

}

But	as	we	are	using	the		for_each_clear_bit_from		helper,	we	set	only	non-initialized	interrupt
gates.	After	this	we	use	the	same		for_each_clear_bit_from		helper	to	fill	the	non-filled
interrupt	gates	in	the	interrupt	table	with	the		spurious_interrupt	:

#ifdef	CONFIG_X86_LOCAL_APIC

for_each_clear_bit_from(i,	used_vectors,	NR_VECTORS)

				set_intr_gate(i,	spurious_interrupt);

#endif

Where	the		spurious_interrupt		function	represent	interrupt	handler	for	the		spurious	
interrupt.	Here	the		used_vectors		is	the		unsigned	long		that	contains	already	initialized
interrupt	gates.	We	already	filled	first		32		interrupt	vectors	in	the		trap_init		function	from
the	arch/x86/kernel/setup.c	source	code	file:

Initialization	of	external	hardware	interrupts	structures

336

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c


for	(i	=	0;	i	<	FIRST_EXTERNAL_VECTOR;	i++)

				set_bit(i,	used_vectors);

You	can	remember	how	we	did	it	in	the	sixth	part	of	this	chapter.

In	the	end	of	the		native_init_IRQ		function	we	can	see	the	following	check:

if	(!acpi_ioapic	&&	!of_ioapic	&&	nr_legacy_irqs())

				setup_irq(2,	&irq2);

First	of	all	let's	deal	with	the	condition.	The		acpi_ioapic		variable	represents	existence	of	I/O
APIC.	It	defined	in	the	arch/x86/kernel/acpi/boot.c.	This	variable	set	in	the
	acpi_set_irq_model_ioapic		function	that	called	during	the	processing		Multiple	APIC
Description	Table	.	This	occurs	during	initialization	of	the	architecture-specific	stuff	in	the
arch/x86/kernel/setup.c	(more	about	it	we	will	know	in	the	other	chapter	about	APIC).	Note
that	the	value	of	the		acpi_ioapic		variable	depends	on	the		CONFIG_ACPI		and
	CONFIG_X86_LOCAL_APIC		Linux	kernel	configuration	options.	If	these	options	did	not	set,	this
variable	will	be	just	zero:

#define	acpi_ioapic	0

The	second	condition	-		!of_ioapic	&&	nr_legacy_irqs()		checks	that	we	do	not	use	Open
Firmware		I/O	APIC		and	legacy	interrupt	controller.	We	already	know	about	the
	nr_legacy_irqs	.	The	second	is		of_ioapic		variable	defined	in	the
arch/x86/kernel/devicetree.c	and	initialized	in	the		dtb_ioapic_setup		function	that	build
information	about		APICs		in	the	devicetree.	Note	that		of_ioapic		variable	depends	on	the
	CONFIG_OF		Linux	kernel	configuration	option.	If	this	option	is	not	set,	the	value	of	the
	of_ioapic		will	be	zero	too:

#ifdef	CONFIG_OF

extern	int	of_ioapic;

...

...

...

#else

#define	of_ioapic	0

...

...

...

#endif

If	the	condition	will	return	non-zero	value	we	call	the:

Initialization	of	external	hardware	interrupts	structures

337

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-6.html
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/acpi/boot.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Open_Firmware
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/devicetree.c
https://en.wikipedia.org/wiki/Device_tree


setup_irq(2,	&irq2);

function.	First	of	all	about	the		irq2	.	The		irq2		is	the		irqaction		structure	that	defined	in
the	arch/x86/kernel/irqinit.c	source	code	file	and	represents		IRQ	2		line	that	is	used	to	query
devices	connected	cascade:

static	struct	irqaction	irq2	=	{

				.handler	=	no_action,

				.name	=	"cascade",

				.flags	=	IRQF_NO_THREAD,

};

Some	time	ago	interrupt	controller	consisted	of	two	chips	and	one	was	connected	to	second.
The	second	chip	that	was	connected	to	the	first	chip	via	this		IRQ	2		line.	This	chip	serviced
lines	from		8		to		15		and	after	this	lines	of	the	first	chip.	So,	for	example	Intel	8259A	has
following	lines:

	IRQ	0		-	system	time;
	IRQ	1		-	keyboard;
	IRQ	2		-	used	for	devices	which	are	cascade	connected;
	IRQ	8		-	RTC;
	IRQ	9		-	reserved;
	IRQ	10		-	reserved;
	IRQ	11		-	reserved;
	IRQ	12		-		ps/2		mouse;
	IRQ	13		-	coprocessor;
	IRQ	14		-	hard	drive	controller;
	IRQ	1		-	reserved;
	IRQ	3		-		COM2		and		COM4	;
	IRQ	4		-		COM1		and		COM3	;
	IRQ	5		-		LPT2	;
	IRQ	6		-	drive	controller;
	IRQ	7		-		LPT1	.

The		setup_irq		function	defined	in	the	kernel/irq/manage.c	and	takes	two	parameters:

vector	number	of	an	interrupt;
	irqaction		structure	related	with	an	interrupt.

This	function	initializes	interrupt	descriptor	from	the	given	vector	number	at	the	beginning:

struct	irq_desc	*desc	=	irq_to_desc(irq);

Initialization	of	external	hardware	interrupts	structures

338

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irqinit.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Real-time_clock
https://github.com/torvalds/linux/blob/master/kernel/irq/manage.c


And	call	the		__setup_irq		function	that	setups	given	interrupt:

chip_bus_lock(desc);

retval	=	__setup_irq(irq,	desc,	act);

chip_bus_sync_unlock(desc);

return	retval;

Note	that	the	interrupt	descriptor	is	locked	during		__setup_irq		function	will	work.	The
	__setup_irq		function	makes	many	different	things:	It	creates	a	handler	thread	when	a
thread	function	is	supplied	and	the	interrupt	does	not	nest	into	another	interrupt	thread,	sets
the	flags	of	the	chip,	fills	the		irqaction		structure	and	many	many	more.

All	of	the	above	it	creates		/prov/vector_number		directory	and	fills	it,	but	if	you	are	using
modern	computer	all	values	will	be	zero	there:

$	cat	/proc/irq/2/node

0

$cat	/proc/irq/2/affinity_hint	

00

cat	/proc/irq/2/spurious	

count	0

unhandled	0

last_unhandled	0	ms

because	probably		APIC		handles	interrupts	on	the	our	machine.

That's	all.

Conclusion
It	is	the	end	of	the	eighth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we
continued	to	dive	into	external	hardware	interrupts	in	this	part.	In	the	previous	part	we
started	to	do	it	and	saw	early	initialization	of	the		IRQs	.	In	this	part	we	already	saw	non-early
interrupts	initialization	in	the		init_IRQ		function.	We	saw	initialization	of	the		vector_irq		per-
cpu	array	which	is	store	vector	numbers	of	the	interrupts	and	will	be	used	during	interrupt
handling	and	initialization	of	other	stuff	which	is	related	to	the	external	hardware	interrupts.

In	the	next	part	we	will	continue	to	learn	interrupts	handling	related	stuff	and	will	see
initialization	of	the		softirqs	.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Initialization	of	external	hardware	interrupts	structures

339

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX


Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
IRQ
percpu
x86_64
Intel	8259
Programmable	Interrupt	Controller
ISA
MultiProcessor	Configuration	Table
Local	APIC
I/O	APIC
SMP
Inter-processor	interrupt
ternary	operator
gcc
calling	convention
PDF.	System	V	Application	Binary	Interface	AMD64
Call	stack
Open	Firmware
devicetree
RTC
Previous	part

Initialization	of	external	hardware	interrupts	structures

340

https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://en.wikipedia.org/wiki/MultiProcessor_Specification
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://en.wikipedia.org/wiki/Ternary_operation
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/X86_calling_conventions
http://x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Open_Firmware
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Real-time_clock
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html


Interrupts	and	Interrupt	Handling.	Part	9.

Introduction	to	deferred	interrupts	(Softirq,
Tasklets	and	Workqueues)
It	is	the	nine	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in
the	previous	Previous	part	we	saw	implementation	of	the		init_IRQ		from	that	defined	in	the
arch/x86/kernel/irqinit.c	source	code	file.	So,	we	will	continue	to	dive	into	the	initialization
stuff	which	is	related	to	the	external	hardware	interrupts	in	this	part.

Interrupts	may	have	different	important	characteristics	and	there	are	two	among	them:

Handler	of	an	interrupt	must	execute	quickly;
Sometime	an	interrupt	handler	must	do	a	large	amount	of	work.

As	you	can	understand,	it	is	almost	impossible	to	make	so	that	both	characteristics	were
valid.	Because	of	these,	previously	the	handling	of	interrupts	was	split	into	two	parts:

Top	half;
Bottom	half;

Once	the	Linux	kernel	was	one	of	the	ways	the	organization	postprocessing,	and	which	was
called:		the	bottom	half		of	the	processor,	but	now	it	is	already	not	actual.	Now	this	term	has
remained	as	a	common	noun	referring	to	all	the	different	ways	of	organizing	deferred
processing	of	an	interrupt.The	deferred	processing	of	an	interrupt	suggests	that	some	of	the
actions	for	an	interrupt	may	be	postponed	to	a	later	execution	when	the	system	will	be	less
loaded.	As	you	can	suggests,	an	interrupt	handler	can	do	large	amount	of	work	that	is
impermissible	as	it	executes	in	the	context	where	interrupts	are	disabled.	That's	why
processing	of	an	interrupt	can	be	split	on	two	different	parts.	In	the	first	part,	the	main
handler	of	an	interrupt	does	only	minimal	and	the	most	important	job.	After	this	it	schedules
the	second	part	and	finishes	its	work.	When	the	system	is	less	busy	and	context	of	the
processor	allows	to	handle	interrupts,	the	second	part	starts	its	work	and	finishes	to	process
remaining	part	of	a	deferred	interrupt.

There	are	three	types	of		deferred	interrupts		in	the	Linux	kernel:

	softirqs	;
	tasklets	;
	workqueues	;

Softirq,	Tasklets	and	Workqueues

341

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-8.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irqinit.c


And	we	will	see	description	of	all	of	these	types	in	this	part.	As	I	said,	we	saw	only	a	little	bit
about	this	theme,	so,	now	is	time	to	dive	deep	into	details	about	this	theme.

Softirqs
With	the	advent	of	parallelisms	in	the	Linux	kernel,	all	new	schemes	of	implementation	of	the
bottom	half	handlers	are	built	on	the	performance	of	the	processor	specific	kernel	thread	that
called		ksoftirqd		(will	be	discussed	below).	Each	processor	has	its	own	thread	that	is	called
	ksoftirqd/n		where	the		n		is	the	number	of	the	processor.	We	can	see	it	in	the	output	of
the		systemd-cgls		util:

$	systemd-cgls	-k	|	grep	ksoft

├─			3	[ksoftirqd/0]

├─		13	[ksoftirqd/1]

├─		18	[ksoftirqd/2]

├─		23	[ksoftirqd/3]

├─		28	[ksoftirqd/4]

├─		33	[ksoftirqd/5]

├─		38	[ksoftirqd/6]

├─		43	[ksoftirqd/7]

The		spawn_ksoftirqd		function	starts	this	these	threads.	As	we	can	see	this	function	called
as	early	initcall:

early_initcall(spawn_ksoftirqd);

Softirqs	are	determined	statically	at	compile-time	of	the	Linux	kernel	and	the		open_softirq	
function	takes	care	of		softirq		initialization.	The		open_softirq		function	defined	in	the
kernel/softirq.c:

void	open_softirq(int	nr,	void	(*action)(struct	softirq_action	*))

{

				softirq_vec[nr].action	=	action;

}

and	as	we	can	see	this	function	uses	two	parameters:

the	index	of	the		softirq_vec		array;
a	pointer	to	the	softirq	function	to	be	executed;

First	of	all	let's	look	on	the		softirq_vec		array:

Softirq,	Tasklets	and	Workqueues

342

http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/index.html
https://github.com/torvalds/linux/blob/master/kernel/softirq.c


static	struct	softirq_action	softirq_vec[NR_SOFTIRQS]	__cacheline_aligned_in_smp;

it	defined	in	the	same	source	code	file.	As	we	can	see,	the		softirq_vec		array	may	contain
	NR_SOFTIRQS		or		10		types	of		softirqs		that	has	type		softirq_action	.	First	of	all	about	its
elements.	In	the	current	version	of	the	Linux	kernel	there	are	ten	softirq	vectors	defined;	two
for	tasklet	processing,	two	for	networking,	two	for	the	block	layer,	two	for	timers,	and	one
each	for	the	scheduler	and	read-copy-update	processing.	All	of	these	kinds	are	represented
by	the	following	enum:

enum

{

								HI_SOFTIRQ=0,

								TIMER_SOFTIRQ,

								NET_TX_SOFTIRQ,

								NET_RX_SOFTIRQ,

								BLOCK_SOFTIRQ,

								BLOCK_IOPOLL_SOFTIRQ,

								TASKLET_SOFTIRQ,

								SCHED_SOFTIRQ,

								HRTIMER_SOFTIRQ,

								RCU_SOFTIRQ,

								NR_SOFTIRQS

};

All	names	of	these	kinds	of	softirqs	are	represented	by	the	following	array:

const	char	*	const	softirq_to_name[NR_SOFTIRQS]	=	{

								"HI",	"TIMER",	"NET_TX",	"NET_RX",	"BLOCK",	"BLOCK_IOPOLL",

								"TASKLET",	"SCHED",	"HRTIMER",	"RCU"

};

Or	we	can	see	it	in	the	output	of	the		/proc/softirqs	:

Softirq,	Tasklets	and	Workqueues

343



~$	cat	/proc/softirqs	

																				CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							

CPU6							CPU7							

										HI:										5										0										0										0										0										0							

			0										0

							TIMER:					332519					310498					289555					272913					282535					279467					28

2895					270979

						NET_TX:							2320										0										0										2										1										1							

			0										0

						NET_RX:					270221								225								338								281								311								262							

	430								265

							BLOCK:					134282									32									40									10									12										7							

			8										8

BLOCK_IOPOLL:										0										0										0										0										0										0							

			0										0

					TASKLET:					196835										2										3										0										0										0							

			0										0

							SCHED:					161852					146745					129539					126064					127998					128014					12

0243					117391

					HRTIMER:										0										0										0										0										0										0							

			0										0

									RCU:					337707					289397					251874					239796					254377					254898					26

7497					256624

As	we	can	see	the		softirq_vec		array	has		softirq_action		types.	This	is	the	main	data
structure	related	to	the		softirq		mechanism,	so	all		softirqs		represented	by	the
	softirq_action		structure.	The		softirq_action		structure	consists	a	single	field	only:	an
action	pointer	to	the	softirq	function:

struct	softirq_action

{

									void				(*action)(struct	softirq_action	*);

};

So,	after	this	we	can	understand	that	the		open_softirq		function	fills	the		softirq_vec		array
with	the	given		softirq_action	.	The	registered	deferred	interrupt	(with	the	call	of	the
	open_softirq		function)	for	it	to	be	queued	for	execution,	it	should	be	activated	by	the	call	of
the		raise_softirq		function.	This	function	takes	only	one	parameter	--	a	softirq	index		nr	.
Let's	look	on	its	implementation:

Softirq,	Tasklets	and	Workqueues

344



void	raise_softirq(unsigned	int	nr)

{

								unsigned	long	flags;

								local_irq_save(flags);

								raise_softirq_irqoff(nr);

								local_irq_restore(flags);

}

Here	we	can	see	the	call	of	the		raise_softirq_irqoff		function	between	the		local_irq_save	
and	the		local_irq_restore		macros.	The		local_irq_save		defined	in	the
include/linux/irqflags.h	header	file	and	saves	the	state	of	the	IF	flag	of	the	eflags	register	and
disables	interrupts	on	the	local	processor.	The		local_irq_restore		macro	defined	in	the
same	header	file	and	does	the	opposite	thing:	restores	the		interrupt	flag		and	enables
interrupts.	We	disable	interrupts	here	because	a		softirq		interrupt	runs	in	the	interrupt
context	and	that	one	softirq	(and	no	others)	will	be	run.

The		raise_softirq_irqoff		function	marks	the	softirq	as	deffered	by	setting	the	bit
corresponding	to	the	given	index		nr		in	the		softirq		bit	mask	(	__softirq_pending	)	of	the
local	processor.	It	does	it	with	the	help	of	the:

__raise_softirq_irqoff(nr);

macro.	After	this,	it	checks	the	result	of	the		in_interrupt		that	returns		irq_count		value.	We
already	saw	the		irq_count		in	the	first	part	of	this	chapter	and	it	is	used	to	check	if	a	CPU	is
already	on	an	interrupt	stack	or	not.	We	just	exit	from	the		raise_softirq_irqoff	,	restore
	IF		flag	and	enable	interrupts	on	the	local	processor,	if	we	are	in	the	interrupt	context,
otherwise	we	call	the		wakeup_softirqd	:

if	(!in_interrupt())

				wakeup_softirqd();

Where	the		wakeup_softirqd		function	activates	the		ksoftirqd		kernel	thread	of	the	local
processor:

static	void	wakeup_softirqd(void)

{

				struct	task_struct	*tsk	=	__this_cpu_read(ksoftirqd);

				if	(tsk	&&	tsk->state	!=	TASK_RUNNING)

								wake_up_process(tsk);

}

Softirq,	Tasklets	and	Workqueues

345

https://github.com/torvalds/linux/blob/master/include/linux/irqflags.h
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/FLAGS_register
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html


Each		ksoftirqd		kernel	thread	runs	the		run_ksoftirqd		function	that	checks	existence	of
deferred	interrupts	and	calls	the		__do_softirq		function	depends	on	result.	This	function
reads	the		__softirq_pending		softirq	bit	mask	of	the	local	processor	and	executes	the
deferrable	functions	corresponding	to	every	bit	set.	During	execution	of	a	deferred	function,
new	pending		softirqs		might	occur.	The	main	problem	here	that	execution	of	the	userspace
code	can	be	delayed	for	a	long	time	while	the		__do_softirq		function	will	handle	deferred
interrupts.	For	this	purpose,	it	has	the	limit	of	the	time	when	it	must	be	finished:

unsigned	long	end	=	jiffies	+	MAX_SOFTIRQ_TIME;

...

...

...

restart:

while	((softirq_bit	=	ffs(pending)))	{

				...

				h->action(h);

				...

}

...

...

...

pending	=	local_softirq_pending();

if	(pending)	{

				if	(time_before(jiffies,	end)	&&	!need_resched()	&&

								--max_restart)

												goto	restart;

}

...

Checks	of	the	existence	of	the	deferred	interrupts	performed	periodically	and	there	are	some
points	where	this	check	occurs.	The	main	point	where	this	situation	occurs	is	the	call	of	the
	do_IRQ		function	that	defined	in	the	arch/x86/kernel/irq.c	and	provides	main	possibilities	for
actual	interrupt	processing	in	the	Linux	kernel.	When	this	function	will	finish	to	handle	an
interrupt,	it	calls	the		exiting_irq		function	from	the	arch/x86/include/asm/apic.h	that
expands	to	the	call	of	the		irq_exit		function.	The		irq_exit		checks	deferred	interrupts,
current	context	and	calls	the		invoke_softirq		function:

if	(!in_interrupt()	&&	local_softirq_pending())

				invoke_softirq();

that	executes	the		__do_softirq		too.	So	what	do	we	have	in	summary.	Each		softirq		goes
through	the	following	stages:	Registration	of	a		softirq		with	the		open_softirq		function.
Activation	of	a		softirq		by	marking	it	as	deferred	with	the		raise_softirq		function.	After

Softirq,	Tasklets	and	Workqueues

346

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/apic.h


this,	all	marked		softirqs		will	be	r	in	the	next	time	the	Linux	kernel	schedules	a	round	of
executions	of	deferrable	functions.	And	execution	of	the	deferred	functions	that	have	the
same	type.

As	I	already	wrote,	the		softirqs		are	statically	allocated	and	it	is	a	problem	for	a	kernel
module	that	can	be	loaded.	The	second	concept	that	built	on	top	of		softirq		--	the
	tasklets		solves	this	problem.

Tasklets
If	you	read	the	source	code	of	the	Linux	kernel	that	is	related	to	the		softirq	,	you	notice
that	it	is	used	very	rarely.	The	preferable	way	to	implement	deferrable	functions	are
	tasklets	.	As	I	already	wrote	above	the		tasklets		are	built	on	top	of	the		softirq		concept
and	generally	on	top	of	two		softirqs	:

	TASKLET_SOFTIRQ	;
	HI_SOFTIRQ	.

In	short	words,		tasklets		are		softirqs		that	can	be	allocated	and	initialized	at	runtime	and
unlike		softirqs	,	tasklets	that	have	the	same	type	cannot	be	run	on	multiple	processors	at	a
time.	Ok,	now	we	know	a	little	bit	about	the		softirqs	,	of	course	previous	text	does	not
cover	all	aspects	about	this,	but	now	we	can	directly	look	on	the	code	and	to	know	more
about	the		softirqs		step	by	step	on	practice	and	to	know	about		tasklets	.	Let's	return	back
to	the	implementation	of	the		softirq_init		function	that	we	talked	about	in	the	beginning	of
this	part.	This	function	is	defined	in	the	kernel/softirq.c	source	code	file,	let's	look	on	its
implementation:

void	__init	softirq_init(void)

{

								int	cpu;

								for_each_possible_cpu(cpu)	{

																per_cpu(tasklet_vec,	cpu).tail	=

																								&per_cpu(tasklet_vec,	cpu).head;

																per_cpu(tasklet_hi_vec,	cpu).tail	=

																								&per_cpu(tasklet_hi_vec,	cpu).head;

								}

								open_softirq(TASKLET_SOFTIRQ,	tasklet_action);

								open_softirq(HI_SOFTIRQ,	tasklet_hi_action);

}

Softirq,	Tasklets	and	Workqueues

347

https://github.com/torvalds/linux/blob/master/kernel/softirq.c


We	can	see	definition	of	the	integer		cpu		variable	at	the	beginning	of	the		softirq_init	
function.	Next	we	will	use	it	as	parameter	for	the		for_each_possible_cpu		macro	that	goes
through	the	all	possible	processors	in	the	system.	If	the		possible	processor		is	the	new
terminology	for	you,	you	can	read	more	about	it	the	CPU	masks	chapter.	In	short	words,
	possible	cpus		is	the	set	of	processors	that	can	be	plugged	in	anytime	during	the	life	of	that
system	boot.	All		possible	processors		stored	in	the		cpu_possible_bits		bitmap,	you	can	find
its	definition	in	the	kernel/cpu.c:

static	DECLARE_BITMAP(cpu_possible_bits,	CONFIG_NR_CPUS)	__read_mostly;

...

...

...

const	struct	cpumask	*const	cpu_possible_mask	=	to_cpumask(cpu_possible_bits);

Ok,	we	defined	the	integer		cpu		variable	and	go	through	the	all	possible	processors	with	the
	for_each_possible_cpu		macro	and	makes	initialization	of	the	two	following	per-cpu
variables:

	tasklet_vec	;
	tasklet_hi_vec	;

These	two		per-cpu		variables	defined	in	the	same	source	code	file	as	the		softirq_init	
function	and	represent	two		tasklet_head		structures:

static	DEFINE_PER_CPU(struct	tasklet_head,	tasklet_vec);

static	DEFINE_PER_CPU(struct	tasklet_head,	tasklet_hi_vec);

Where		tasklet_head		structure	represents	a	list	of		Tasklets		and	contains	two	fields,	head
and	tail:

struct	tasklet_head	{

								struct	tasklet_struct	*head;

								struct	tasklet_struct	**tail;

};

The		tasklet_struct		structure	is	defined	in	the	include/linux/interrupt.h	and	represents	the
	Tasklet	.	Previously	we	did	not	see	this	word	in	this	book.	Let's	try	to	understand	what	the
	tasklet		is.	Actually,	the	tasklet	is	one	of	mechanisms	to	handle	deferred	interrupt.	Let's
look	on	the	implementation	of	the		tasklet_struct		structure:

Softirq,	Tasklets	and	Workqueues

348

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/master/kernel/cpu.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h


struct	tasklet_struct

{

								struct	tasklet_struct	*next;

								unsigned	long	state;

								atomic_t	count;

								void	(*func)(unsigned	long);

								unsigned	long	data;

};

As	we	can	see	this	structure	contains	five	fields,	they	are:

Next	tasklet	in	the	scheduling	queue;
State	of	the	tasklet;
Represent	current	state	of	the	tasklet,	active	or	not;
Main	callback	of	the	tasklet;
Parameter	of	the	callback.

In	our	case,	we	set	only	for	initialize	only	two	arrays	of	tasklets	in	the		softirq_init		function:
the		tasklet_vec		and	the		tasklet_hi_vec	.	Tasklets	and	high-priority	tasklets	are	stored	in
the		tasklet_vec		and		tasklet_hi_vec		arrays,	respectively.	So,	we	have	initialized	these
arrays	and	now	we	can	see	two	calls	of	the		open_softirq		function	that	is	defined	in	the
kernel/softirq.c	source	code	file:

open_softirq(TASKLET_SOFTIRQ,	tasklet_action);

open_softirq(HI_SOFTIRQ,	tasklet_hi_action);

at	the	end	of	the		softirq_init		function.	The	main	purpose	of	the		open_softirq		function	is
the	initialization	of		softirq	.	Let's	look	on	the	implementation	of	the		open_softirq		function.

,	in	our	case	they	are:		tasklet_action		and	the		tasklet_hi_action		or	the		softirq		function
associated	with	the		HI_SOFTIRQ		softirq	is	named		tasklet_hi_action		and		softirq		function
associated	with	the		TASKLET_SOFTIRQ		is	named		tasklet_action	.	The	Linux	kernel	provides
API	for	the	manipulating	of		tasklets	.	First	of	all	it	is	the		tasklet_init		function	that	takes
	tasklet_struct	,	function	and	parameter	for	it	and	initializes	the	given		tasklet_struct		with
the	given	data:

Softirq,	Tasklets	and	Workqueues

349

https://github.com/torvalds/linux/blob/master/kernel/softirq.c


void	tasklet_init(struct	tasklet_struct	*t,

																		void	(*func)(unsigned	long),	unsigned	long	data)

{

				t->next	=	NULL;

				t->state	=	0;

				atomic_set(&t->count,	0);

				t->func	=	func;

				t->data	=	data;

}

There	are	additional	methods	to	initialize	a	tasklet	statically	with	the	two	following	macros:

DECLARE_TASKLET(name,	func,	data);

DECLARE_TASKLET_DISABLED(name,	func,	data);

The	Linux	kernel	provides	three	following	functions	to	mark	a	tasklet	as	ready	to	run:

void	tasklet_schedule(struct	tasklet_struct	*t);

void	tasklet_hi_schedule(struct	tasklet_struct	*t);

void	tasklet_hi_schedule_first(struct	tasklet_struct	*t);

The	first	function	schedules	a	tasklet	with	the	normal	priority,	the	second	with	the	high
priority	and	the	third	out	of	turn.	Implementation	of	the	all	of	these	three	functions	is	similar,
so	we	will	consider	only	the	first	--		tasklet_schedule	.	Let's	look	on	its	implementation:

static	inline	void	tasklet_schedule(struct	tasklet_struct	*t)

{

				if	(!test_and_set_bit(TASKLET_STATE_SCHED,	&t->state))

								__tasklet_schedule(t);

}

void	__tasklet_schedule(struct	tasklet_struct	*t)

{

								unsigned	long	flags;

								local_irq_save(flags);

								t->next	=	NULL;

								*__this_cpu_read(tasklet_vec.tail)	=	t;

								__this_cpu_write(tasklet_vec.tail,	&(t->next));

								raise_softirq_irqoff(TASKLET_SOFTIRQ);

								local_irq_restore(flags);

}

As	we	can	see	it	checks	and	sets	the	state	of	the	given	tasklet	to	the		TASKLET_STATE_SCHED	
and	executes	the		__tasklet_schedule		with	the	given	tasklet.	The		__tasklet_schedule		looks
very	similar	to	the		raise_softirq		function	that	we	saw	above.	It	saves	the		interrupt	flag	

Softirq,	Tasklets	and	Workqueues

350



and	disables	interrupts	at	the	beginning.	After	this,	it	updates		tasklet_vec		with	the	new
tasklet	and	calls	the		raise_softirq_irqoff		function	that	we	saw	above.	When	the	Linux
kernel	scheduler	will	decide	to	run	deferred	functions,	the		tasklet_action		function	will	be
called	for	deferred	functions	which	are	associated	with	the		TASKLET_SOFTIRQ		and
	tasklet_hi_action		for	deferred	functions	which	are	associated	with	the		HI_SOFTIRQ	.	These
functions	are	very	similar	and	there	is	only	one	difference	between	them	--		tasklet_action	
uses		tasklet_vec		and		tasklet_hi_action		uses		tasklet_hi_vec	.

Let's	look	on	the	implementation	of	the		tasklet_action		function:

static	void	tasklet_action(struct	softirq_action	*a)

{

				local_irq_disable();

				list	=	__this_cpu_read(tasklet_vec.head);

				__this_cpu_write(tasklet_vec.head,	NULL);

				__this_cpu_write(tasklet_vec.tail,	this_cpu_ptr(&tasklet_vec.head));

				local_irq_enable();

				while	(list)	{

								if	(tasklet_trylock(t))	{

												t->func(t->data);

												tasklet_unlock(t);

								}

								...

								...

								...

				}

}

In	the	beginning	of	the		tasklet_action		function,	we	disable	interrupts	for	the	local
processor	with	the	help	of	the		local_irq_disable		macro	(you	can	read	about	this	macro	in
the	second	part	of	this	chapter).	In	the	next	step,	we	take	a	head	of	the	list	that	contains
tasklets	with	normal	priority	and	set	this	per-cpu	list	to		NULL		because	all	tasklets	must	be
executed	in	a	generally	way.	After	this	we	enable	interrupts	for	the	local	processor	and	go
through	the	list	of	tasklets	in	the	loop.	In	every	iteration	of	the	loop	we	call	the
	tasklet_trylock		function	for	the	given	tasklet	that	updates	state	of	the	given	tasklet	on
	TASKLET_STATE_RUN	:

static	inline	int	tasklet_trylock(struct	tasklet_struct	*t)

{

				return	!test_and_set_bit(TASKLET_STATE_RUN,	&(t)->state);

}

If	this	operation	was	successful	we	execute	tasklet's	action	(it	was	set	in	the		tasklet_init	)
and	call	the		tasklet_unlock		function	that	clears	tasklet's		TASKLET_STATE_RUN		state.

Softirq,	Tasklets	and	Workqueues

351

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-2.html


In	general,	that's	all	about		tasklets		concept.	Of	course	this	does	not	cover	full		tasklets	,
but	I	think	that	it	is	a	good	point	from	where	you	can	continue	to	learn	this	concept.

The		tasklets		are	widely	used	concept	in	the	Linux	kernel,	but	as	I	wrote	in	the	beginning	of
this	part	there	is	third	mechanism	for	deferred	functions	--		workqueue	.	In	the	next	paragraph
we	will	see	what	it	is.

Workqueues
The		workqueue		is	another	concept	for	handling	deferred	functions.	It	is	similar	to		tasklets	
with	some	differences.	Workqueue	functions	run	in	the	context	of	a	kernel	process,	but
	tasklet		functions	run	in	the	software	interrupt	context.	This	means	that		workqueue	
functions	must	not	be	atomic	as		tasklet		functions.	Tasklets	always	run	on	the	processor
from	which	they	were	originally	submitted.	Workqueues	work	in	the	same	way,	but	only	by
default.	The		workqueue		concept	represented	by	the:

struct	worker_pool	{

				spinlock_t														lock;

				int																					cpu;

				int																					node;

				int																					id;

				unsigned	int												flags;

				struct	list_head								worklist;

				int																					nr_workers;

...

...

...

structure	that	is	defined	in	the	kernel/workqueue.c	source	code	file	in	the	Linux	kernel.	I	will
not	write	the	source	code	of	this	structure	here,	because	it	has	quite	a	lot	of	fields,	but	we
will	consider	some	of	those	fields.

In	its	most	basic	form,	the	work	queue	subsystem	is	an	interface	for	creating	kernel	threads
to	handle	work	that	is	queued	from	elsewhere.	All	of	these	kernel	threads	are	called	--
	worker	threads	.	The	work	queue	are	maintained	by	the		work_struct		that	defined	in	the
include/linux/workqueue.h.	Let's	look	on	this	structure:

Softirq,	Tasklets	and	Workqueues

352

http://lxr.free-electrons.com/ident?i=tasklet_init
https://github.com/torvalds/linux/blob/master/kernel/workqueue.c
https://github.com/torvalds/linux/blob/master/include/linux/workqueue.h


struct	work_struct	{

				atomic_long_t	data;

				struct	list_head	entry;

				work_func_t	func;

#ifdef	CONFIG_LOCKDEP

				struct	lockdep_map	lockdep_map;

#endif

};

Here	are	two	things	that	we	are	interested:		func		--	the	function	that	will	be	scheduled	by
the		workqueue		and	the		data		-	parameter	of	this	function.	The	Linux	kernel	provides	special
per-cpu	threads	that	are	called		kworker	:

systemd-cgls	-k	|	grep	kworker

├─				5	[kworker/0:0H]

├─			15	[kworker/1:0H]

├─			20	[kworker/2:0H]

├─			25	[kworker/3:0H]

├─			30	[kworker/4:0H]

...

...

...

This	process	can	be	used	to	schedule	the	deferred	functions	of	the	workqueues	(as
	ksoftirqd		for		softirqs	).	Besides	this	we	can	create	new	separate	worker	thread	for	a
	workqueue	.	The	Linux	kernel	provides	following	macros	for	the	creation	of	workqueue:

#define	DECLARE_WORK(n,	f)	\

				struct	work_struct	n	=	__WORK_INITIALIZER(n,	f)

for	static	creation.	It	takes	two	parameters:	name	of	the	workqueue	and	the	workqueue
function.	For	creation	of	workqueue	in	runtime,	we	can	use	the:

#define	INIT_WORK(_work,	_func)							\

				__INIT_WORK((_work),	(_func),	0)

#define	__INIT_WORK(_work,	_func,	_onstack)																					\

				do	{																																																								\

												__init_work((_work),	_onstack);																					\

												(_work)->data	=	(atomic_long_t)	WORK_DATA_INIT();			\

												INIT_LIST_HEAD(&(_work)->entry);																				\

													(_work)->func	=	(_func);																											\

				}	while	(0)

Softirq,	Tasklets	and	Workqueues

353



macro	that	takes		work_struct		structure	that	has	to	be	created	and	the	function	to	be
scheduled	in	this	workqueue.	After	a		work		was	created	with	the	one	of	these	macros,	we
need	to	put	it	to	the		workqueue	.	We	can	do	it	with	the	help	of	the		queue_work		or	the
	queue_delayed_work		functions:

static	inline	bool	queue_work(struct	workqueue_struct	*wq,

																														struct	work_struct	*work)

{

				return	queue_work_on(WORK_CPU_UNBOUND,	wq,	work);

}

The		queue_work		function	just	calls	the		queue_work_on		function	that	queue	work	on	specific
processor.	Note	that	in	our	case	we	pass	the		WORK_CPU_UNBOUND		to	the		queue_work_on	
function.	It	is	a	part	of	the		enum		that	is	defined	in	the	include/linux/workqueue.h	and
represents	workqueue	which	are	not	bound	to	any	specific	processor.	The		queue_work_on	
function	tests	and	set	the		WORK_STRUCT_PENDING_BIT		bit	of	the	given		work		and	executes	the
	__queue_work		function	with	the		workqueue		for	the	given	processor	and	given		work	:

bool	queue_work_on(int	cpu,	struct	workqueue_struct	*wq,

											struct	work_struct	*work)

{

				bool	ret	=	false;

				...

				if	(!test_and_set_bit(WORK_STRUCT_PENDING_BIT,	work_data_bits(work)))	{

								__queue_work(cpu,	wq,	work);

								ret	=	true;

				}

				...

				return	ret;

}

The		__queue_work		function	gets	the		work	pool	.	Yes,	the		work	pool		not		workqueue	.
Actually,	all		works		are	not	placed	in	the		workqueue	,	but	to	the		work	pool		that	is
represented	by	the		worker_pool		structure	in	the	Linux	kernel.	As	you	can	see	above,	the
	workqueue_struct		structure	has	the		pwqs		field	which	is	list	of		worker_pools	.	When	we
create	a		workqueue	,	it	stands	out	for	each	processor	the		pool_workqueue	.	Each
	pool_workqueue		associated	with		worker_pool	,	which	is	allocated	on	the	same	processor
and	corresponds	to	the	type	of	priority	queue.	Through	them		workqueue		interacts	with
	worker_pool	.	So	in	the		__queue_work		function	we	set	the	cpu	to	the	current	processor	with
the		raw_smp_processor_id		(you	can	find	information	about	this	macro	in	the	fourth	part	of	the
Linux	kernel	initialization	process	chapter),	getting	the		pool_workqueue		for	the	given
	workqueue_struct		and	insert	the	given		work		to	the	given		workqueue	:

Softirq,	Tasklets	and	Workqueues

354

https://github.com/torvalds/linux/blob/master/include/linux/workqueue.h
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html


static	void	__queue_work(int	cpu,	struct	workqueue_struct	*wq,

																									struct	work_struct	*work)

{

...

...

...

if	(req_cpu	==	WORK_CPU_UNBOUND)

				cpu	=	raw_smp_processor_id();

if	(!(wq->flags	&	WQ_UNBOUND))

				pwq	=	per_cpu_ptr(wq->cpu_pwqs,	cpu);

else

				pwq	=	unbound_pwq_by_node(wq,	cpu_to_node(cpu));

...

...

...

insert_work(pwq,	work,	worklist,	work_flags);

As	we	can	create		works		and		workqueue	,	we	need	to	know	when	they	are	executed.	As	I
already	wrote,	all		works		are	executed	by	the	kernel	thread.	When	this	kernel	thread	is
scheduled,	it	starts	to	execute		works		from	the	given		workqueue	.	Each	worker	thread
executes	a	loop	inside	the		worker_thread		function.	This	thread	makes	many	different	things
and	part	of	these	things	are	similar	to	what	we	saw	before	in	this	part.	As	it	starts	executing,
it	removes	all		work_struct		or		works		from	its		workqueue	.

That's	all.

Conclusion
It	is	the	end	of	the	ninth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we
continued	to	dive	into	external	hardware	interrupts	in	this	part.	In	the	previous	part	we	saw
initialization	of	the		IRQs		and	main		irq_desc		structure.	In	this	part	we	saw	three	concepts:
the		softirq	,		tasklet		and		workqueue		that	are	used	for	the	deferred	functions.

The	next	part	will	be	last	part	of	the		Interrupts	and	Interrupt	Handling		chapter	and	we	will
look	on	the	real	hardware	driver	and	will	try	to	learn	how	it	works	with	the	interrupts
subsystem.

If	you	have	any	questions	or	suggestions,	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links

Softirq,	Tasklets	and	Workqueues

355

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides


initcall
IF
eflags
CPU	masks
per-cpu
Workqueue
Previous	part

Softirq,	Tasklets	and	Workqueues

356

http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/index.html
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/FLAGS_register
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/master/Documentation/workqueue.txt
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-8.html


Interrupts	and	Interrupt	Handling.	Part	10.

Last	part
This	is	the	tenth	part	of	the	chapter	about	interrupts	and	interrupt	handling	in	the	Linux
kernel	and	in	the	previous	part	we	saw	a	little	about	deferred	interrupts	and	related	concepts
like		softirq	,		tasklet		and		workqeue	.	In	this	part	we	will	continue	to	dive	into	this	theme
and	now	it's	time	to	look	at	real	hardware	driver.

Let's	consider	serial	driver	of	the	StrongARM**	SA-110/21285	Evaluation	Board	board	for
example	and	will	look	how	this	driver	requests	an	IRQ	line,	what	happens	when	an	interrupt
is	triggered	and	etc.	The	source	code	of	this	driver	is	placed	in	the	drivers/tty/serial/21285.c
source	code	file.	Ok,	we	have	source	code,	let's	start.

Initialization	of	a	kernel	module
We	will	start	to	consider	this	driver	as	we	usually	did	it	with	all	new	concepts	that	we	saw	in
this	book.	We	will	start	to	consider	it	from	the	intialization.	As	you	already	may	know,	the
Linux	kernel	provides	two	macros	for	initialization	and	finalization	of	a	driver	or	a	kernel
module:

	module_init	;
	module_exit	.

And	we	can	find	usage	of	these	macros	in	our	driver	source	code:

module_init(serial21285_init);

module_exit(serial21285_exit);

The	most	part	of	device	drivers	can	be	compiled	as	a	loadable	kernel	module	or	in	another
way	they	can	be	statically	linked	into	the	Linux	kernel.	In	the	first	case	initialization	of	a
device	driver	will	be	produced	via	the		module_init		and		module_exit		macros	that	are
defined	in	the	include/linux/init.h:

Last	part

357

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html
http://netwinder.osuosl.org/pub/netwinder/docs/intel/datashts/27813501.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/21285.c
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://github.com/torvalds/linux/blob/master/include/linux/init.h


#define	module_init(initfn)																																					\

								static	inline	initcall_t	__inittest(void)															\

								{	return	initfn;	}																																						\

								int	init_module(void)	__attribute__((alias(#initfn)));

#define	module_exit(exitfn)																																					\

								static	inline	exitcall_t	__exittest(void)															\

								{	return	exitfn;	}																																						\

								void	cleanup_module(void)	__attribute__((alias(#exitfn)));

and	will	be	called	by	the	initcall	functions:

	early_initcall	

	pure_initcall	

	core_initcall	

	postcore_initcall	

	arch_initcall	

	subsys_initcall	

	fs_initcall	

	rootfs_initcall	

	device_initcall	

	late_initcall	

that	are	called	in	the		do_initcalls		from	the	init/main.c.	Otherwise,	if	a	device	driver	is
statically	linked	into	the	Linux	kernel,	implementation	of	these	macros	will	be	following:

#define	module_init(x)		__initcall(x);

#define	module_exit(x)		__exitcall(x);

In	this	way	implementation	of	module	loading	placed	in	the	kernel/module.c	source	code	file
and	initialization	occurs	in	the		do_init_module		function.	We	will	not	dive	into	details	about
loadable	modules	in	this	chapter,	but	will	see	it	in	the	special	chapter	that	will	describe	Linux
kernel	modules.	Ok,	the		module_init		macro	takes	one	parameter	-	the		serial21285_init		in
our	case.	As	we	can	understand	from	function's	name,	this	function	does	stuff	related	to	the
driver	initialization.	Let's	look	at	it:

Last	part

358

http://kernelnewbies.org/Documents/InitcallMechanism
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/module.c


static	int	__init	serial21285_init(void)

{

				int	ret;

				printk(KERN_INFO	"Serial:	21285	driver\n");

				serial21285_setup_ports();

				ret	=	uart_register_driver(&serial21285_reg);

				if	(ret	==	0)

								uart_add_one_port(&serial21285_reg,	&serial21285_port);

				return	ret;

}

As	we	can	see,	first	of	all	it	prints	information	about	the	driver	to	the	kernel	buffer	and	the
call	of	the		serial21285_setup_ports		function.	This	function	setups	the	base	uart	clock	of	the
	serial21285_port		device:

unsigned	int	mem_fclk_21285	=	50000000;

static	void	serial21285_setup_ports(void)

{

				serial21285_port.uartclk	=	mem_fclk_21285	/	4;

}

Here	the		serial21285		is	the	structure	that	describes		uart		driver:

static	struct	uart_driver	serial21285_reg	=	{

				.owner												=	THIS_MODULE,

				.driver_name				=	"ttyFB",

				.dev_name								=	"ttyFB",

				.major												=	SERIAL_21285_MAJOR,

				.minor												=	SERIAL_21285_MINOR,

				.nr																=	1,

				.cons												=	SERIAL_21285_CONSOLE,

};

If	the	driver	registered	successfully	we	attach	the	driver-defined	port		serial21285_port	
structure	with	the		uart_add_one_port		function	from	the	drivers/tty/serial/serial_core.c	source
code	file	and	return	from	the		serial21285_init		function:

if	(ret	==	0)

				uart_add_one_port(&serial21285_reg,	&serial21285_port);

return	ret;

Last	part

359

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/serial_core.c


That's	all.	Our	driver	is	initialized.	When	an		uart		port	will	be	opened	with	the	call	of	the
	uart_open		function	from	the	drivers/tty/serial/serial_core.c,	it	will	call	the		uart_startup	
function	to	start	up	the	serial	port.	This	function	will	call	the		startup		function	that	is	part	of
the		uart_ops		structure.	Each		uart		driver	has	the	definition	of	this	structure,	in	our	case	it
is:

static	struct	uart_ops	serial21285_ops	=	{

				...

				.startup				=	serial21285_startup,

				...

}

	serial21285		structure.	As	we	can	see	the		.strartup		field	references	on	the
	serial21285_startup		function.	Implementation	of	this	function	is	very	interesting	for	us,
because	it	is	related	to	the	interrupts	and	interrupt	handling.

Requesting	irq	line
Let's	look	at	the	implementation	of	the		serial21285		function:

static	int	serial21285_startup(struct	uart_port	*port)

{

				int	ret;

				tx_enabled(port)	=	1;

				rx_enabled(port)	=	1;

				ret	=	request_irq(IRQ_CONRX,	serial21285_rx_chars,	0,

														serial21285_name,	port);

				if	(ret	==	0)	{

								ret	=	request_irq(IRQ_CONTX,	serial21285_tx_chars,	0,

																		serial21285_name,	port);

								if	(ret)

												free_irq(IRQ_CONRX,	port);

				}

				return	ret;

}

First	of	all	about		TX		and		RX	.	A	serial	bus	of	a	device	consists	of	just	two	wires:	one	for
sending	data	and	another	for	receiving.	As	such,	serial	devices	should	have	two	serial	pins:
the	receiver	-		RX	,	and	the	transmitter	-		TX	.	With	the	call	of	first	two	macros:		tx_enabled	
and		rx_enabled	,	we	enable	these	wires.	The	following	part	of	these	function	is	the	greatest

Last	part

360

https://github.com/torvalds/linux/blob/master/drivers/tty/serial/serial_core.c


interest	for	us.	Note	on		request_irq		functions.	This	function	registers	an	interrupt	handler
and	enables	a	given	interrupt	line.	Let's	look	at	the	implementation	of	this	function	and	get
into	the	details.	This	function	defined	in	the	include/linux/interrupt.h	header	file	and	looks	as:

static	inline	int	__must_check

request_irq(unsigned	int	irq,	irq_handler_t	handler,	unsigned	long	flags,

												const	char	*name,	void	*dev)

{

								return	request_threaded_irq(irq,	handler,	NULL,	flags,	name,	dev);

}

As	we	can	see,	the		request_irq		function	takes	five	parameters:

	irq		-	the	interrupt	number	that	being	requested;
	handler		-	the	pointer	to	the	interrupt	handler;
	flags		-	the	bitmask	options;
	name		-	the	name	of	the	owner	of	an	interrupt;
	dev		-	the	pointer	used	for	shared	interrupt	lines;

Now	let's	look	at	the	calls	of	the		request_irq		functions	in	our	example.	As	we	can	see	the
first	parameter	is		IRQ_CONRX	.	We	know	that	it	is	number	of	the	interrupt,	but	what	is	it
	CONRX	?	This	macro	defined	in	the	arch/arm/mach-footbridge/include/mach/irqs.h	header
file.	We	can	find	the	full	list	of	interrupts	that	the		21285		board	can	generate.	Note	that	in	the
second	call	of	the		request_irq		function	we	pass	the		IRQ_CONTX		interrupt	number.	Both
these	interrupts	will	handle		RX		and		TX		event	in	our	driver.	Implementation	of	these	macros
is	easy:

#define	IRQ_CONRX															_DC21285_IRQ(0)

#define	IRQ_CONTX															_DC21285_IRQ(1)

...

...

...

#define	_DC21285_IRQ(x)									(16	+	(x))

The	ISA	IRQs	on	this	board	are	from		0		to		15	,	so,	our	interrupts	will	have	first	two
numbers:		16		and		17	.	Second	parameters	for	two	calls	of	the		request_irq		functions	are
	serial21285_rx_chars		and		serial21285_tx_chars	.	These	functions	will	be	called	when	an
	RX		or		TX		interrupt	occurred.	We	will	not	dive	in	this	part	into	details	of	these	functions,
because	this	chapter	covers	the	interrupts	and	interrupts	handling	but	not	device	and
drivers.	The	next	parameter	-		flags		and	as	we	can	see,	it	is	zero	in	both	calls	of	the
	request_irq		function.	All	acceptable	flags	are	defined	as		IRQF_*		macros	in	the
include/linux/interrupt.h.	Some	of	it:

	IRQF_SHARED		-	allows	sharing	the	irq	among	several	devices;

Last	part

361

https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
https://github.com/torvalds/linux/blob/master/arch/arm/mach-footbridge/include/mach/irqs.h
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h


	IRQF_PERCPU		-	an	interrupt	is	per	cpu;
	IRQF_NO_THREAD		-	an	interrupt	cannot	be	threaded;
	IRQF_NOBALANCING		-	excludes	this	interrupt	from	irq	balancing;
	IRQF_IRQPOLL		-	an	interrupt	is	used	for	polling;
and	etc.

In	our	case	we	pass		0	,	so	it	will	be		IRQF_TRIGGER_NONE	.	This	flag	means	that	it	does	not
imply	any	kind	of	edge	or	level	triggered	interrupt	behaviour.	To	the	fourth	parameter
(	name	),	we	pass	the		serial21285_name		that	defined	as:

static	const	char	serial21285_name[]	=	"Footbridge	UART";

and	will	be	displayed	in	the	output	of	the		/proc/interrupts	.	And	in	the	last	parameter	we
pass	the	pointer	to	the	our	main		uart_port		structure.	Now	we	know	a	little	about
	request_irq		function	and	its	parameters,	let's	look	at	its	implemenetation.	As	we	can	see
above,	the		request_irq		function	just	makes	a	call	of	the		request_threaded_irq		function
inside.	The		request_threaded_irq		function	defined	in	the	kernel/irq/manage.c	source	code
file	and	allocates	a	given	interrupt	line.	If	we	will	look	at	this	function,	it	starts	from	the
definition	of	the		irqaction		and	the		irq_desc	:

int	request_threaded_irq(unsigned	int	irq,	irq_handler_t	handler,

																									irq_handler_t	thread_fn,	unsigned	long	irqflags,

																									const	char	*devname,	void	*dev_id)

{

								struct	irqaction	*action;

								struct	irq_desc	*desc;

								int	retval;

								...

								...

								...

}

We	arelady	saw	the		irqaction		and	the		irq_desc		structures	in	this	chapter.	The	first
structure	represents	per	interrupt	action	descriptor	and	contains	pointers	to	the	interrupt
handler,	name	of	the	device,	interrupt	number,	etc.	The	second	structure	represents	a
descriptor	of	an	interrupt	and	contains	pointer	to	the		irqaction	,	interrupt	flags,	etc.	Note
that	the		request_threaded_irq		function	called	by	the		request_irq		with	the	additioanal
parameter:		irq_handler_t	thread_fn	.	If	this	parameter	is	not		NULL	,	the		irq		thread	will	be
created	and	the	given		irq		handler	will	be	executed	in	this	thread.	In	the	next	step	we	need
to	make	following	checks:

Last	part

362

https://github.com/torvalds/linux/blob/master/kernel/irq/manage.c


if	(((irqflags	&	IRQF_SHARED)	&&	!dev_id)	||

												(!(irqflags	&	IRQF_SHARED)	&&	(irqflags	&	IRQF_COND_SUSPEND))	||

												((irqflags	&	IRQF_NO_SUSPEND)	&&	(irqflags	&	IRQF_COND_SUSPEND)))

															return	-EINVAL;

First	of	all	we	check	that	real		dev_id		is	passed	for	the	shared	interrupt	and	the
	IRQF_COND_SUSPEND		only	makes	sense	for	shared	interrupts.	Otherwise	we	exit	from	this
function	with	the		-EINVAL		error.	After	this	we	convert	the	given		irq		number	to	the		irq	
descriptor	wit	the	help	of	the		irq_to_desc		function	that	defined	in	the	kernel/irq/irqdesc.c
source	code	file	and	exit	from	this	function	with	the		-EINVAL		error	if	it	was	not	successful:

desc	=	irq_to_desc(irq);

if	(!desc)

				return	-EINVAL;

The		irq_to_desc		function	checks	that	given		irq		number	is	less	than	maximum	number	of
IRQs	and	returns	the	irq	descriptor	where	the		irq		number	is	offset	from	the		irq_desc	
array:

struct	irq_desc	*irq_to_desc(unsigned	int	irq)

{

								return	(irq	<	NR_IRQS)	?	irq_desc	+	irq	:	NULL;

}

As	we	have	converted		irq		number	to	the		irq		descriptor	we	make	the	check	the	status	of
the	descriptor	that	an	interrupt	can	be	requested:

if	(!irq_settings_can_request(desc)	||	WARN_ON(irq_settings_is_per_cpu_devid(desc)))

				return	-EINVAL;

and	exit	with	the		-EINVAL		in	othre	way.	After	this	we	check	the	given	interrupt	handler.	If	it
was	not	passed	to	the		request_irq		function,	we	check	the		thread_fn	.	If	both	handlers	are
	NULL	,	we	return	with	the		-EINVAL	.	If	an	interrupt	handler	was	not	passed	to	the
	request_irq		function,	but	the		thread_fn		is	not	null,	we	set	handler	to	the
	irq_default_primary_handler	:

if	(!handler)	{

				if	(!thread_fn)

								return	-EINVAL;

				handler	=	irq_default_primary_handler;

}

Last	part

363

https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c


In	the	next	step	we	allocate	memory	for	our		irqaction		with	the		kzalloc		function	and
return	from	the	function	if	this	operation	was	not	successful:

action	=	kzalloc(sizeof(struct	irqaction),	GFP_KERNEL);

if	(!action)

				return	-ENOMEM;

More	about		kzalloc		will	be	in	the	separate	chapter	about	memory	management	in	the
Linux	kernel.	As	we	allocated	space	for	the		irqaction	,	we	start	to	initialize	this	structure
with	the	values	of	interrupt	handler,	interrupt	flags,	device	name,	etc:

action->handler	=	handler;

action->thread_fn	=	thread_fn;

action->flags	=	irqflags;

action->name	=	devname;

action->dev_id	=	dev_id;

In	the	end	of	the		request_threaded_irq		function	we	call	the		__setup_irq		function	from	the
kernel/irq/manage.c	and	registers	a	given		irqaction	.	Release	memory	for	the		irqaction	
and	return:

chip_bus_lock(desc);

retval	=	__setup_irq(irq,	desc,	action);

chip_bus_sync_unlock(desc);

if	(retval)

				kfree(action);

return	retval;

Note	that	the	call	of	the		__setup_irq		function	is	placed	between	the		chip_bus_lock		and	the
	chip_bus_sync_unlock		functions.	These	functions	locl/unlock	access	to	slow	bus	(like	i2c)
chips.	Now	let's	look	at	the	implementation	of	the		__setup_irq		function.	In	the	beginning	of
the		__setup_irq		function	we	can	see	a	couple	of	different	checks.	First	of	all	we	check	that
the	given	interrupt	descriptor	is	not		NULL	,		irqchip		is	not		NULL		and	that	given	interrupt
descriptor	module	owner	is	not		NULL	.	After	this	we	check	is	interrupt	nest	into	another
interrupt	thread	or	not,	and	if	it	is	nested	we	replace	the		irq_default_primary_handler		with
the		irq_nested_primary_handler	.

In	the	next	step	we	create	an	irq	handler	thread	with	the		kthread_create		function,	if	the
given	interrupt	is	not	nested	and	the		thread_fn		is	not		NULL	:

Last	part

364

http://0xax.gitbooks.io/linux-insides/content/mm/index.html
https://github.com/torvalds/linux/blob/master/kernel/irq/manage.c
https://en.wikipedia.org/wiki/I%C2%B2C


if	(new->thread_fn	&&	!nested)	{

				struct	task_struct	*t;

				t	=	kthread_create(irq_thread,	new,	"irq/%d-%s",	irq,	new->name);

				...

}

And	fill	the	rest	of	the	given	interrupt	descriptor	fields	in	the	end.	So,	our		16		and		17	
interrupt	request	lines	are	registered	and	the		serial21285_rx_chars		and
	serial21285_tx_chars		functions	will	be	invoked	when	an	interrupt	controller	will	get	event
releated	to	these	interrupts.	Now	let's	look	at	what	happens	when	an	interrupt	occurs.

Prepare	to	handle	an	interrupt
In	the	previous	paragraph	we	saw	the	requesting	of	the	irq	line	for	the	given	interrupt
descriptor	and	registration	of	the		irqaction		structure	for	the	given	interrupt.	We	already
know	that	when	an	interrupt	event	occurs,	an	interrupt	controller	notifies	the	processor	about
this	event	and	processor	tries	to	find	appropriate	interrupt	gate	for	this	interrupt.	If	you	have
read	the	eighth	part	of	this	chapter,	you	may	remember	the		native_init_IRQ		function.	This
function	makes	initialization	of	the	local	APIC.	The	following	part	of	this	function	is	the	most
interesting	part	for	us	right	now:

for_each_clear_bit_from(i,	used_vectors,	first_system_vector)	{

				set_intr_gate(i,	irq_entries_start	+

								8	*	(i	-	FIRST_EXTERNAL_VECTOR));

}

Here	we	iterate	over	all	the	cleared	bit	of	the		used_vectors		bitmap	starting	at
	first_system_vector		that	is:

int	first_system_vector	=	FIRST_SYSTEM_VECTOR;	//	0xef

and	set	interrupt	gates	with	the		i		vector	number	and	the		irq_entries_start	+	8	*	(i	-
FIRST_EXTERNAL_VECTOR)		start	address.	Only	one	things	is	unclear	here	-	the
	irq_entries_start	.	This	symbol	defined	in	the	arch/x86/entry/entry_64.S	assembly	file	and
provides		irq		entries.	Let's	look	at	it:

Last	part

365

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-8.html
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/master/arch/x86/entry_entry_64.S


				.align	8

ENTRY(irq_entries_start)

				vector=FIRST_EXTERNAL_VECTOR

				.rept	(FIRST_SYSTEM_VECTOR	-	FIRST_EXTERNAL_VECTOR)

				pushq				$(~vector+0x80)

				vector=vector+1

				jmp				common_interrupt

				.align				8

				.endr

END(irq_entries_start)

Here	we	can	see	the	GNU	assembler		.rept		instruction	which	repeats	the	sequence	of
lines	that	are	before		.endr		-		FIRST_SYSTEM_VECTOR	-	FIRST_EXTERNAL_VECTOR		times.	As	we
already	know,	the		FIRST_SYSTEM_VECTOR		is		0xef	,	and	the		FIRST_EXTERNAL_VECTOR		is	equal	to
	0x20	.	So,	it	will	work:

>>>	0xef	-	0x20

207

times.	In	the	body	of	the		.rept		instruction	we	push	entry	stubs	on	the	stack	(note	that	we
use	negative	numbers	for	the	interrupt	vector	numbers,	because	positive	numbers	already
reserved	to	identify	system	calls),	increase	the		vector		variable	and	jump	on	the
	common_interrupt		label.	In	the		common_interrupt		we	adjust	vector	number	on	the	stack	and
execute		interrupt		number	with	the		do_IRQ		parameter:

common_interrupt:

				addq				$-0x80,	(%rsp)

				interrupt	do_IRQ

The	macro		interrupt		defined	in	the	same	source	code	file	and	saves	general	purpose
registers	on	the	stack,	change	the	userspace		gs		on	the	kernel	with	the		SWAPGS		assembler
instruction	if	need,	increase	per-cpu	-		irq_count		variable	that	shows	that	we	are	in	interrupt
and	call	the		do_IRQ		function.	This	function	defined	in	the	arch/x86/kernel/irq.c	source	code
file	and	handles	our	device	interrupt.	Let's	look	at	this	function.	The		do_IRQ		function	takes
one	parameter	-		pt_regs		structure	that	stores	values	of	the	userspace	registers:

Last	part

366

https://en.wikipedia.org/wiki/GNU_Assembler
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Processor_register
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c


__visible	unsigned	int	__irq_entry	do_IRQ(struct	pt_regs	*regs)

{

				struct	pt_regs	*old_regs	=	set_irq_regs(regs);

				unsigned	vector	=	~regs->orig_ax;

				unsigned	irq;

				irq_enter();

				exit_idle();

				...

				...

				...

}

At	the	beginning	of	this	function	we	can	see	call	of	the		set_irq_regs		function	that	returns
saved		per-cpu		irq	register	pointer	and	the	calls	of	the		irq_enter		and		exit_idle		functions.
The	first	function		irq_enter		enters	to	an	interrupt	context	with	the	updating
	__preempt_count		variable	and	the	second	function	-		exit_idle		checks	that	current	process
is		idle		with	pid	-		0		and	notify	the		idle_notifier		with	the		IDLE_END	.

In	the	next	step	we	read	the		irq		for	the	current	cpu	and	call	the		handle_irq		function:

irq	=	__this_cpu_read(vector_irq[vector]);

if	(!handle_irq(irq,	regs))	{

				...

				...

				...

}

...

...

...

The		handle_irq		function	defined	in	the	arch/x86/kernel/irq_64.c	source	code	file,	checks
the	given	interrupt	descriptor	and	call	the		generic_handle_irq_desc	:

desc	=	irq_to_desc(irq);

				if	(unlikely(!desc))

								return	false;

generic_handle_irq_desc(irq,	desc);

Where	the		generic_handle_irq_desc		calls	the	interrupt	handler:

static	inline	void	generic_handle_irq_desc(unsigned	int	irq,	struct	irq_desc	*desc)

{

							desc->handle_irq(irq,	desc);

}

Last	part

367

https://en.wikipedia.org/wiki/Process_identifier
https://github.com/torvalds/linux/blob/arch/x86/kernel/irq_64.c


But	stop...	What	is	it		handle_irq		and	why	do	we	call	our	interrupt	handler	from	the	interrupt
descriptor	when	we	know	that		irqaction		points	to	the	actual	interrupt	handler?	Actually	the
	irq_desc->handle_irq		is	a	high-level	API	for	the	calling	interrupt	handler	routine.	It	setups
during	initialization	of	the	device	tree	and	APIC	initialization.	The	kernel	selects	correct
function	and	call	chain	of	the		irq->action(s)		there.	In	this	way,	the		serial21285_tx_chars	
or	the		serial21285_rx_chars		function	will	be	executed	after	an	interrupt	will	occur.

In	the	end	of	the		do_IRQ		function	we	call	the		irq_exit		function	that	will	exit	from	the
interrupt	context,	the		set_irq_regs		with	the	old	userspace	registers	and	return:

irq_exit();

set_irq_regs(old_regs);

return	1;

We	already	know	that	when	an		IRQ		finishes	its	work,	deferred	interrupts	will	be	executed	if
they	exist.

Exit	from	interrupt
Ok,	the	interrupt	handler	finished	its	execution	and	now	we	must	return	from	the	interrupt.
When	the	work	of	the		do_IRQ		function	will	be	finsihed,	we	will	return	back	to	the	assembler
code	in	the	arch/x86/entry/entry_64.S	to	the		ret_from_intr		label.	First	of	all	we	disable
interrupts	with	the		DISABLE_INTERRUPTS		macro	that	expands	to	the		cli		instruction	and
decreases	value	of	the		irq_count		per-cpu	variable.	Remember,	this	variable	had	value	-
	1	,	when	we	were	in	interrupt	context:

DISABLE_INTERRUPTS(CLBR_NONE)

TRACE_IRQS_OFF

decl				PER_CPU_VAR(irq_count)

In	the	last	step	we	check	the	previous	context	(user	or	kernel),	restore	it	in	a	correct	way	and
exit	from	an	interrupt	with	the:

INTERRUPT_RETURN

where	the		INTERRUPT_RETURN		macro	is:

#define	INTERRUPT_RETURN				jmp	native_iret

and

Last	part

368

https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/master/arch/x86/entry_entry_64.S
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html


ENTRY(native_iret)

.global	native_irq_return_iret

native_irq_return_iret:

				iretq

That's	all.

Conclusion
It	is	the	end	of	the	tenth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	as	you
have	read	in	the	beginning	of	this	part	-	it	is	the	last	part	of	this	chapter.	This	chapter	started
from	the	explanation	of	the	theory	of	interrupts	and	we	have	learned	what	is	it	interrupt	and
kinds	of	interrupts,	then	we	saw	exceptions	and	handling	of	this	kind	of	interrupts,	deferred
interrupts	and	finally	we	looked	on	the	hardware	interrupts	and	the	handling	of	theirs	in	this
part.	Of	course,	this	part	and	even	this	chapter	does	not	cover	full	aspects	of	interrupts	and
interrupt	handling	in	the	Linux	kernel.	It	is	not	realistic	to	do	this.	At	least	for	me.	It	was	the
big	part,	I	don't	know	how	about	you,	but	it	was	really	big	for	me.	This	theme	is	much	bigger
than	this	chapter	and	I	am	not	sure	that	somewhere	there	is	a	book	that	covers	it.	We	have
missed	many	part	and	aspects	of	interrupts	and	interrupt	handling,	but	I	think	it	will	be	good
point	to	dive	in	the	kernel	code	related	to	the	interrupts	and	interrupts	handling.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Serial	driver	documentation
StrongARM**	SA-110/21285	Evaluation	Board
IRQ
module
initcall
uart
ISA
memory	management
i2c
APIC
GNU	assembler

Last	part

369

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://www.kernel.org/doc/Documentation/serial/driver
http://netwinder.osuosl.org/pub/netwinder/docs/intel/datashts/27813501.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Loadable_kernel_module
http://kernelnewbies.org/Documents/InitcallMechanism
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
http://0xax.gitbooks.io/linux-insides/content/mm/index.html
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/GNU_Assembler


Processor	register
per-cpu
pid
device	tree
system	calls
Previous	part

Last	part

370

https://en.wikipedia.org/wiki/Processor_register
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/System_call
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html


System	calls
This	chapter	describes	the		system	call		concept	in	the	linux	kernel.

Introduction	to	system	call	concept	-	this	part	is	introduction	to	the		system	call		concept
in	the	Linux	kernel.
How	the	Linux	kernel	handles	a	system	call	-	this	part	describes	how	the	Linux	kernel
handles	a	system	call	from	an	userspace	application.
vsyscall	and	vDSO	-	third	part	describes		vsyscall		and		vDSO		concepts.
How	the	Linux	kernel	runs	a	program	-	this	part	describes	startup	process	of	a	program.

System	calls

371

http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-1.html
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-2.html
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-3.html
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-4.html


System	calls	in	the	Linux	kernel.	Part	1.

Introduction
This	post	opens	up	a	new	chapter	in	linux-insides	book,	and	as	you	may	understand	from
the	title,	this	chapter	will	be	devoted	to	the	System	call	concept	in	the	Linux	kernel.	The
choice	of	topic	for	this	chapter	is	not	accidental.	In	the	previous	chapter	we	saw	interrupts
and	interrupt	handling.	The	concept	of	system	calls	is	very	similar	to	that	of	interrupts.	This	is
because	the	most	common	way	to	implement	system	calls	is	as	software	interrupts.	We	will
see	many	different	aspects	that	are	related	to	the	system	call	concept.	For	example,	we	will
learn	what's	happening	when	a	system	call	occurs	from	userspace.	We	will	see	an
implementation	of	a	couple	system	call	handlers	in	the	Linux	kernel,	VDSO	and	vsyscall
concepts	and	many	many	more.

Before	we	dive	into	Linux	system	call	implementation,	it	is	good	to	know	some	theory	about
system	calls.	Let's	do	it	in	the	following	paragraph.

System	call.	What	is	it?
A	system	call	is	just	a	userspace	request	of	a	kernel	service.	Yes,	the	operating	system
kernel	provides	many	services.	When	your	program	wants	to	write	to	or	read	from	a	file,	start
to	listen	for	connections	on	a	socket,	delete	or	create	directory,	or	even	to	finish	its	work,	a
program	uses	a	system	call.	In	another	words,	a	system	call	is	just	a	C	kernel	space	function
that	user	space	programs	call	to	handle	some	request.

The	Linux	kernel	provides	a	set	of	these	functions	and	each	architecture	provides	its	own
set.	For	example:	the	x86_64	provides	322	system	calls	and	the	x86	provides	358	different
system	calls.	Ok,	a	system	call	is	just	a	function.	Let's	look	on	a	simple		Hello	world	
example	that's	written	in	the	assembly	programming	language:

Introduction	to	system	calls

372

http://0xax.gitbooks.io/linux-insides/content/
https://en.wikipedia.org/wiki/System_call
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://en.wikipedia.org/wiki/VDSO
https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_32.tbl


.data

msg:

				.ascii	"Hello,	world!\n"

				len	=	.	-	msg

.text

				.global	_start

_start:

				movq		$1,	%rax

				movq		$1,	%rdi

				movq		$msg,	%rsi

				movq		$len,	%rdx

				syscall

				movq		$60,	%rax

				xorq		%rdi,	%rdi

				syscall

We	can	compile	the	above	with	the	following	commands:

$	gcc	-c	test.S

$	ld	-o	test	test.o

and	run	it	as	follows:

./test

Hello,	world!

Ok,	what	do	we	see	here?	This	simple	code	represents		Hello	world		assembly	program	for
the	Linux		x86_64		architecture.	We	can	see	two	sections	here:

	.data	

	.text	

The	first	section	-		.data		stores	initialized	data	of	our	program	(	Hello	world		string	and	its
length	in	our	case).	The	second	section	-		.text		contains	the	code	of	our	program.	We	can
split	the	code	of	our	program	into	two	parts:	first	part	will	be	before	the	first		syscall	
instruction	and	the	second	part	will	be	between	first	and	second		syscall		instructions.	First
of	all	what	does	the		syscall		instruction	do	in	our	code	and	generally?	As	we	can	read	in
the	64-ia-32-architectures-software-developer-vol-2b-manual:

Introduction	to	system	calls

373

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


SYSCALL	invokes	an	OS	system-call	handler	at	privilege	level	0.	It	does	so	by

loading	RIP	from	the	IA32_LSTAR	MSR	(after	saving	the	address	of	the	instruction

following	SYSCALL	into	RCX).	(The	WRMSR	instruction	ensures	that	the

IA32_LSTAR	MSR	always	contain	a	canonical	address.)

...

...

...

SYSCALL	loads	the	CS	and	SS	selectors	with	values	derived	from	bits	47:32	of	the

IA32_STAR	MSR.	However,	the	CS	and	SS	descriptor	caches	are	not	loaded	from	the

descriptors	(in	GDT	or	LDT)	referenced	by	those	selectors.

Instead,	the	descriptor	caches	are	loaded	with	fixed	values.	It	is	the	respon-

sibility	of	OS	software	to	ensure	that	the	descriptors	(in	GDT	or	LDT)	referenced

by	those	selector	values	correspond	to	the	fixed	values	loaded	into	the	descriptor

caches;	the	SYSCALL	instruction	does	not	ensure	this	correspondence.

and	we	are	initializing		syscalls		by	the	writing	of	the		entry_SYSCALL_64		that	defined	in	the
arch/x86/entry/entry_64.S	assembler	file	and	represents		SYSCALL		instruction	entry	to	the
	IA32_STAR		Model	specific	register:

wrmsrl(MSR_LSTAR,	entry_SYSCALL_64);

in	the	arch/x86/kernel/cpu/common.c	source	code	file.

So,	the		syscall		instruction	invokes	a	handler	of	a	given	system	call.	But	how	does	it	know
which	handler	to	call?	Actually	it	gets	this	information	from	the	general	purpose	registers.	As
you	can	see	in	the	system	call	table,	each	system	call	has	an	unique	number.	In	our
example,	first	system	call	is	-		write		that	writes	data	to	the	given	file.	Let's	look	in	the
system	call	table	and	try	to	find		write		system	call.	As	we	can	see,	the	write	system	call	has
number	-		1	.	We	pass	the	number	of	this	system	call	through	the		rax		register	in	our
example.	The	next	general	purpose	registers:		%rdi	,		%rsi		and		%rdx		take	parameters	of
the		write		syscall.	In	our	case,	they	are	file	descriptor	(	1		is	stdout	in	our	case),	second
parameter	is	the	pointer	to	our	string,	and	the	third	is	size	of	data.	Yes,	you	heard	right.
Parameters	for	a	system	call.	As	I	already	wrote	above,	a	system	call	is	a	just		C		function	in
the	kernel	space.	In	our	case	first	system	call	is	write.	This	system	call	defined	in	the
fs/read_write.c	source	code	file	and	looks	like:

SYSCALL_DEFINE3(write,	unsigned	int,	fd,	const	char	__user	*,	buf,

								size_t,	count)

{

				...

				...

				...

}

Introduction	to	system	calls

374

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c
https://en.wikipedia.org/wiki/Processor_register
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L10
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://github.com/torvalds/linux/blob/master/fs/read_write.c


Or	in	other	words:

ssize_t	write(int	fd,	const	void	*buf,	size_t	nbytes);

Don't	worry	about	the		SYSCALL_DEFINE3		macro	for	now,	we'll	come	back	to	it.

The	second	part	of	our	example	is	the	same,	but	we	call	other	system	call.	In	this	case	we
call	exit	system	call.	This	system	call	gets	only	one	parameter:

Return	value

and	handles	the	way	our	program	exits.	We	can	pass	the	program	name	of	our	program	to
the	strace	util	and	we	will	see	our	system	calls:

$	strace	test

execve("./test",	["./test"],	[/*	62	vars	*/])	=	0

write(1,	"Hello,	world!\n",	14Hello,	world!

)									=	14

_exit(0)																																=	?

+++	exited	with	0	+++

In	the	first	line	of	the		strace		output,	we	can	see	execve	system	call	that	executes	our
program,	and	the	second	and	third	are	system	calls	that	we	have	used	in	our	program:
	write		and		exit	.	Note	that	we	pass	the	parameter	through	the	general	purpose	registers
in	our	example.	The	order	of	the	registers	is	not	accidental.	The	order	of	the	registers	is
defined	by	the	following	agreement	-	x86-64	calling	conventions.	This	and	other	agreement
for	the		x86_64		architecture	explained	in	the	special	document	-	System	V	Application
Binary	Interface.	PDF.	In	a	general	way,	argument(s)	of	a	function	are	placed	either	in
registers	or	pushed	on	the	stack.	The	right	order	is:

	rdi	;
	rsi	;
	rdx	;
	rcx	;
	r8	;
	r9	.

for	the	first	six	parameters	of	a	function.	If	a	function	has	more	than	six	arguments,	other
parameters	will	be	placed	on	the	stack.

We	do	not	use	system	calls	in	our	code	directly,	but	our	program	uses	it	when	we	want	to
print	something,	check	access	to	a	file	or	just	write	or	read	something	to	it.

For	example:

Introduction	to	system	calls

375

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L69
https://en.wikipedia.org/wiki/Strace
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L68
https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions
http://www.x86-64.org/documentation/abi.pdf


#include	<stdio.h>

int	main(int	argc,	char	**argv)

{

			FILE	*fp;

			char	buff[255];

			fp	=	fopen("test.txt",	"r");

			fgets(buff,	255,	fp);

			printf("%s\n",	buff);

			fclose(fp);

			return	0;

}

There	are	no		fopen	,		fgets	,		printf		and		fclose		system	calls	in	the	Linux	kernel,	but
	open	,		read			write		and		close		instead.	I	think	you	know	that	these	four	functions		fopen	,
	fgets	,		printf		and		fclose		are	just	functions	that	defined	in	the		C		standard	library.
Actually	these	functions	are	wrappers	for	the	system	calls.	We	do	not	call	system	calls
directly	in	our	code,	but	using	wrapper	functions	from	the	standard	library.	The	main	reason
of	this	is	simple:	a	system	call	must	be	performed	quickly,	very	quickly.	As	a	system	call
must	be	quick,	it	must	be	small.	The	standard	library	takes	responsibility	to	perform	system
calls	with	the	correct	set	parameters	and	makes	different	checks	before	it	will	call	the	given
system	call.	Let's	compile	our	program	with	the	following	command:

$	gcc	test.c	-o	test

and	look	on	it	with	the	ltrace	util:

$	ltrace	./test

__libc_start_main([	"./test"	]	<unfinished	...>

fopen("test.txt",	"r")																																													=	0x602010

fgets("Hello	World!\n",	255,	0x602010)																													=	0x7ffd2745e700

puts("Hello	World!\n"Hello	World!

)																																																																		=	14

fclose(0x602010)																																																			=	0

+++	exited	(status	0)	+++

The		ltrace		util	displays	a	set	of	userspace	calls	of	a	program.	The		fopen		function	opens
the	given	text	file,	the		fgets		reads	file	content	to	the		buf		buffer,	the		puts		function	prints
it	to	the		stdout		and	the		fclose		function	closes	file	by	the	given	file	descriptor.	And	as	I

Introduction	to	system	calls

376

https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Wrapper_function
https://en.wikipedia.org/wiki/Ltrace


already	wrote,	all	of	these	functions	call	an	appropriate	system	call.	For	example		puts		calls
the		write		system	call	inside,	we	can	see	it	if	we	will	add		-S		option	to	the		ltrace	
program:

write@SYS(1,	"Hello	World!\n\n",	14)	=	14

Yes,	system	calls	are	ubiquitous.	Each	program	needs	to	open/write/read	file,	network
connection,	allocate	memory	and	many	other	things	that	can	be	provided	only	by	the	kernel.
The	proc	file	system	contains	special	files	in	a	format:		/proc/pid/systemcall		that	exposes
the	system	call	number	and	argument	registers	for	the	system	call	currently	being	executed
by	the	process.	For	example,	pid	1,	that	is	systemd	for	me:

$	sudo	cat	/proc/1/comm

systemd

$	sudo	cat	/proc/1/syscall

232	0x4	0x7ffdf82e11b0	0x1f	0xffffffff	0x100	0x7ffdf82e11bf	0x7ffdf82e11a0	0x7f9114681

193

the	system	call	with	number	-		232		which	is	epoll_wait	system	call	that	waits	for	an	I/O	event
on	an	epoll	file	descriptor.	Or	for	example		emacs		editor	where	I'm	writing	this	part:

$	ps	ax	|	grep	emacs

2093	?								Sl					2:40	emacs

$	sudo	cat	/proc/2093/comm

emacs

$	sudo	cat	/proc/2093/syscall

270	0xf	0x7fff068a5a90	0x7fff068a5b10	0x0	0x7fff068a59c0	0x7fff068a59d0	0x7fff068a59b0

	0x7f777dd8813c

the	system	call	with	the	number		270		which	is	sys_pselect6	system	call	that	allows		emacs	
to	monitor	multiple	file	descriptors.

Now	we	know	a	little	about	system	call,	what	is	it	and	why	we	need	in	it.	So	let's	look	at	the
	write		system	call	that	our	program	used.

Implementation	of	write	system	call
Let's	look	at	the	implementation	of	this	system	call	directly	in	the	source	code	of	the	Linux
kernel.	As	we	already	know,	the		write		system	call	is	defined	in	the	fs/read_write.c	source
code	file	and	looks	like	this:

Introduction	to	system	calls

377

https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Systemd
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L241
https://en.wikipedia.org/wiki/Epoll
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L279
https://github.com/torvalds/linux/blob/master/fs/read_write.c


SYSCALL_DEFINE3(write,	unsigned	int,	fd,	const	char	__user	*,	buf,

								size_t,	count)

{

				struct	fd	f	=	fdget_pos(fd);

				ssize_t	ret	=	-EBADF;

				if	(f.file)	{

								loff_t	pos	=	file_pos_read(f.file);

								ret	=	vfs_write(f.file,	buf,	count,	&pos);

								if	(ret	>=	0)

												file_pos_write(f.file,	pos);

								fdput_pos(f);

				}

				return	ret;

}

First	of	all,	the		SYSCALL_DEFINE3		macro	is	defined	in	the	include/linux/syscalls.h	header	file
and	expands	to	the	definition	of	the		sys_name(...)		function.	Let's	look	at	this	macro:

#define	SYSCALL_DEFINE3(name,	...)	SYSCALL_DEFINEx(3,	_##name,	__VA_ARGS__)

#define	SYSCALL_DEFINEx(x,	sname,	...)																\

								SYSCALL_METADATA(sname,	x,	__VA_ARGS__)							\

								__SYSCALL_DEFINEx(x,	sname,	__VA_ARGS__)

As	we	can	see	the		SYSCALL_DEFINE3		macro	takes		name		parameter	which	will	represent
name	of	a	system	call	and	variadic	number	of	parameters.	This	macro	just	expands	to	the
	SYSCALL_DEFINEx		macro	that	takes	the	number	of	the	parameters	the	given	system	call,	the
	_##name		stub	for	the	future	name	of	the	system	call	(more	about	tokens	concatenation	with
the		##		you	can	read	in	the	documentation	of	gcc).	Next	we	can	see	the		SYSCALL_DEFINEx	
macro.	This	macro	expands	to	the	two	following	macros:

	SYSCALL_METADATA	;
	__SYSCALL_DEFINEx	.

Implementation	of	the	first	macro		SYSCALL_METADATA		depends	on	the
	CONFIG_FTRACE_SYSCALLS		kernel	configuration	option.	As	we	can	understand	from	the	name
of	this	option,	it	allows	to	enable	tracer	to	catch	the	syscall	entry	and	exit	events.	If	this
kernel	configuration	option	is	enabled,	the		SYSCALL_METADATA		macro	executes	initialization	of
the		syscall_metadata		structure	that	defined	in	the	include/trace/syscall.h	header	file	and
contains	different	useful	fields	as	name	of	a	system	call,	number	of	a	system	call	in	the
system	call	table,	number	of	parameters	of	a	system	call,	list	of	parameter	types	and	etc:

Introduction	to	system	calls

378

https://github.com/torvalds/linux/blob/master/include/linux/syscalls.h
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/master/include/trace/syscall.h
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl


#define	SYSCALL_METADATA(sname,	nb,	...)																													\

				...																																																														\

				...																																																														\

				...																																																														\

				struct	syscall_metadata	__used																																			\

														__syscall_meta_##sname	=	{																													\

																				.name											=	"sys"#sname,																			\

																				.syscall_nr					=	-1,																												\

																				.nb_args								=	nb,																												\

																				.types										=	nb	?	types_##sname	:	NULL,					\

																				.args											=	nb	?	args_##sname	:	NULL,						\

																				.enter_event				=	&event_enter_##sname,										\

																				.exit_event					=	&event_exit_##sname,											\

																				.enter_fields			=	LIST_HEAD_INIT(__syscall_meta_##sname.enter_fiel

ds),	\

													};																																																																							

					\

				static	struct	syscall_metadata	__used																											\

														__attribute__((section("__syscalls_metadata")))							\

													*__p_syscall_meta_##sname	=	&__syscall_meta_##sname;

If	the		CONFIG_FTRACE_SYSCALLS		kernel	option	does	not	enabled	during	kernel	configuration,	in
this	way	the		SYSCALL_METADATA		macro	expands	to	empty	string:

#define	SYSCALL_METADATA(sname,	nb,	...)

The	second	macro		__SYSCALL_DEFINEx		expands	to	the	definition	of	the	five	following
functions:

#define	__SYSCALL_DEFINEx(x,	name,	...)																																	\

								asmlinkage	long	sys##name(__MAP(x,__SC_DECL,__VA_ARGS__))							\

																__attribute__((alias(__stringify(SyS##name))));									\

																																																																								\

								static	inline	long	SYSC##name(__MAP(x,__SC_DECL,__VA_ARGS__));		\

																																																																								\

								asmlinkage	long	SyS##name(__MAP(x,__SC_LONG,__VA_ARGS__));						\

																																																																								\

								asmlinkage	long	SyS##name(__MAP(x,__SC_LONG,__VA_ARGS__))							\

								{																																																															\

																long	ret	=	SYSC##name(__MAP(x,__SC_CAST,__VA_ARGS__));		\

																__MAP(x,__SC_TEST,__VA_ARGS__);																									\

																__PROTECT(x,	ret,__MAP(x,__SC_ARGS,__VA_ARGS__));							\

																return	ret;																																													\

								}																																																															\

																																																																								\

								static	inline	long	SYSC##name(__MAP(x,__SC_DECL,__VA_ARGS__))

Introduction	to	system	calls

379



The	first		sys##name		is	definition	of	the	syscall	handler	function	with	the	given	name	-
	sys_system_call_name	.	The		__SC_DECL		macro	takes	the		__VA_ARGS__		and	combines	call
input	parameter	system	type	and	the	parameter	name,	because	the	macro	definition	is
unable	to	determine	the	parameter	types.	And	the		__MAP		macro	applies		__SC_DECL		macro
to	the		__VA_ARGS__		arguments.	The	other	functions	that	are	generated	by	the
	__SYSCALL_DEFINEx		macro	are	need	to	protect	from	the	CVE-2009-0029	and	we	will	not	dive
into	details	about	this	here.	Ok,	as	result	of	the		SYSCALL_DEFINE3		macro,	we	will	have:

asmlinkage	long	sys_write(unsigned	int	fd,	const	char	__user	*	buf,	size_t	count);

Now	we	know	a	little	about	the	system	call's	definition	and	we	can	go	back	to	the
implementation	of	the		write		system	call.	Let's	look	on	the	implementation	of	this	system
call	again:

SYSCALL_DEFINE3(write,	unsigned	int,	fd,	const	char	__user	*,	buf,

								size_t,	count)

{

				struct	fd	f	=	fdget_pos(fd);

				ssize_t	ret	=	-EBADF;

				if	(f.file)	{

								loff_t	pos	=	file_pos_read(f.file);

								ret	=	vfs_write(f.file,	buf,	count,	&pos);

								if	(ret	>=	0)

												file_pos_write(f.file,	pos);

								fdput_pos(f);

				}

				return	ret;

}

As	we	already	know	and	can	see	from	the	code,	it	takes	three	arguments:

	fd		-	file	descriptor;
	buf		-	buffer	to	write;
	count		-	length	of	buffer	to	write.

and	writes	data	from	a	buffer	declared	by	the	user	to	a	given	device	or	a	file.	Note	that	the
second	parameter		buf	,	defined	with	the		__user		attribute.	The	main	purpose	of	this
attribute	is	for	checking	the	Linux	kernel	code	with	the	sparse	util.	It	is	defined	in	the
include/linux/compiler.h	header	file	and	depends	on	the		__CHECKER__		definition	in	the	Linux
kernel.	That's	all	about	useful	meta-information	related	to	our		sys_write		system	call,	let's
try	to	understand	how	this	system	call	is	implemented.	As	we	can	see	it	starts	from	the
definition	of	the		f		structure	that	has		fd		structure	type	that	represent	file	descriptor	in	the

Introduction	to	system	calls

380

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0029
https://en.wikipedia.org/wiki/Sparse
https://github.com/torvalds/linux/blob/master/include/linux/compiler.h


Linux	kernel	and	we	put	the	result	of	the	call	of	the		fdget_pos		function.	The		fdget_pos	
function	defined	in	the	same	source	code	file	and	just	expands	the	call	of	the		__to_fd	
function:

static	inline	struct	fd	fdget_pos(int	fd)

{

								return	__to_fd(__fdget_pos(fd));

}

The	main	purpose	of	the		fdget_pos		is	to	convert	the	given	file	descriptor	which	is	just	a
number	to	the		fd		structure.	Through	the	long	chain	of	function	calls,	the		fdget_pos	
function	gets	the	file	descriptor	table	of	the	current	process,		current->files	,	and	tries	to
find	a	corresponding	file	descriptor	number	there.	As	we	got	the		fd		structure	for	the	given
file	descriptor	number,	we	check	it	and	return	if	it	does	not	exist.	We	get	the	current	position
in	the	file	with	the	call	of	the		file_pos_read		function	that	just	returns		f_pos		field	of	the	our
file:

static	inline	loff_t	file_pos_read(struct	file	*file)

{

								return	file->f_pos;

}

and	call	the		vfs_write		function.	The		vfs_write		function	defined	in	the	fs/read_write.c
source	code	file	and	does	the	work	for	us	-	writes	given	buffer	to	the	given	file	starting	from
the	given	position.	We	will	not	dive	into	details	about	the		vfs_write		function,	because	this
function	is	weakly	related	to	the		system	call		concept	but	mostly	about	Virtual	file	system
concept	which	we	will	see	in	another	chapter.	After	the		vfs_write		has	finished	its	work,	we
check	the	result	and	if	it	was	finished	successfully	we	change	the	position	in	the	file	with	the
	file_pos_write		function:

if	(ret	>=	0)

				file_pos_write(f.file,	pos);

that	just	updates		f_pos		with	the	given	position	in	the	given	file:

static	inline	void	file_pos_write(struct	file	*file,	loff_t	pos)

{

								file->f_pos	=	pos;

}

At	the	end	of	the	our		write		system	call	handler,	we	can	see	the	call	of	the	following
function:

Introduction	to	system	calls

381

https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://en.wikipedia.org/wiki/Virtual_file_system


fdput_pos(f);

unlocks	the		f_pos_lock		mutex	that	protects	file	position	during	concurrent	writes	from
threads	that	share	file	descriptor.

That's	all.

We	have	seen	the	partial	implementation	of	one	system	call	provided	by	the	Linux	kernel.	Of
course	we	have	missed	some	parts	in	the	implementation	of	the		write		system	call,
because	as	I	mentioned	above,	we	will	see	only	system	calls	related	stuff	in	this	chapter	and
will	not	see	other	stuff	related	to	other	subsystems,	such	as	Virtual	file	system.

Conclusion
This	concludes	the	first	part	covering	system	call	concepts	in	the	Linux	kernel.	We	have
covered	the	theory	of	system	calls	so	far	and	in	the	next	part	we	will	continue	to	dive	into	this
topic,	touching	Linux	kernel	code	related	to	system	calls.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
system	call
vdso
vsyscall
general	purpose	registers
socket
C	programming	language
x86
x86_64
x86-64	calling	conventions
System	V	Application	Binary	Interface.	PDF
GCC
Intel	manual.	PDF
system	call	table
GCC	macro	documentation

Introduction	to	system	calls

382

https://en.wikipedia.org/wiki/Virtual_file_system
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/VDSO
https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions
http://www.x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html


file	descriptor
stdout
strace
standard	library
wrapper	functions
ltrace
sparse
proc	file	system
Virtual	file	system
systemd
epoll
Previous	chapter

Introduction	to	system	calls

383

https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://en.wikipedia.org/wiki/Strace
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Wrapper_function
https://en.wikipedia.org/wiki/Ltrace
https://en.wikipedia.org/wiki/Sparse
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Epoll
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html


System	calls	in	the	Linux	kernel.	Part	2.

How	does	the	Linux	kernel	handle	a	system
call
The	previous	part	was	the	first	part	of	the	chapter	that	describes	the	system	call	concepts	in
the	Linux	kernel.	In	the	previous	part	we	learned	what	a	system	call	is	in	the	Linux	kernel,
and	in	operating	systems	in	general.	This	was	introduced	from	a	user-space	perspective,
and	part	of	the	write	system	call	implementation	was	discussed.	In	this	part	we	continue	our
look	at	system	calls,	starting	with	some	theory	before	moving	onto	the	Linux	kernel	code.

A	user	application	does	not	make	the	system	call	directly	from	our	applications.	We	did	not
write	the		Hello	world!		program	like:

int	main(int	argc,	char	**argv)

{

				...

				...

				...

				sys_write(fd1,	buf,	strlen(buf));

				...

				...

}

We	can	use	something	similar	with	the	help	of	C	standard	library	and	it	will	look	something
like	this:

#include	<unistd.h>

int	main(int	argc,	char	**argv)

{

				...

				...

				...

				write(fd1,	buf,	strlen(buf));

				...

				...

}

But	anyway,		write		is	not	a	direct	system	call	and	not	a	kernel	function.	An	application	must
fill	general	purpose	registers	with	the	correct	values	in	the	correct	order	and	use	the
	syscall		instruction	to	make	the	actual	system	call.	In	this	part	we	will	look	at	what	occurs	in

How	the	Linux	kernel	handles	a	system	call

384

http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-1.html
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/write.2.html
https://en.wikipedia.org/wiki/GNU_C_Library


the	Linux	kernel	when	the		syscall		instruction	is	met	by	the	processor.

Initialization	of	the	system	calls	table
From	the	previous	part	we	know	that	system	call	concept	is	very	similar	to	an	interrupt.
Furthermore,	system	calls	are	implemented	as	software	interrupts.	So,	when	the	processor
handles	a		syscall		instruction	from	a	user	application,	this	instruction	causes	an	exception
which	transfers	control	to	an	exception	handler.	As	we	know,	all	exception	handlers	(or	in
other	words	kernel	C	functions	that	will	react	on	an	exception)	are	placed	in	the	kernel	code.
But	how	does	the	Linux	kernel	search	for	the	address	of	the	necessary	system	call	handler
for	the	related	system	call?	The	Linux	kernel	contains	a	special	table	called	the		system	call
table	.	The	system	call	table	is	represented	by	the		sys_call_table		array	in	the	Linux	kernel
which	is	defined	in	the	arch/x86/entry/syscall_64.c	source	code	file.	Let's	look	at	its
implementation:

asmlinkage	const	sys_call_ptr_t	sys_call_table[__NR_syscall_max+1]	=	{

				[0	...	__NR_syscall_max]	=	&sys_ni_syscall,

				#include	<asm/syscalls_64.h>

};

As	we	can	see,	the		sys_call_table		is	an	array	of		__NR_syscall_max	+	1		size	where	the
	__NR_syscall_max		macro	represents	the	maximum	number	of	system	calls	for	the	given
architecture.	This	book	is	about	the	x86_64	architecture,	so	for	our	case	the
	__NR_syscall_max		is		322		and	this	is	the	correct	number	at	the	time	of	writing	(current	Linux
kernel	version	is		4.2.0-rc8+	).	We	can	see	this	macro	in	the	header	file	generated	by	Kbuild
during	kernel	compilation	-	include/generated/asm-offsets.h`:

#define	__NR_syscall_max	322

There	will	be	the	same	number	of	system	calls	in	the	arch/x86/entry/syscalls/syscall_64.tbl
for	the		x86_64	.	There	are	two	important	topics	here;	the	type	of	the		sys_call_table		array,
and	the	initialization	of	elements	in	this	array.	First	of	all,	the	type.	The		sys_call_ptr_t	
represents	a	pointer	to	a	system	call	table.	It	is	defined	as	typedef	for	a	function	pointer	that
returns	nothing	and	does	not	take	arguments:

typedef	void	(*sys_call_ptr_t)(void);

The	second	thing	is	the	initialization	of	the		sys_call_table		array.	As	we	can	see	in	the	code
above,	all	elements	of	our	array	that	contain	pointers	to	the	system	call	handlers	point	to	the
	sys_ni_syscall	.	The		sys_ni_syscall		function	represents	not-implemented	system	calls.	To

How	the	Linux	kernel	handles	a	system	call

385

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_64.c
https://en.wikipedia.org/wiki/List_of_CPU_architectures
https://en.wikipedia.org/wiki/X86-64
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L331
https://en.wikipedia.org/wiki/Typedef


start	with,	all	elements	of	the		sys_call_table		array	point	to	the	not-implemented	system
call.	This	is	the	correct	initial	behaviour,	because	we	only	initialize	storage	of	the	pointers	to
the	system	call	handlers,	it	is	populated	later	on.	Implementation	of	the		sys_ni_syscall		is
pretty	easy,	it	just	returns	-errno	or		-ENOSYS		in	our	case:

asmlinkage	long	sys_ni_syscall(void)

{

				return	-ENOSYS;

}

The		-ENOSYS		error	tells	us	that:

ENOSYS										Function	not	implemented	(POSIX.1)

Also	a	note	on		...		in	the	initialization	of	the		sys_call_table	.	We	can	do	it	with	a	GCC
compiler	extension	called	-	Designated	Initializers.	This	extension	allows	us	to	initialize
elements	in	non-fixed	order.	As	you	can	see,	we	include	the		asm/syscalls_64.h		header	at
the	end	of	the	array.	This	header	file	is	generated	by	the	special	script	at
arch/x86/entry/syscalls/syscalltbl.sh	and	generates	our	header	file	from	the	syscall	table.
The		asm/syscalls_64.h		contains	definitions	of	the	following	macros:

__SYSCALL_COMMON(0,	sys_read,	sys_read)

__SYSCALL_COMMON(1,	sys_write,	sys_write)

__SYSCALL_COMMON(2,	sys_open,	sys_open)

__SYSCALL_COMMON(3,	sys_close,	sys_close)

__SYSCALL_COMMON(5,	sys_newfstat,	sys_newfstat)

...

...

...

The		__SYSCALL_COMMON		macro	is	defined	in	the	same	source	code	file	and	expands	to	the
	__SYSCALL_64		macro	which	expands	to	the	function	definition:

#define	__SYSCALL_COMMON(nr,	sym,	compat)	__SYSCALL_64(nr,	sym,	compat)

#define	__SYSCALL_64(nr,	sym,	compat)	[nr]	=	sym,

So,	after	this,	our		sys_call_table		takes	the	following	form:

How	the	Linux	kernel	handles	a	system	call

386

http://man7.org/linux/man-pages/man3/errno.3.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscalltbl.sh
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_64.c


asmlinkage	const	sys_call_ptr_t	sys_call_table[__NR_syscall_max+1]	=	{

				[0	...	__NR_syscall_max]	=	&sys_ni_syscall,

				[0]	=	sys_read,

				[1]	=	sys_write,

				[2]	=	sys_open,

				...

				...

				...

};

After	this	all	elements	that	point	to	the	non-implemented	system	calls	will	contain	the
address	of	the		sys_ni_syscall		function	that	just	returns		-ENOSYS		as	we	saw	above,	and
other	elements	will	point	to	the		sys_syscall_name		functions.

At	this	point,	we	have	filled	the	system	call	table	and	the	Linux	kernel	knows	where	each
system	call	handler	is.	But	the	Linux	kernel	does	not	call	a		sys_syscall_name		function
immediately	after	it	is	instructed	to	handle	a	system	call	from	a	user	space	application.
Remember	the	chapter	about	interrupts	and	interrupt	handling.	When	the	Linux	kernel	gets
the	control	to	handle	an	interrupt,	it	had	to	do	some	preparations	like	save	user	space
registers,	switch	to	a	new	stack	and	many	more	tasks	before	it	will	call	an	interrupt	handler.
There	is	the	same	situation	with	the	system	call	handling.	The	preparation	for	handling	a
system	call	is	the	first	thing,	but	before	the	Linux	kernel	will	start	these	preparations,	the
entry	point	of	a	system	call	must	be	initialized	and	only	the	Linux	kernel	knows	how	to
perform	this	preparation.	In	the	next	paragraph	we	will	see	the	process	of	the	initialization	of
the	system	call	entry	in	the	Linux	kernel.

Initialization	of	the	system	call	entry
When	a	system	call	occurs	in	the	system,	where	are	the	first	bytes	of	code	that	starts	to
handle	it?	As	we	can	read	in	the	Intel	manual	-	64-ia-32-architectures-software-developer-
vol-2b-manual:

SYSCALL	invokes	an	OS	system-call	handler	at	privilege	level	0.

It	does	so	by	loading	RIP	from	the	IA32_LSTAR	MSR

it	means	that	we	need	to	put	the	system	call	entry	in	to	the		IA32_LSTAR		model	specific
register.	This	operation	takes	place	during	the	Linux	kernel	initialization	process.	If	you	have
read	the	fourth	part	of	the	chapter	that	describes	interrupts	and	interrupt	handling	in	the
Linux	kernel,	you	know	that	the	Linux	kernel	calls	the		trap_init		function	during	the
initialization	process.	This	function	is	defined	in	the	arch/x86/kernel/setup.c	source	code	file
and	executes	the	initialization	of	the		non-early		exception	handlers	like	divide	error,

How	the	Linux	kernel	handles	a	system	call

387

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/Model-specific_register
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-4.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c


coprocessor	error	etc.	Besides	the	initialization	of	the		non-early		exceptions	handlers,	this
function	calls	the		cpu_init		function	from	the	arch/x86/kernel/cpu/common.c	source	code
file	which	besides	initialization	of		per-cpu		state,	calls	the		syscall_init		function	from	the
same	source	code	file.

This	function	performs	the	initialization	of	the	system	call	entry	point.	Let's	look	on	the
implementation	of	this	function.	It	does	not	take	parameters	and	first	of	all	it	fills	two	model
specific	registers:

wrmsrl(MSR_STAR,		((u64)__USER32_CS)<<48		|	((u64)__KERNEL_CS)<<32);

wrmsrl(MSR_LSTAR,	entry_SYSCALL_64);

The	first	model	specific	register	-		MSR_STAR		contains		63:48		bits	of	the	user	code	segment.
These	bits	will	be	loaded	to	the		CS		and		SS		segment	registers	for	the		sysret		instruction
which	provides	functionality	to	return	from	a	system	call	to	user	code	with	the	related
privilege.	Also	the		MSR_STAR		contains		47:32		bits	from	the	kernel	code	that	will	be	used	as
the	base	selector	for		CS		and		SS		segment	registers	when	user	space	applications	execute
a	system	call.	In	the	second	line	of	code	we	fill	the		MSR_LSTAR		register	with	the
	entry_SYSCALL_64		symbol	that	represents	system	call	entry.	The		entry_SYSCALL_64		is
defined	in	the	arch/x86/entry/entry_64.S	assembly	file	and	contains	code	related	to	the
preparation	performed	before	a	system	call	handler	will	be	executed	(I	already	wrote	about
these	preparations,	read	above).	We	will	not	consider	the		entry_SYSCALL_64		now,	but	will
return	to	it	later	in	this	chapter.

After	we	have	set	the	entry	point	for	system	calls,	we	need	to	set	the	following	model
specific	registers:

	MSR_CSTAR		-	target		rip		for	the	compatibility	mode	callers;
	MSR_IA32_SYSENTER_CS		-	target		cs		for	the		sysenter		instruction;
	MSR_IA32_SYSENTER_ESP		-	target		esp		for	the		sysenter		instruction;
	MSR_IA32_SYSENTER_EIP		-	target		eip		for	the		sysenter		instruction.

The	values	of	these	model	specific	register	depend	on	the		CONFIG_IA32_EMULATION		kernel
configuration	option.	If	this	kernel	configuration	option	is	enabled,	it	allows	legacy	32-bit
programs	to	run	under	a	64-bit	kernel.	In	the	first	case,	if	the		CONFIG_IA32_EMULATION		kernel
configuration	option	is	enabled,	we	fill	these	model	specific	registers	with	the	entry	point	for
the	system	calls	the	compatibility	mode:

wrmsrl(MSR_CSTAR,	entry_SYSCALL_compat);

and	with	the	kernel	code	segment,	put	zero	to	the	stack	pointer	and	write	the	address	of	the
	entry_SYSENTER_compat		symbol	to	the	instruction	pointer:

How	the	Linux	kernel	handles	a	system	call

388

https://en.wikipedia.org/wiki/Coprocessor
https://github.com/torvalds/linux/blob/master/blob/arch/x86/kernel/cpu/common.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Program_counter


wrmsrl_safe(MSR_IA32_SYSENTER_CS,	(u64)__KERNEL_CS);

wrmsrl_safe(MSR_IA32_SYSENTER_ESP,	0ULL);

wrmsrl_safe(MSR_IA32_SYSENTER_EIP,	(u64)entry_SYSENTER_compat);

In	another	way,	if	the		CONFIG_IA32_EMULATION		kernel	configuration	option	is	disabled,	we
write		ignore_sysret		symbol	to	the		MSR_CSTAR	:

wrmsrl(MSR_CSTAR,	ignore_sysret);

that	is	defined	in	the	arch/x86/entry/entry_64.S	assembly	file	and	just	returns		-ENOSYS		error
code:

ENTRY(ignore_sysret)

				mov				$-ENOSYS,	%eax

				sysret

END(ignore_sysret)

Now	we	need	to	fill		MSR_IA32_SYSENTER_CS	,		MSR_IA32_SYSENTER_ESP	,		MSR_IA32_SYSENTER_EIP	
model	specific	registers	as	we	did	in	the	previous	code	when	the		CONFIG_IA32_EMULATION	
kernel	configuration	option	was	enabled.	In	this	case	(when	the		CONFIG_IA32_EMULATION	
configuration	option	is	not	set)	we	fill	the		MSR_IA32_SYSENTER_ESP		and	the
	MSR_IA32_SYSENTER_EIP		with	zero	and	put	the	invalid	segment	of	the	Global	Descriptor	Table
to	the		MSR_IA32_SYSENTER_CS		model	specific	register:

wrmsrl_safe(MSR_IA32_SYSENTER_CS,	(u64)GDT_ENTRY_INVALID_SEG);

wrmsrl_safe(MSR_IA32_SYSENTER_ESP,	0ULL);

wrmsrl_safe(MSR_IA32_SYSENTER_EIP,	0ULL);

You	can	read	more	about	the		Global	Descriptor	Table		in	the	second	part	of	the	chapter	that
describes	the	booting	process	of	the	Linux	kernel.

At	the	end	of	the		syscall_init		function,	we	just	mask	flags	in	the	flags	register	by	writing
the	set	of	flags	to	the		MSR_SYSCALL_MASK		model	specific	register:

wrmsrl(MSR_SYSCALL_MASK,

							X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|

							X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);

These	flags	will	be	cleared	during	syscall	initialization.	That's	all,	it	is	the	end	of	the
	syscall_init		function	and	it	means	that	system	call	entry	is	ready	to	work.	Now	we	can	see
what	will	occur	when	a	user	application	executes	the		syscall		instruction.

How	the	Linux	kernel	handles	a	system	call

389

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
https://en.wikipedia.org/wiki/FLAGS_register


Preparation	before	system	call	handler	will	be
called
As	I	already	wrote,	before	a	system	call	or	an	interrupt	handler	will	be	called	by	the	Linux
kernel	we	need	to	do	some	preparations.	The		idtentry		macro	performs	the	preparations
required	before	an	exception	handler	will	be	executed,	the		interrupt		macro	performs	the
preparations	required	before	an	interrupt	handler	will	be	called	and	the		entry_SYSCALL_64	
will	do	the	preparations	required	before	a	system	call	handler	will	be	executed.

The		entry_SYSCALL_64		is	defined	in	the	arch/x86/entry/entry_64.S	assembly	file	and	starts
from	the	following	macro:

SWAPGS_UNSAFE_STACK

This	macro	is	defined	in	the	arch/x86/include/asm/irqflags.h	header	file	and	expands	to	the
	swapgs		instruction:

#define	SWAPGS_UNSAFE_STACK				swapgs

which	exchanges	the	current	GS	base	register	value	with	the	value	contained	in	the
	MSR_KERNEL_GS_BASE		model	specific	register.	In	other	words	we	moved	it	on	to	the	kernel
stack.	After	this	we	point	the	old	stack	pointer	to	the		rsp_scratch		per-cpu	variable	and
setup	the	stack	pointer	to	point	to	the	top	of	stack	for	the	current	processor:

movq				%rsp,	PER_CPU_VAR(rsp_scratch)

movq				PER_CPU_VAR(cpu_current_top_of_stack),	%rsp

In	the	next	step	we	push	the	stack	segment	and	the	old	stack	pointer	to	the	stack:

pushq				$__USER_DS

pushq				PER_CPU_VAR(rsp_scratch)

After	this	we	enable	interrupts,	because	interrupts	are		off		on	entry	and	save	the	general
purpose	registers	(besides		bp	,		bx		and	from		r12		to		r15	),	flags,		-ENOSYS		for	the	non-
implemented	system	call	and	code	segment	register	on	the	stack:

How	the	Linux	kernel	handles	a	system	call

390

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irqflags.h
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Processor_register


ENABLE_INTERRUPTS(CLBR_NONE)

pushq				%r11

pushq				$__USER_CS

pushq				%rcx

pushq				%rax

pushq				%rdi

pushq				%rsi

pushq				%rdx

pushq				%rcx

pushq				$-ENOSYS

pushq				%r8

pushq				%r9

pushq				%r10

pushq				%r11

sub				$(6*8),	%rsp

When	a	system	call	occurs	from	the	user's	application,	general	purpose	registers	have	the
following	state:

	rax		-	contains	system	call	number;
	rcx		-	contains	return	address	to	the	user	space;
	r11		-	contains	register	flags;
	rdi		-	contains	first	argument	of	a	system	call	handler;
	rsi		-	contains	second	argument	of	a	system	call	handler;
	rdx		-	contains	third	argument	of	a	system	call	handler;
	r10		-	contains	fourth	argument	of	a	system	call	handler;
	r8		-	contains	fifth	argument	of	a	system	call	handler;
	r9		-	contains	sixth	argument	of	a	system	call	handler;

Other	general	purpose	registers	(as		rbp	,		rbx		and	from		r12		to		r15	)	are	callee-
preserved	in	C	ABI).	So	we	push	register	flags	on	the	top	of	the	stack,	then	user	code
segment,	return	address	to	the	user	space,	system	call	number,	first	three	arguments,	dump
error	code	for	the	non-implemented	system	call	and	other	arguments	on	the	stack.

In	the	next	step	we	check	the		_TIF_WORK_SYSCALL_ENTRY		in	the	current		thread_info	:

testl				$_TIF_WORK_SYSCALL_ENTRY,	ASM_THREAD_INFO(TI_flags,	%rsp,	SIZEOF_PTREGS)

jnz				tracesys

The		_TIF_WORK_SYSCALL_ENTRY		macro	is	defined	in	the	arch/x86/include/asm/thread_info.h
header	file	and	provides	set	of	the	thread	information	flags	that	are	related	to	the	system
calls	tracing:

How	the	Linux	kernel	handles	a	system	call

391

http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/thread_info.h


#define	_TIF_WORK_SYSCALL_ENTRY	\

				(_TIF_SYSCALL_TRACE	|	_TIF_SYSCALL_EMU	|	_TIF_SYSCALL_AUDIT	|			\

				_TIF_SECCOMP	|	_TIF_SINGLESTEP	|	_TIF_SYSCALL_TRACEPOINT	|					\

				_TIF_NOHZ)

We	will	not	consider	debugging/tracing	related	stuff	in	this	chapter,	but	will	see	it	in	the
separate	chapter	that	will	be	devoted	to	the	debugging	and	tracing	techniques	in	the	Linux
kernel.	After	the		tracesys		label,	the	next	label	is	the		entry_SYSCALL_64_fastpath	.	In	the
	entry_SYSCALL_64_fastpath		we	check	the		__SYSCALL_MASK		that	is	defined	in	the
arch/x86/include/asm/unistd.h	header	file	and

#	ifdef	CONFIG_X86_X32_ABI

#		define	__SYSCALL_MASK	(~(__X32_SYSCALL_BIT))

#	else

#		define	__SYSCALL_MASK	(~0)

#	endif

where	the		__X32_SYSCALL_BIT		is

#define	__X32_SYSCALL_BIT				0x40000000

As	we	can	see	the		__SYSCALL_MASK		depends	on	the		CONFIG_X86_X32_ABI		kernel
configuration	option	and	represents	the	mask	for	the	32-bit	ABI	in	the	64-bit	kernel.

So	we	check	the	value	of	the		__SYSCALL_MASK		and	if	the		CONFIG_X86_X32_ABI		is	disabled	we
compare	the	value	of	the		rax		register	to	the	maximum	syscall	number	(	__NR_syscall_max	),
alternatively	if	the		CONFIG_X86_X32_ABI		is	enabled	we	mask	the		eax		register	with	the
	__X32_SYSCALL_BIT		and	do	the	same	comparison:

#if	__SYSCALL_MASK	==	~0

				cmpq				$__NR_syscall_max,	%rax

#else

				andl				$__SYSCALL_MASK,	%eax

				cmpl				$__NR_syscall_max,	%eax

#endif

After	this	we	check	the	result	of	the	last	comparison	with	the		ja		instruction	that	executes	if
	CF		and		ZF		flags	are	zero:

ja				1f

How	the	Linux	kernel	handles	a	system	call

392

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/unistd.h
https://en.wikipedia.org/wiki/Application_binary_interface


and	if	we	have	the	correct	system	call	for	this,	we	move	the	fourth	argument	from	the		r10	
to	the		rcx		to	keep	x86_64	C	ABI	compliant	and	execute	the		call		instruction	with	the
address	of	a	system	call	handler:

movq				%r10,	%rcx

call				*sys_call_table(,	%rax,	8)

Note,	the		sys_call_table		is	an	array	that	we	saw	above	in	this	part.	As	we	already	know
the		rax		general	purpose	register	contains	the	number	of	a	system	call	and	each	element	of
the		sys_call_table		is	8-bytes.	So	we	are	using		*sys_call_table(,	%rax,	8)		this	notation	to
find	the	correct	offset	in	the		sys_call_table		array	for	the	given	system	call	handler.

That's	all.	We	did	all	the	required	preparations	and	the	system	call	handler	was	called	for	the
given	interrupt	handler,	for	example		sys_read	,		sys_write		or	other	system	call	handler	that
is	defined	with	the		SYSCALL_DEFINE[N]		macro	in	the	Linux	kernel	code.

Exit	from	a	system	call
After	a	system	call	handler	finishes	its	work,	we	will	return	back	to	the
arch/x86/entry/entry_64.S,	right	after	where	we	have	called	the	system	call	handler:

call				*sys_call_table(,	%rax,	8)

The	next	step	after	we've	returned	from	a	system	call	handler	is	to	put	the	return	value	of	a
system	handler	on	to	the	stack.	We	know	that	a	system	call	returns	the	result	to	the	user
program	in	the	general	purpose		rax		register,	so	we	are	moving	its	value	on	to	the	stack
after	the	system	call	handler	has	finished	its	work:

movq				%rax,	RAX(%rsp)

on	the		RAX		place.

After	this	we	can	see	the	call	of	the		LOCKDEP_SYS_EXIT		macro	from	the
arch/x86/include/asm/irqflags.h:

LOCKDEP_SYS_EXIT

The	implementation	of	this	macro	depends	on	the		CONFIG_DEBUG_LOCK_ALLOC		kernel
configuration	option	that	allows	us	to	debug	locks	on	exit	from	a	system	call.	And	again,	we
will	not	consider	it	in	this	chapter,	but	will	return	to	it	in	a	separate	one.	In	the	end	of	the

How	the	Linux	kernel	handles	a	system	call

393

http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irqflags.h


	entry_SYSCALL_64		function	we	restore	all	general	purpose	registers	besides		rxc		and		r11	,
because	the		rcx		register	must	contain	the	return	address	to	the	application	that	called
system	call	and	the		r11		register	contains	the	old	flags	register.	After	all	general	purpose
registers	are	restored,	we	fill		rcx		with	the	return	address,		r11		register	with	the	flags	and
	rsp		with	the	old	stack	pointer:

RESTORE_C_REGS_EXCEPT_RCX_R11

movq				RIP(%rsp),	%rcx

movq				EFLAGS(%rsp),	%r11

movq				RSP(%rsp),	%rsp

USERGS_SYSRET64

In	the	end	we	just	call	the		USERGS_SYSRET64		macro	that	expands	to	the	call	of	the		swapgs	
instruction	which	exchanges	again	the	user		GS		and	kernel		GS		and	the		sysretq	
instruction	which	executes	on	exit	from	a	system	call	handler:

#define	USERGS_SYSRET64																\

				swapgs;																															\

				sysretq;

Now	we	know	what	occurs	when	a	user	application	calls	a	system	call.	The	full	path	of	this
process	is	as	follows:

User	application	contains	code	that	fills	general	purpose	register	with	the	values
(system	call	number	and	arguments	of	this	system	call);
Processor	switches	from	the	user	mode	to	kernel	mode	and	starts	execution	of	the
system	call	entry	-		entry_SYSCALL_64	;
	entry_SYSCALL_64		switches	to	the	kernel	stack	and	saves	some	general	purpose
registers,	old	stack	and	code	segment,	flags	and	etc...	on	the	stack;
	entry_SYSCALL_64		checks	the	system	call	number	in	the		rax		register,	searches	a
system	call	handler	in	the		sys_call_table		and	calls	it,	if	the	number	of	a	system	call	is
correct;
If	a	system	call	is	not	correct,	jump	on	exit	from	system	call;
After	a	system	call	handler	will	finish	its	work,	restore	general	purpose	registers,	old
stack,	flags	and	return	address	and	exit	from	the		entry_SYSCALL_64		with	the		sysretq	
instruction.

That's	all.

Conclusion

How	the	Linux	kernel	handles	a	system	call

394

https://en.wikipedia.org/wiki/FLAGS_register


This	is	the	end	of	the	second	part	about	the	system	calls	concept	in	the	Linux	kernel.	In	the
previous	part	we	saw	theory	about	this	concept	from	the	user	application	view.	In	this	part
we	continued	to	dive	into	the	stuff	which	is	related	to	the	system	call	concept	and	saw	what
the	Linux	kernel	does	when	a	system	call	occurs.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
system	call
write
C	standard	library
list	of	cpu	architectures
x86_64
kbuild
typedef
errno
gcc
model	specific	register
intel	2b	manual
coprocessor
instruction	pointer
flags	register
Global	Descriptor	Table
per-cpu
general	purpose	registers
ABI
x86_64	C	ABI
previous	chapter

How	the	Linux	kernel	handles	a	system	call

395

http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-1.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/write.2.html
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/List_of_CPU_architectures
https://en.wikipedia.org/wiki/X86-64
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://en.wikipedia.org/wiki/Typedef
http://man7.org/linux/man-pages/man3/errno.3.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Model-specific_register
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Application_binary_interface
http://www.x86-64.org/documentation/abi.pdf
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-1.html


System	calls	in	the	Linux	kernel.	Part	3.

vsyscalls	and	vDSO
This	is	the	third	part	of	the	chapter	that	describes	system	calls	in	the	Linux	kernel	and	we
saw	preparations	after	a	system	call	caused	by	an	userspace	application	and	process	of
handling	of	a	system	call	in	the	previous	part.	In	this	part	we	will	look	at	two	concepts	that
are	very	close	to	the	system	call	concept,	they	are	called		vsyscall		and		vdso	.

We	already	know	what	is	a		system	call	.	This	is	special	routine	in	the	Linux	kernel	which
userspace	application	asks	to	do	privileged	tasks,	like	to	read	or	to	write	to	a	file,	to	open	a
socket	and	etc.	As	you	may	know,	invoking	a	system	call	is	an	expensive	operation	in	the
Linux	kernel,	because	the	processor	must	interrupt	the	currently	executing	task	and	switch
context	to	kernel	mode,	subsequently	jumping	again	into	userspace	after	the	system	call
handler	finishes	its	work.	These	two	mechanisms	-		vsyscall		and		vdso		are	designed	to
speed	up	this	process	for	certain	system	calls	and	in	this	part	we	will	try	to	understand	how
these	mechanisms	work.

Introduction	to	vsyscalls
The		vsyscall		or		virtual	system	call		is	the	first	and	oldest	mechanism	in	the	Linux	kernel
that	is	designed	to	accelerate	execution	of	certain	system	calls.	The	principle	of	work	of	the
	vsyscall		concept	is	simple.	The	Linux	kernel	maps	into	user	space	a	page	that	contains
some	variables	and	the	implementation	of	some	system	calls.	We	can	find	information	about
this	memory	space	in	the	Linux	kernel	documentation	for	the	x86_64:

ffffffffff600000	-	ffffffffffdfffff	(=8	MB)	vsyscalls

or:

~$	sudo	cat	/proc/1/maps	|	grep	vsyscall

ffffffffff600000-ffffffffff601000	r-xp	00000000	00:00	0																		[vsyscall]

After	this,	these	system	calls	will	be	executed	in	userspace	and	this	means	that	there	will	not
be	context	switching.	Mapping	of	the		vsyscall		page	occurs	in	the		map_vsyscall		function
that	is	defined	in	the	arch/x86/entry/vsyscall/vsyscall_64.c	source	code	file.	This	function	is

vsyscall	and	vDSO

396

http://0xax.gitbooks.io/linux-insides/content/SysCall/index.html
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-2.html
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_64.c


called	during	the	Linux	kernel	initialization	in	the		setup_arch		function	that	is	defined	in	the
arch/x86/kernel/setup.c	source	code	file	(we	saw	this	function	in	the	fifth	part	of	the	Linux
kernel	initialization	process	chapter).

Note	that	implementation	of	the		map_vsyscall		function	depends	on	the
	CONFIG_X86_VSYSCALL_EMULATION		kernel	configuration	option:

#ifdef	CONFIG_X86_VSYSCALL_EMULATION

extern	void	map_vsyscall(void);

#else

static	inline	void	map_vsyscall(void)	{}

#endif

As	we	can	read	in	the	help	text,	the		CONFIG_X86_VSYSCALL_EMULATION		configuration	option:
	Enable	vsyscall	emulation	.	Why	emulate		vsyscall	?	Actually,	the		vsyscall		is	a	legacy
ABI	due	to	security	reasons.	Virtual	system	calls	have	fixed	addresses,	meaning	that
	vsyscall		page	is	still	at	the	same	location	every	time	and	the	location	of	this	page	is
determined	in	the		map_vsyscall		function.	Let's	look	on	the	implementation	of	this	function:

void	__init	map_vsyscall(void)

{

				extern	char	__vsyscall_page;

				unsigned	long	physaddr_vsyscall	=	__pa_symbol(&__vsyscall_page);

				...

				...

				...

}

As	we	can	see,	at	the	beginning	of	the		map_vsyscall		function	we	get	the	physical	address
of	the		vsyscall		page	with	the		__pa_symbol		macro	(we	already	saw	implementation	if	this
macro	in	the	fourth	path	of	the	Linux	kernel	initialization	process).	The		__vsyscall_page	
symbol	defined	in	the	arch/x86/entry/vsyscall/vsyscall_emu_64.S	assembly	source	code	file
and	have	the	following	virtual	address:

ffffffff81881000	D	__vsyscall_page

in	the		.data..page_aligned,	aw		section	and	contains	call	of	the	three	following	system	calls:

	gettimeofday	;
	time	;
	getcpu	.

Or:

vsyscall	and	vDSO

397

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html
https://en.wikipedia.org/wiki/Application_binary_interface
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_emu_64.S
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Memory_segmentation


__vsyscall_page:

				mov	$__NR_gettimeofday,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_time,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_getcpu,	%rax

				syscall

				ret

Let's	go	back	to	the	implementation	of	the		map_vsyscall		function	and	return	to	the
implementation	of	the		__vsyscall_page	,	later.	After	we	receiving	the	physical	address	of	the
	__vsyscall_page	,	we	check	the	value	of	the		vsyscall_mode		variable	and	set	the	fix-mapped
address	for	the		vsyscall		page	with	the		__set_fixmap		macro:

if	(vsyscall_mode	!=	NONE)

				__set_fixmap(VSYSCALL_PAGE,	physaddr_vsyscall,

																	vsyscall_mode	==	NATIVE

																													?	PAGE_KERNEL_VSYSCALL

																													:	PAGE_KERNEL_VVAR);

The		__set_fixmap		takes	three	arguments:	The	first	is	index	of	the		fixed_addresses		enum.
In	our	case		VSYSCALL_PAGE		is	the	first	element	of	the		fixed_addresses		enum	for	the		x86_64	
architecture:

enum	fixed_addresses	{

...

...

...

#ifdef	CONFIG_X86_VSYSCALL_EMULATION

				VSYSCALL_PAGE	=	(FIXADDR_TOP	-	VSYSCALL_ADDR)	>>	PAGE_SHIFT,

#endif

...

...

...

It	equal	to	the		511	.	The	second	argument	is	the	physical	address	of	the	page	that	has	to	be
mapped	and	the	third	argument	is	the	flags	of	the	page.	Note	that	the	flags	of	the
	VSYSCALL_PAGE		depend	on	the		vsyscall_mode		variable.	It	will	be		PAGE_KERNEL_VSYSCALL		if

vsyscall	and	vDSO

398

http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
https://en.wikipedia.org/wiki/Enumerated_type


the		vsyscall_mode		variable	is		NATIVE		and	the		PAGE_KERNEL_VVAR		otherwise.	Both	macros
(the		PAGE_KERNEL_VSYSCALL		and	the		PAGE_KERNEL_VVAR	)	will	be	expanded	to	the	following
flags:

#define	__PAGE_KERNEL_VSYSCALL										(__PAGE_KERNEL_RX	|	_PAGE_USER)

#define	__PAGE_KERNEL_VVAR														(__PAGE_KERNEL_RO	|	_PAGE_USER)

that	represent	access	rights	to	the		vsyscall		page.	Both	flags	have	the	same		_PAGE_USER	
flags	that	means	that	the	page	can	be	accessed	by	a	user-mode	process	running	at	lower
privilege	levels.	The	second	flag	depends	on	the	value	of	the		vsyscall_mode		variable.	The
first	flag	(	__PAGE_KERNEL_VSYSCALL	)	will	be	set	in	the	case	where		vsyscall_mode		is		NATIVE	.
This	means	virtual	system	calls	will	be	native		syscall		instructions.	In	other	way	the	vsyscall
will	have		PAGE_KERNEL_VVAR		if	the		vsyscall_mode		variable	will	be		emulate	.	In	this	case
virtual	system	calls	will	be	turned	into	traps	and	are	emulated	reasonably.	The
	vsyscall_mode		variable	gets	its	value	in	the		vsyscall_setup		function:

static	int	__init	vsyscall_setup(char	*str)

{

				if	(str)	{

								if	(!strcmp("emulate",	str))

												vsyscall_mode	=	EMULATE;

								else	if	(!strcmp("native",	str))

												vsyscall_mode	=	NATIVE;

								else	if	(!strcmp("none",	str))

												vsyscall_mode	=	NONE;

								else

												return	-EINVAL;

								return	0;

				}

				return	-EINVAL;

}

That	will	be	called	during	early	kernel	parameters	parsing:

early_param("vsyscall",	vsyscall_setup);

More	about		early_param		macro	you	can	read	in	the	sixth	part	of	the	chapter	that	describes
process	of	the	initialization	of	the	Linux	kernel.

In	the	end	of	the		vsyscall_map		function	we	just	check	that	virtual	address	of	the		vsyscall	
page	is	equal	to	the	value	of	the		VSYSCALL_ADDR		with	the	BUILD_BUG_ON	macro:

vsyscall	and	vDSO

399

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html


BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

													(unsigned	long)VSYSCALL_ADDR);

That's	all.		vsyscall		page	is	set	up.	The	result	of	the	all	the	above	is	the	following:	If	we
pass		vsyscall=native		parameter	to	the	kernel	command	line,	virtual	system	calls	will	be
handled	as	native		syscall		instructions	in	the	arch/x86/entry/vsyscall/vsyscall_emu_64.S.
The	glibc	knows	addresses	of	the	virtual	system	call	handlers.	Note	that	virtual	system	call
handlers	are	aligned	by		1024		(or		0x400	)	bytes:

__vsyscall_page:

				mov	$__NR_gettimeofday,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_time,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_getcpu,	%rax

				syscall

				ret

And	the	start	address	of	the		vsyscall		page	is	the		ffffffffff600000		every	time.	So,	the
glibc	knows	the	addresses	of	the	all	virtual	system	call	handlers.	You	can	find	definition	of
these	addresses	in	the		glibc		source	code:

#define	VSYSCALL_ADDR_vgettimeofday			0xffffffffff600000

#define	VSYSCALL_ADDR_vtime											0xffffffffff600400

#define	VSYSCALL_ADDR_vgetcpu										0xffffffffff600800

All	virtual	system	call	requests	will	fall	into	the		__vsyscall_page		+
	VSYSCALL_ADDR_vsyscall_name		offset,	put	the	number	of	a	virtual	system	call	to	the		rax	
general	purpose	register	and	the	native	for	the	x86_64		syscall		instruction	will	be	executed.

In	the	second	case,	if	we	pass		vsyscall=emulate		parameter	to	the	kernel	command	line,	an
attempt	to	perform	virtual	system	call	handler	will	cause	a	page	fault	exception.	Of	course,
remember,	the		vsyscall		page	has		__PAGE_KERNEL_VVAR		access	rights	that	forbid	execution.
The		do_page_fault		function	is	the		#PF		or	page	fault	handler.	It	tries	to	understand	the
reason	of	the	last	page	fault.	And	one	of	the	reason	can	be	situation	when	virtual	system	call
called	and		vsyscall		mode	is		emulate	.	In	this	case		vsyscall		will	be	handled	by	the
	emulate_vsyscall		function	that	defined	in	the	arch/x86/entry/vsyscall/vsyscall_64.c	source
code	file.

vsyscall	and	vDSO

400

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_emu_64.S
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_64.c


The		emulate_vsyscall		function	gets	the	number	of	a	virtual	system	call,	checks	it,	prints
error	and	sends	segmentation	fault	single:

...

...

...

vsyscall_nr	=	addr_to_vsyscall_nr(address);

if	(vsyscall_nr	<	0)	{

				warn_bad_vsyscall(KERN_WARNING,	regs,	"misaligned	vsyscall...);

				goto	sigsegv;

}

...

...

...

sigsegv:

				force_sig(SIGSEGV,	current);

				reutrn	true;

As	it	checked	number	of	a	virtual	system	call,	it	does	some	yet	another	checks	like
	access_ok		violations	and	execute	system	call	function	depends	on	the	number	of	a	virtual
system	call:

switch	(vsyscall_nr)	{

				case	0:

								ret	=	sys_gettimeofday(

												(struct	timeval	__user	*)regs->di,

												(struct	timezone	__user	*)regs->si);

								break;

				...

				...

				...

}

In	the	end	we	put	the	result	of	the		sys_gettimeofday		or	another	virtual	system	call	handler	to
the		ax		general	purpose	register,	as	we	did	it	with	the	normal	system	calls	and	restore	the
instruction	pointer	register	and	add		8		bytes	to	the	stack	pointer	register.	This	operation
emulates		ret		instruction.

				regs->ax	=	ret;

do_ret:

				regs->ip	=	caller;

				regs->sp	+=	8;

				return	true;

That's	all.	Now	let's	look	on	the	modern	concept	-		vDSO	.

vsyscall	and	vDSO

401

https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Stack_register


Introduction	to	vDSO
As	I	already	wrote	above,		vsyscall		is	an	obsolete	concept	and	replaced	by	the		vDSO		or
	virtual	dynamic	shared	object	.	The	main	difference	between	the		vsyscall		and		vDSO	
mechanisms	is	that		vDSO		maps	memory	pages	into	each	process	in	a	shared	object	form,
but		vsyscall		is	static	in	memory	and	has	the	same	address	every	time.	For	the		x86_64	
architecture	it	is	called	-	linux-vdso.so.1	.	All	userspace	applications	linked	with	this	shared
library	via	the		glibc	.	For	example:

~$	ldd	/bin/uname

				linux-vdso.so.1	(0x00007ffe014b7000)

				libc.so.6	=>	/lib64/libc.so.6	(0x00007fbfee2fe000)

				/lib64/ld-linux-x86-64.so.2	(0x00005559aab7c000)

Or:

~$	sudo	cat	/proc/1/maps	|	grep	vdso

7fff39f73000-7fff39f75000	r-xp	00000000	00:00	0							[vdso]

Here	we	can	see	that	uname	util	was	linked	with	the	three	libraries:

	linux-vdso.so.1	;
	libc.so.6	;
	ld-linux-x86-64.so.2	.

The	first	provides		vDSO		functionality,	the	second	is		C		standard	library	and	the	third	is	the
program	interpreter	(more	about	this	you	can	read	in	the	part	that	describes	linkers).	So,	the
	vDSO		solves	limitations	of	the		vsyscall	.	Implementation	of	the		vDSO		is	similar	to
	vsyscall	.

Initialization	of	the		vDSO		occurs	in	the		init_vdso		function	that	defined	in	the
arch/x86/entry/vdso/vma.c	source	code	file.	This	function	starts	from	the	initialization	of	the
	vDSO		images	for	32-bits	and	64-bits	depends	on	the		CONFIG_X86_X32_ABI		kernel
configuration	option:

static	int	__init	init_vdso(void)

{

				init_vdso_image(&vdso_image_64);

#ifdef	CONFIG_X86_X32_ABI

				init_vdso_image(&vdso_image_x32);

#endif

vsyscall	and	vDSO

402

https://en.wikipedia.org/wiki/Library_%28computing%29#Shared_libraries
https://en.wikipedia.org/wiki/Uname
https://en.wikipedia.org/wiki/C_standard_library
http://0xax.gitbooks.io/linux-insides/content/Misc/linkers.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vma.c


Both	function	initialize	the		vdso_image		structure.	This	structure	is	defined	in	the	two
generated	source	code	files:	the	arch/x86/entry/vdso/vdso-image-64.c	and	the
arch/x86/entry/vdso/vdso-image-64.c.	These	source	code	files	generated	by	the	vdso2c
program	from	the	different	source	code	files,	represent	different	approaches	to	call	a	system
call	like		int	0x80	,		sysenter		and	etc.	The	full	set	of	the	images	depends	on	the	kernel
configuration.

For	example	for	the		x86_64		Linux	kernel	it	will	contain		vdso_image_64	:

#ifdef	CONFIG_X86_64

extern	const	struct	vdso_image	vdso_image_64;

#endif

But	for	the		x86		-		vdso_image_32	:

#ifdef	CONFIG_X86_X32

extern	const	struct	vdso_image	vdso_image_x32;

#endif

If	our	kernel	is	configured	for	the		x86		architecture	or	for	the		x86_64		and	compatibility
mode,	we	will	have	ability	to	call	a	system	call	with	the		int	0x80		interrupt,	if	compatibility
mode	is	enabled,	we	will	be	able	to	call	a	system	call	with	the	native		syscall	instruction		or
	sysenter		instruction	in	other	way:

#if	defined	CONFIG_X86_32	||	defined	CONFIG_COMPAT

		extern	const	struct	vdso_image	vdso_image_32_int80;

#ifdef	CONFIG_COMPAT

		extern	const	struct	vdso_image	vdso_image_32_syscall;

#endif

	extern	const	struct	vdso_image	vdso_image_32_sysenter;

#endif

As	we	can	understand	from	the	name	of	the		vdso_image		structure,	it	represents	image	of
the		vDSO		for	the	certain	mode	of	the	system	call	entry.	This	structure	contains	information
about	size	in	bytes	of	the		vDSO		area	that	always	a	multiple	of		PAGE_SIZE		(	4096		bytes),
pointer	to	the	text	mapping,	start	and	end	address	of	the		alternatives		(set	of	instructions
with	better	alternatives	for	the	certain	type	of	the	processor)	and	etc.	For	example
	vdso_image_64		looks	like	this:

vsyscall	and	vDSO

403

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso-image-64.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso-image-64.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso2c.c


const	struct	vdso_image	vdso_image_64	=	{

				.data	=	raw_data,

				.size	=	8192,

				.text_mapping	=	{

								.name	=	"[vdso]",

								.pages	=	pages,

				},

				.alt	=	3145,

				.alt_len	=	26,

				.sym_vvar_start	=	-8192,

				.sym_vvar_page	=	-8192,

				.sym_hpet_page	=	-4096,

};

Where	the		raw_data		contains	raw	binary	code	of	the	64-bit		vDSO		system	calls	which	are
	2		page	size:

static	struct	page	*pages[2];

or	8	Kilobytes.

The		init_vdso_image		function	is	defined	in	the	same	source	code	file	and	just	initializes	the
	vdso_image.text_mapping.pages	.	First	of	all	this	function	calculates	the	number	of	pages	and
initializes	each		vdso_image.text_mapping.pages[number_of_page]		with	the		virt_to_page	
macro	that	converts	given	address	to	the		page		structure:

void	__init	init_vdso_image(const	struct	vdso_image	*image)

{

				int	i;

				int	npages	=	(image->size)	/	PAGE_SIZE;

				for	(i	=	0;	i	<	npages;	i++)

								image->text_mapping.pages[i]	=

												virt_to_page(image->data	+	i*PAGE_SIZE);

				...

				...

				...

}

The		init_vdso		function	passed	to	the		subsys_initcall		macro	adds	the	given	function	to
the		initcalls		list.	All	functions	from	this	list	will	be	called	in	the		do_initcalls		function	from
the	init/main.c	source	code	file:

subsys_initcall(init_vdso);

vsyscall	and	vDSO

404

https://github.com/torvalds/linux/blob/master/init/main.c


Ok,	we	just	saw	initialization	of	the		vDSO		and	initialization	of		page		structures	that	are
related	to	the	memory	pages	that	contain		vDSO		system	calls.	But	to	where	do	their	pages
map?	Actually	they	are	mapped	by	the	kernel,	when	it	loads	binary	to	the	memory.	The
Linux	kernel	calls	the		arch_setup_additional_pages		function	from	the
arch/x86/entry/vdso/vma.c	source	code	file	that	checks	that		vDSO		enabled	for	the		x86_64	
and	calls	the		map_vdso		function:

int	arch_setup_additional_pages(struct	linux_binprm	*bprm,	int	uses_interp)

{

				if	(!vdso64_enabled)

								return	0;

				return	map_vdso(&vdso_image_64,	true);

}

The		map_vdso		function	is	defined	in	the	same	source	code	file	and	maps	pages	for	the
	vDSO		and	for	the	shared		vDSO		variables.	That's	all.	The	main	differences	between	the
	vsyscall		and	the		vDSO		concepts	is	that		vsyscal		has	a	static	address	of
	ffffffffff600000		and	implements		3		system	calls,	whereas	the		vDSO		loads	dynamically
and	implements	four	system	calls:

	__vdso_clock_gettime	;
	__vdso_getcpu	;
	__vdso_gettimeofday	;
	__vdso_time	.

That's	all.

Conclusion
This	is	the	end	of	the	third	part	about	the	system	calls	concept	in	the	Linux	kernel.	In	the
previous	part	we	discussed	the	implementation	of	the	preparation	from	the	Linux	kernel	side,
before	a	system	call	will	be	handled	and	implementation	of	the		exit		process	from	a	system
call	handler.	In	this	part	we	continued	to	dive	into	the	stuff	which	is	related	to	the	system	call
concept	and	learned	two	new	concepts	that	are	very	similar	to	the	system	call	-	the
	vsyscall		and	the		vDSO	.

After	all	of	these	three	parts,	we	know	almost	all	things	that	are	related	to	system	calls,	we
know	what	system	call	is	and	why	user	applications	need	them.	We	also	know	what	occurs
when	a	user	application	calls	a	system	call	and	how	the	kernel	handles	system	calls.

The	next	part	will	be	the	last	part	in	this	chapter	and	we	will	see	what	occurs	when	a	user
runs	the	program.

vsyscall	and	vDSO

405

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vma.c
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-2.html
http://0xax.gitbooks.io/linux-insides/content/SysCall/index.html


If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
x86_64	memory	map
x86_64
context	switching
ABI
virtual	address
Segmentation
enum
fix-mapped	addresses
glibc
BUILD_BUG_ON
Processor	register
Page	fault
segmentation	fault
instruction	pointer
stack	pointer
uname
Linkers
Previous	part

vsyscall	and	vDSO

406

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Enumerated_type
http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
https://en.wikipedia.org/wiki/GNU_C_Library
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/Uname
http://0xax.gitbooks.io/linux-insides/content/Misc/linkers.html
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-2.html


System	calls	in	the	Linux	kernel.	Part	4.

How	does	the	Linux	kernel	run	a	program
This	is	the	fourth	part	of	the	chapter	that	describes	system	calls	in	the	Linux	kernel	and	as	I
wrote	in	the	conclusion	of	the	previous	-	this	part	will	be	last	in	this	chapter.	In	the	previous
part	we	stopped	at	the	two	new	concepts:

	vsyscall	;
	vDSO	;

that	are	related	and	very	similar	on	system	call	concept.

This	part	will	be	last	part	in	this	chapter	and	as	you	can	understand	from	the	part's	title	-	we
will	see	what	does	occur	in	the	Linux	kernel	when	we	run	our	programs.	So,	let's	start.

how	do	we	launch	our	programs?
There	are	many	different	ways	to	launch	an	application	from	a	user	perspective.	For
example	we	can	run	a	program	from	the	shell	or	double-click	on	the	application	icon.	It	does
not	matter.	The	Linux	kernel	handles	application	launch	regardless	how	we	do	launch	this
application.

In	this	part	we	will	consider	the	way	when	we	just	launch	an	application	from	the	shell.	As
you	know,	the	standard	way	to	launch	an	application	from	shell	is	the	following:	We	just
launch	a	terminal	emulator	application	and	just	write	the	name	of	the	program	and	pass	or
not	arguments	to	our	program,	for	example:

Let's	consider	what	does	occur	when	we	launch	an	application	from	the	shell,	what	does
shell	do	when	we	write	program	name,	what	does	Linux	kernel	do	etc.	But	before	we	will
start	to	consider	these	interesting	things,	I	want	to	warn	that	this	book	is	about	the	Linux
kernel.	That's	why	we	will	see	Linux	kernel	insides	related	stuff	mostly	in	this	part.	We	will
not	consider	in	details	what	does	shell	do,	we	will	not	consider	complex	cases,	for	example
subshells	etc.

How	the	Linux	kernel	runs	a	program

407

http://0xax.gitbooks.io/linux-insides/content/SysCall/index.html
https://en.wikipedia.org/wiki/System_call
http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-3.html
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Terminal_emulator


My	default	shell	is	-	bash,	so	I	will	consider	how	do	bash	shell	launches	a	program.	So	let's
start.	The		bash		shell	as	well	as	any	program	that	written	with	C	programming	language
starts	from	the	main	function.	If	you	will	look	on	the	source	code	of	the		bash		shell,	you	will
find	the		main		function	in	the	shell.c	source	code	file.	This	function	makes	many	different
things	before	the	main	thread	loop	of	the		bash		started	to	work.	For	example	this	function:

checks	and	tries	to	open		/dev/tty	;
check	that	shell	running	in	debug	mode;
parses	command	line	arguments;
reads	shell	environment;
loads		.bashrc	,		.profile		and	other	configuration	files;
and	many	many	more.

After	all	of	these	operations	we	can	see	the	call	of	the		reader_loop		function.	This	function
defined	in	the	eval.c	source	code	file	and	represents	main	thread	loop	or	in	other	words	it
reads	and	executes	commands.	As	the		reader_loop		function	made	all	checks	and	read	the
given	program	name	and	arguments,	it	calls	the		execute_command		function	from	the
execute_cmd.c	source	code	file.	The		execute_command		function	through	the	chain	of	the
functions	calls:

execute_command

-->	execute_command_internal

---->	execute_simple_command

------>	execute_disk_command

-------->	shell_execve

makes	different	checks	like	do	we	need	to	start		subshell	,	was	it	builtin		bash		function	or
not	etc.	As	I	already	wrote	above,	we	will	not	consider	all	details	about	things	that	are	not
related	to	the	Linux	kernel.	In	the	end	of	this	process,	the		shell_execve		function	calls	the
	execve		system	call:

execve	(command,	args,	env);

The		execve		system	call	has	the	following	signature:

int	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[]);

and	executes	a	program	by	the	given	filename,	with	the	given	arguments	and	environment
variables.	This	system	call	is	the	first	in	our	case	and	only,	for	example:

How	the	Linux	kernel	runs	a	program

408

https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Entry_point
https://github.com/bminor/bash/blob/master/shell.c#L357
https://github.com/bminor/bash/blob/master/eval.c#L67
https://github.com/bminor/bash/blob/master/execute_cmd.c#L378
https://en.wikipedia.org/wiki/Environment_variable


$	strace	ls

execve("/bin/ls",	["ls"],	[/*	62	vars	*/])	=	0

$	strace	echo

execve("/bin/echo",	["echo"],	[/*	62	vars	*/])	=	0

$	strace	uname

execve("/bin/uname",	["uname"],	[/*	62	vars	*/])	=	0

So,	a	user	application	(	bash		in	our	case)	calls	the	system	call	and	as	we	already	know	the
next	step	is	Linux	kernel.

execve	system	call
We	saw	preparation	before	a	system	call	called	by	a	user	application	and	after	a	system	call
handler	finished	its	work	in	the	second	part	of	this	chapter.	We	stopped	at	the	call	of	the
	execve		system	call	in	the	previous	paragraph.	This	system	call	defined	in	the	fs/exec.c
source	code	file	and	as	we	already	know	it	takes	three	arguments:

SYSCALL_DEFINE3(execve,

								const	char	__user	*,	filename,

								const	char	__user	*const	__user	*,	argv,

								const	char	__user	*const	__user	*,	envp)

{

				return	do_execve(getname(filename),	argv,	envp);

}

Implementation	of	the		execve		is	pretty	simple	here,	as	we	can	see	it	just	returns	the	result
of	the		do_execve		function.	The		do_execve		function	defined	in	the	same	source	code	file
and	do	the	following	things:

Initialize	two	pointers	on	a	userspace	data	with	the	given	arguments	and	environment
variables;
return	the	result	of	the		do_execveat_common	.

We	can	see	its	implementation:

struct	user_arg_ptr	argv	=	{	.ptr.native	=	__argv	};

struct	user_arg_ptr	envp	=	{	.ptr.native	=	__envp	};

return	do_execveat_common(AT_FDCWD,	filename,	argv,	envp,	0);

How	the	Linux	kernel	runs	a	program

409

http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-2.html
https://github.com/torvalds/linux/blob/master/fs/exec.c


The		do_execveat_common		function	does	main	work	-	it	executes	a	new	program.	This	function
takes	similar	set	of	arguments,	but	as	you	can	see	it	takes	five	arguments	instead	of	three.
The	first	argument	is	the	file	descriptor	that	represent	directory	with	our	application,	in	our
case	the		AT_FDCWD		means	that	the	given	pathname	is	interpreted	relative	to	the	current
working	directory	of	the	calling	process.	The	fifth	argument	is	flags.	In	our	case	we	passed
	0		to	the		do_execveat_common	.	We	will	check	in	a	next	step,	so	will	see	it	latter.

First	of	all	the		do_execveat_common		function	checks	the		filename		pointer	and	returns	if	it	is
	NULL	.	After	this	we	check	flags	of	the	current	process	that	limit	of	running	processes	is	not
exceed:

if	(IS_ERR(filename))

				return	PTR_ERR(filename);

if	((current->flags	&	PF_NPROC_EXCEEDED)	&&

				atomic_read(&current_user()->processes)	>	rlimit(RLIMIT_NPROC))	{

				retval	=	-EAGAIN;

				goto	out_ret;

}

current->flags	&=	~PF_NPROC_EXCEEDED;

If	these	two	checks	were	successful	we	unset		PF_NPROC_EXCEEDED		flag	in	the	flags	of	the
current	process	to	prevent	fail	of	the		execve	.	You	can	see	that	in	the	next	step	we	call	the
	unshare_files		function	that	defined	in	the	kernel/fork.c	and	unshares	the	files	of	the	current
task	and	check	the	result	of	this	function:

retval	=	unshare_files(&displaced);

if	(retval)

				goto	out_ret;

We	need	to	call	this	function	to	eliminate	potential	leak	of	the	execve'd	binary's	file
descriptor.	In	the	next	step	we	start	preparation	of	the		bprm		that	represented	by	the		struct
linux_binprm		structure	(defined	in	the	include/linux/binfmts.h	header	file).	The		linux_binprm	
structure	is	used	to	hold	the	arguments	that	are	used	when	loading	binaries.	For	example	it
contains		vma		field	which	has		vm_area_struct		type	and	represents	single	memory	area	over
a	contiguous	interval	in	a	given	address	space	where	our	application	will	be	loaded,		mm	
field	which	is	memory	descriptor	of	the	binary,	pointer	to	the	top	of	memory	and	many	other
different	fields.

First	of	all	we	allocate	memory	for	this	structure	with	the		kzalloc		function	and	check	the
result	of	the	allocation:

How	the	Linux	kernel	runs	a	program

410

https://github.com/torvalds/linux/blob/master/kernel/fork.c
https://en.wikipedia.org/wiki/File_descriptor
https://github.com/torvalds/linux/blob/master/linux/binfmts.h


bprm	=	kzalloc(sizeof(*bprm),	GFP_KERNEL);

if	(!bprm)

				goto	out_files;

After	this	we	start	to	prepare	the		binprm		credentials	with	the	call	of	the		prepare_bprm_creds	
function:

retval	=	prepare_bprm_creds(bprm);

				if	(retval)

								goto	out_free;

check_unsafe_exec(bprm);

current->in_execve	=	1;

Initialization	of	the		binprm		credentials	in	other	words	is	initialization	of	the		cred		structure
that	stored	inside	of	the		linux_binprm		structure.	The		cred		structure	contains	the	security
context	of	a	task	for	example	real	uid	of	the	task,	real	guid	of	the	task,		uid		and		guid		for
the	virtual	file	system	operations	etc.	In	the	next	step	as	we	executed	preparation	of	the
	bprm		credentials	we	check	that	now	we	can	safely	execute	a	program	with	the	call	of	the
	check_unsafe_exec		function	and	set	the	current	process	to	the		in_execve		state.

After	all	of	these	operations	we	call	the		do_open_execat		function	that	checks	the	flags	that
we	passed	to	the		do_execveat_common		function	(remember	that	we	have		0		in	the		flags	)
and	searches	and	opens	executable	file	on	disk,	checks	that	our	we	will	load	a	binary	file
from		noexec		mount	points	(we	need	to	avoid	execute	a	binary	from	filesystems	that	do	not
contain	executable	binaries	like	proc	or	sysfs),	initializes		file		structure	and	returns	pointer
on	this	structure.	Next	we	can	see	the	call	the		sched_exec		after	this:

file	=	do_open_execat(fd,	filename,	flags);

retval	=	PTR_ERR(file);

if	(IS_ERR(file))

				goto	out_unmark;

sched_exec();

The		sched_exec		function	is	used	to	determine	the	least	loaded	processor	that	can	execute
the	new	program	and	to	migrate	the	current	process	to	it.

After	this	we	need	to	check	file	descriptor	of	the	give	executable	binary.	We	try	to	check
does	the	name	of	the	our	binary	file	starts	from	the		/		symbol	or	does	the	path	of	the	given
executable	binary	is	interpreted	relative	to	the	current	working	directory	of	the	calling
process	or	in	other	words	file	descriptor	is		AT_FDCWD		(read	above	about	this).

If	one	of	these	checks	is	successful	we	set	the	binary	parameter	filename:

How	the	Linux	kernel	runs	a	program

411

https://en.wikipedia.org/wiki/User_identifier#Real_user_ID
https://en.wikipedia.org/wiki/Globally_unique_identifier
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/File_descriptor


bprm->file	=	file;

if	(fd	==	AT_FDCWD	||	filename->name[0]	==	'/')	{

				bprm->filename	=	filename->name;

}

Otherwise	if	the	filename	is	empty	we	set	the	binary	parameter	filename	to	the		/dev/fd/%d	
or		/dev/fd/%d/%s		depends	on	the	filename	of	the	given	executable	binary	which	means	that
we	will	execute	the	file	to	which	the	file	descriptor	refers:

}	else	{

				if	(filename->name[0]	==	'\0')

								pathbuf	=	kasprintf(GFP_TEMPORARY,	"/dev/fd/%d",	fd);

				else

								pathbuf	=	kasprintf(GFP_TEMPORARY,	"/dev/fd/%d/%s",

																												fd,	filename->name);

				if	(!pathbuf)	{

								retval	=	-ENOMEM;

								goto	out_unmark;

				}

				bprm->filename	=	pathbuf;

}

bprm->interp	=	bprm->filename;

Note	that	we	set	not	only	the		bprm->filename		but	also		bprm->interp		that	will	contain	name
of	the	program	interpreter.	For	now	we	just	write	the	same	name	there,	but	later	it	will	be
updated	with	the	real	name	of	the	program	interpreter	depends	on	binary	format	of	a
program.	You	can	read	above	that	we	already	prepared		cred		for	the		linux_binprm	.	The
next	step	is	initialization	of	other	fields	of	the		linux_binprm	.	First	of	all	we	call	the
	bprm_mm_init		function	and	pass	the		bprm		to	it:

retval	=	bprm_mm_init(bprm);

if	(retval)

				goto	out_unmark;

The		bprm_mm_init		defined	in	the	same	source	code	file	and	as	we	can	understand	from	the
function's	name,	it	makes	initialization	of	the	memory	descriptor	or	in	other	words	the
	bprm_mm_init		function	initializes		mm_struct		structure.	This	structure	defined	in	the
include/linux/mm_types.h	header	file	and	represents	address	space	of	a	process.	We	will
not	consider	implementation	of	the		bprm_mm_init		function	because	we	do	not	know	many
important	stuff	related	to	the	Linux	kernel	memory	manager,	but	we	just	need	to	know	that
this	function	initializes		mm_struct		and	populate	it	with	a	temporary	stack		vm_area_struct	.

How	the	Linux	kernel	runs	a	program

412

https://github.com/torvalds/linux/blob/master/include/mm_types.h


After	this	we	calculate	the	count	of	the	command	line	arguments	which	are	were	passed	to
the	our	executable	binary,	the	count	of	the	environment	variables	and	set	it	to	the		bprm-
>argc		and		bprm->envc		respectively:

bprm->argc	=	count(argv,	MAX_ARG_STRINGS);

if	((retval	=	bprm->argc)	<	0)

				goto	out;

bprm->envc	=	count(envp,	MAX_ARG_STRINGS);

if	((retval	=	bprm->envc)	<	0)

				goto	out;

As	you	can	see	we	do	this	operations	with	the	help	of	the		count		function	that	defined	in	the
same	source	code	file	and	calculates	the	count	of	strings	in	the		argv		array.	The
	MAX_ARG_STRINGS		macro	defined	in	the	include/uapi/linux/binfmts.h	header	file	and	as	we	can
understand	from	the	macro's	name,	it	represents	maximum	number	of	strings	that	were
passed	to	the		execve		system	call.	The	value	of	the		MAX_ARG_STRINGS	:

#define	MAX_ARG_STRINGS	0x7FFFFFFF

After	we	calculated	the	number	of	the	command	line	arguments	and	environment	variables,
we	call	the		prepare_binprm		function.	We	already	call	the	function	with	the	similar	name
before	this	moment.	This	function	is	called		prepare_binprm_cred		and	we	remember	that	this
function	initializes		cred		structure	in	the		linux_bprm	.	Now	the		prepare_binprm		function:

retval	=	prepare_binprm(bprm);

if	(retval	<	0)

				goto	out;

fills	the		linux_binprm		structure	with	the		uid		from	inode	and	read		128		bytes	from	the
binary	executable	file.	We	read	only	first		128		from	the	executable	file	because	we	need	to
check	a	type	of	our	executable.	We	will	read	the	rest	of	the	executable	file	in	the	later	step.
After	the	preparation	of	the		linux_bprm		structure	we	copy	the	filename	of	the	executable
binary	file,	command	line	arguments	and	environment	variables	to	the		linux_bprm		with	the
call	of	the		copy_strings_kernel		function:

How	the	Linux	kernel	runs	a	program

413

https://github.com/torvalds/linux/blob/master/fs/exec.c
https://github.com/torvalds/linux/blob/master/include/uapi/linux/binfmts.h
https://en.wikipedia.org/wiki/Inode


retval	=	copy_strings_kernel(1,	&bprm->filename,	bprm);

if	(retval	<	0)

				goto	out;

retval	=	copy_strings(bprm->envc,	envp,	bprm);

if	(retval	<	0)

				goto	out;

retval	=	copy_strings(bprm->argc,	argv,	bprm);

if	(retval	<	0)

				goto	out;

And	set	the	pointer	to	the	top	of	new	program's	stack	that	we	set	in	the		bprm_mm_init	
function:

bprm->exec	=	bprm->p;

The	top	of	the	stack	will	contain	the	program	filename	and	we	store	this	filename	to	the
	exec		field	of	the		linux_bprm		structure.

Now	we	have	filled		linux_bprm		structure,	we	call	the		exec_binprm		function:

retval	=	exec_binprm(bprm);

if	(retval	<	0)

				goto	out;

First	of	all	we	store	the	pid	and		pid		that	seen	from	the	namespace	of	the	current	task	in	the
	exec_binprm	:

old_pid	=	current->pid;

rcu_read_lock();

old_vpid	=	task_pid_nr_ns(current,	task_active_pid_ns(current->parent));

rcu_read_unlock();

and	call	the:

search_binary_handler(bprm);

function.	This	function	goes	through	the	list	of	handlers	that	contains	different	binary	formats.
Currently	the	Linux	kernel	supports	following	binary	formats:

	binfmt_script		-	support	for	interpreted	scripts	that	are	starts	from	the	#!	line;
	binfmt_misc		-	support	different	binary	formats,	according	to	runtime	configuration	of	the
Linux	kernel;

How	the	Linux	kernel	runs	a	program

414

https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Shebang_%28Unix%29


	binfmt_elf		-	support	elf	format;
	binfmt_aout		-	support	a.out	format;
	binfmt_flat		-	support	for	flat	format;
	binfmt_elf_fdpic		-	Support	for	elf	FDPIC	binaries;
	binfmt_em86		-	support	for	Intel	elf	binaries	running	on	Alpha	machines.

So,	the	search_binary_handler	tries	to	call	the		load_binary		function	and	pass
	linux_binprm		to	it.	If	the	binary	handler	supports	the	given	executable	file	format,	it	starts	to
prepare	the	executable	binary	for	execution:

int	search_binary_handler(struct	linux_binprm	*bprm)

{

				...

				...

				...

				list_for_each_entry(fmt,	&formats,	lh)	{

								retval	=	fmt->load_binary(bprm);

								if	(retval	<	0	&&	!bprm->mm)	{

												force_sigsegv(SIGSEGV,	current);

												return	retval;

								}

				}

				return	retval;

Where	the		load_binary		for	example	for	the	elf	checks	the	magic	number	(each		elf		binary
file	contains	magic	number	in	the	header)	in	the		linux_bprm		buffer	(remember	that	we	read
first		128		bytes	from	the	executable	binary	file):	and	exit	if	it	is	not		elf		binary:

static	int	load_elf_binary(struct	linux_binprm	*bprm)

{

				...

				...

				...

				loc->elf_ex	=	*((struct	elfhdr	*)bprm->buf);

				if	(memcmp(elf_ex.e_ident,	ELFMAG,	SELFMAG)	!=	0)

								goto	out;

If	the	given	executable	file	is	in		elf		format,	the		load_elf_binary		continues	to	execute.	The
	load_elf_binary		does	many	different	things	to	prepare	on	execution	executable	file.	For
example	it	checks	the	architecture	and	type	of	the	executable	file:

How	the	Linux	kernel	runs	a	program

415

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Binary_file#Structure
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://elinux.org/UClinux_Shared_Library#FDPIC_ELF
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format


if	(loc->elf_ex.e_type	!=	ET_EXEC	&&	loc->elf_ex.e_type	!=	ET_DYN)

				goto	out;

if	(!elf_check_arch(&loc->elf_ex))

				goto	out;

and	exit	if	there	is	wrong	architecture	and	executable	file	non	executable	non	shared.	Tries
to	load	the		program	header	table	:

elf_phdata	=	load_elf_phdrs(&loc->elf_ex,	bprm->file);

if	(!elf_phdata)

				goto	out;

that	describes	segments.	Read	the		program	interpreter		and	libraries	that	linked	with	the
our	executable	binary	file	from	disk	and	load	it	to	memory.	The		program	interpreter	
specified	in	the		.interp		section	of	the	executable	file	and	as	you	can	read	in	the	part	that
describes	Linkers	it	is	-		/lib64/ld-linux-x86-64.so.2		for	the		x86_64	.	It	setups	the	stack
and	map		elf		binary	into	the	correct	location	in	memory.	It	maps	the	bss	and	the	brk
sections	and	does	many	many	other	different	things	to	prepare	executable	file	to	execute.

In	the	end	of	the	execution	of	the		load_elf_binary		we	call	the		start_thread		function	and
pass	three	arguments	to	it:

				start_thread(regs,	elf_entry,	bprm->p);

				retval	=	0;

out:

				kfree(loc);

out_ret:

				return	retval;

These	arguments	are:

Set	of	registers	for	the	new	task;
Address	of	the	entry	point	of	the	new	task;
Address	of	the	top	of	the	stack	for	the	new	task.

As	we	can	understand	from	the	function's	name,	it	starts	new	thread,	but	it	is	not	so.	The
	start_thread		function	just	prepares	new	task's	registers	to	be	ready	to	run.	Let's	look	on
the	implementation	of	this	function:

How	the	Linux	kernel	runs	a	program

416

https://en.wikipedia.org/wiki/Memory_segmentation
http://0xax.gitbooks.io/linux-insides/content/Misc/linkers.html
https://en.wikipedia.org/wiki/.bss
http://man7.org/linux/man-pages/man2/sbrk.2.html
https://en.wikipedia.org/wiki/Processor_register


void

start_thread(struct	pt_regs	*regs,	unsigned	long	new_ip,	unsigned	long	new_sp)

{

								start_thread_common(regs,	new_ip,	new_sp,

																												__USER_CS,	__USER_DS,	0);

}

As	we	can	see	the		start_thread		function	just	makes	a	call	of	the		start_thread_common	
function	that	will	do	all	for	us:

static	void

start_thread_common(struct	pt_regs	*regs,	unsigned	long	new_ip,

																				unsigned	long	new_sp,

																				unsigned	int	_cs,	unsigned	int	_ss,	unsigned	int	_ds)

{

								loadsegment(fs,	0);

								loadsegment(es,	_ds);

								loadsegment(ds,	_ds);

								load_gs_index(0);

								regs->ip																=	new_ip;

								regs->sp																=	new_sp;

								regs->cs																=	_cs;

								regs->ss																=	_ss;

								regs->flags													=	X86_EFLAGS_IF;

								force_iret();

}

The		start_thread_common		function	fills		fs		segment	register	with	zero	and		es		and		ds	
with	the	value	of	the	data	segment	register.	After	this	we	set	new	values	to	the	instruction
pointer,		cs		segments	etc.	In	the	end	of	the		start_thread_common		function	we	can	see	the
	force_iret		macro	that	force	a	system	call	return	via		iret		instruction.	Ok,	we	prepared
new	thread	to	run	in	userspace	and	now	we	can	return	from	the		exec_binprm		and	now	we
are	in	the		do_execveat_common		again.	After	the		exec_binprm		will	finish	its	execution	we
release	memory	for	structures	that	was	allocated	before	and	return.

After	we	returned	from	the		execve		system	call	handler,	execution	of	our	program	will	be
started.	We	can	do	it,	because	all	context	related	information	already	configured	for	this
purpose.	As	we	saw	the		execve		system	call	does	not	return	control	to	a	process,	but	code,
data	and	other	segments	of	the	caller	process	are	just	overwritten	of	the	program	segments.
The	exit	from	our	application	will	be	implemented	through	the		exit		system	call.

That's	all.	From	this	point	our	program	will	be	executed.

Conclusion

How	the	Linux	kernel	runs	a	program

417

https://en.wikipedia.org/wiki/Program_counter


This	is	the	end	of	the	fourth	and	last	part	of	the	about	the	system	calls	concept	in	the	Linux
kernel.	We	saw	almost	all	related	stuff	to	the		system	call		concept	in	these	four	parts.	We
started	from	the	understanding	of	the		system	call		concept,	we	have	learned	what	is	it	and
why	do	users	applications	need	in	this	concept.	Next	we	saw	how	does	the	Linux	handle	a
system	call	from	a	user	application.	We	met	two	similar	concepts	to	the		system	call	
concept,	they	are		vsyscall		and		vDSO		and	finally	we	saw	how	does	Linux	kernel	run	a	user
program.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
System	call
shell
bash
entry	point
C
environment	variables
file	descriptor
real	uid
virtual	file	system
procfs
sysfs
inode
pid
namespace
#!
elf
a.out
flat
Alpha
FDPIC
segments
Linkers
Processor	register
instruction	pointer

How	the	Linux	kernel	runs	a	program

418

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Entry_point
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/User_identifier#Real_user_ID
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Binary_file#Structure
https://en.wikipedia.org/wiki/DEC_Alpha
http://elinux.org/UClinux_Shared_Library#FDPIC_ELF
https://en.wikipedia.org/wiki/Memory_segmentation
http://0xax.gitbooks.io/linux-insides/content/Misc/linkers.html
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Program_counter


Previous	part

How	the	Linux	kernel	runs	a	program

419

http://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-3.html


Timers	and	time	management
This	chapter	describes	timers	and	time	management	related	concepts	in	the	linux	kernel.

Introduction	-	this	part	is	introduction	to	the	timers	in	the	Linux	kernel.
Introduction	to	the	clocksource	framework	-	this	part	describes		clocksource		framework
in	the	Linux	kernel.
The	tick	broadcast	framework	and	dyntick	-	this	part	describes	tick	broadcast	framework
and	dyntick	concept.
Introduction	to	timers	-	this	chapter	describes	timers	in	the	Linux	kernel.
Introduction	to	the	clockevents	framework	-	this	part	describes	yet	another	clock/time
management	related	framework	-		clockevents	.
x86	related	clock	sources	-	this	part	describes		x86_64		related	clock	sources.
Time	related	system	calls	in	the	Linux	kernel	-	this	part	describes	time	related	system
calls.

Timers	and	time	management

420

http://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://github.com/0xAX/linux-insides/blob/master/Timers/timers-2.md
https://github.com/0xAX/linux-insides/blob/master/Timers/timers-3.md
https://github.com/0xAX/linux-insides/blob/master/Timers/timers-3.md
https://github.com/0xAX/linux-insides/blob/master/Timers/timers-5.md
https://github.com/0xAX/linux-insides/blob/master/Timers/timers-5.md
https://github.com/0xAX/linux-insides/blob/master/Timers/timers-7.md


Timers	and	time	management	in	the	Linux
kernel.	Part	1.

Introduction
This	is	yet	another	post	that	opens	new	chapter	in	the	linux-insides	book.	The	previous	part
was	a	list	part	of	the	chapter	that	describes	system	call	concept	and	now	time	is	to	start	new
chapter.	As	you	can	understand	from	the	post's	title,	this	chapter	will	be	devoted	to	the
	timers		and		time	management		in	the	Linux	kernel.	The	choice	of	topic	for	the	current	chapter
is	not	accidental.	Timers	and	generally	time	management	are	very	important	and	widely
used	in	the	Linux	kernel.	The	Linux	kernel	uses	timers	for	various	tasks,	different	timeouts
for	example	in	TCP	implementation,	the	kernel	must	know	current	time,	scheduling
asynchronous	functions,	next	event	interrupt	scheduling	and	many	many	more.

So,	we	will	start	to	learn	implementation	of	the	different	time	management	related	stuff	in	this
part.	We	will	see	different	types	of	timers	and	how	do	different	Linux	kernel	subsystems	use
them.	As	always	we	will	start	from	the	earliest	part	of	the	Linux	kernel	and	will	go	through
initialization	process	of	the	Linux	kernel.	We	already	did	it	in	the	special	chapter	which
describes	initialization	process	of	the	Linux	kernel,	but	as	you	may	remember	we	missed
some	things	there.	And	one	of	them	is	the	initialization	of	timers.

Let's	start.

Initialization	of	non-standard	PC	hardware
clock
After	the	Linux	kernel	was	decompressed	(more	about	this	you	can	read	in	the	Kernel
decompression	part)	the	architecture	non-specific	code	starts	to	work	in	the	init/main.c
source	code	file.	After	initialization	of	the	lock	validator,	initialization	of	cgroups	and	setting
canary	value	we	can	see	the	call	of	the		setup_arch		function.

As	you	may	remember	this	function	defined	in	the	arch/x86/kernel/setup.c	source	code	file
and	prepares/initializes	architecture-specific	stuff	(for	example	it	reserves	place	for	bss
section,	reserves	place	for	initrd,	parses	kernel	command	line	and	many	many	other	things).
Besides	this,	we	can	find	some	time	management	related	functions	there.

The	first	is:

Introduction

421

http://0xax.gitbooks.io/linux-insides/content/
https://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-4.html
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html
https://github.com/torvalds/linux/blob/master/init/main.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Buffer_overflow_protection
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://en.wikipedia.org/wiki/.bss
https://en.wikipedia.org/wiki/Initrd


x86_init.timers.wallclock_init();

We	already	saw		x86_init		structure	in	the	chapter	that	describes	initialization	of	the	Linux
kernel.	This	structure	contains	pointers	to	the	default	setup	functions	for	the	different
platforms	like	Intel	MID,	Intel	CE4100	and	etc.	The		x86_init		structure	defined	in	the
arch/x86/kernel/x86_init.c	and	as	you	can	see	it	determines	standard	PC	hardware	by
default.

As	we	can	see,	the		x86_init		structure	has		x86_init_ops		type	that	provides	a	set	of
functions	for	platform	specific	setup	like	reserving	standard	resources,	platform	specific
memory	setup,	initialization	of	interrupt	handlers	and	etc.	This	structure	looks	like:

struct	x86_init_ops	{

				struct	x86_init_resources							resources;

				struct	x86_init_mpparse									mpparse;

				struct	x86_init_irqs												irqs;

				struct	x86_init_oem													oem;

				struct	x86_init_paging										paging;

				struct	x86_init_timers										timers;

				struct	x86_init_iommu											iommu;

				struct	x86_init_pci													pci;

};

We	can	note		timers		field	that	has		x86_init_timers		type	and	as	we	can	understand	by	its
name	-	this	field	is	related	to	time	management	and	timers.	The		x86_init_timers		contains
four	fields	which	are	all	functions	that	returns	pointer	on	void:

	setup_percpu_clockev		-	set	up	the	per	cpu	clock	event	device	for	the	boot	cpu;
	tsc_pre_init		-	platform	function	called	before	TSC	init;
	timer_init		-	initialize	the	platform	timer;
	wallclock_init		-	initialize	the	wallclock	device.

So,	as	we	already	know,	in	our	case	the		wallclock_init		executes	initialization	of	the
wallclock	device.	If	we	will	look	on	the		x86_init		structure,	we	will	see	that		wallclock_init	
points	to	the		x86_init_noop	:

Introduction

422

https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
http://www.wpgholdings.com/epaper/US/newsRelease_20091215/255874.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c#L36
https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Time_Stamp_Counter


struct	x86_init_ops	x86_init	__initdata	=	{

				...

				...

				...

				.timers	=	{

								.wallclock_init												=	x86_init_noop,

				},

				...

				...

				...

}

Where	the		x86_init_noop		is	just	a	function	that	does	nothing:

void	__cpuinit	x86_init_noop(void)	{	}

for	the	standard	PC	hardware.	Actually,	the		wallclock_init		function	is	used	in	the	Intel	MID
platform.	Initialization	of	the		x86_init.timers.wallclock_init		located	in	the
arch/x86/platform/intel-mid/intel-mid.c	source	code	file	in	the		x86_intel_mid_early_setup	
function:

void	__init	x86_intel_mid_early_setup(void)

{

				...

				...

				...

				x86_init.timers.wallclock_init	=	intel_mid_rtc_init;

				...

				...

				...

}

Implementation	of	the		intel_mid_rtc_init		function	is	in	the	arch/x86/platform/intel-
mid/intel_mid_vrtc.c	source	code	file	and	looks	pretty	easy.	First	of	all,	this	function	parses
Simple	Firmware	Interface	M-Real-Time-Clock	table	for	the	getting	such	devices	to	the
	sfi_mrtc_array		array	and	initialization	of	the		set_time		and		get_time		functions:

Introduction

423

https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
https://github.com/torvalds/linux/blob/master/arch/x86/platform/intel-mid/intel-mid.c
https://github.com/torvalds/linux/blob/master/arch/x86/platform/intel-mid/intel_mid_vrtc.c
https://en.wikipedia.org/wiki/Simple_Firmware_Interface


void	__init	intel_mid_rtc_init(void)

{

				unsigned	long	vrtc_paddr;

				sfi_table_parse(SFI_SIG_MRTC,	NULL,	NULL,	sfi_parse_mrtc);

				vrtc_paddr	=	sfi_mrtc_array[0].phys_addr;

				if	(!sfi_mrtc_num	||	!vrtc_paddr)

								return;

				vrtc_virt_base	=	(void	__iomem	*)set_fixmap_offset_nocache(FIX_LNW_VRTC,

																																vrtc_paddr);

				x86_platform.get_wallclock	=	vrtc_get_time;

				x86_platform.set_wallclock	=	vrtc_set_mmss;

}

That's	all,	after	this	a	device	based	on		Intel	MID		will	be	able	to	get	time	from	hardware
clock.	As	I	already	wrote,	the	standard	PC	x86_64	architecture	does	not	support
	x86_init_noop		and	just	do	nothing	during	call	of	this	function.	We	just	saw	initialization	of
the	real	time	clock	for	the	Intel	MID	architecture	and	now	times	to	return	to	the	general
	x86_64		architecture	and	will	look	on	the	time	management	related	stuff	there.

Acquainted	with	jiffies
If	we	will	return	to	the		setup_arch		function	which	is	located	as	you	remember	in	the
arch/x86/kernel/setup.c	source	code	file,	we	will	see	the	next	call	of	the	time	management
related	function:

register_refined_jiffies(CLOCK_TICK_RATE);

Before	we	will	look	on	the	implementation	of	this	function,	we	must	know	about	jiffy.	As	we
can	read	on	wikipedia:

Jiffy	is	an	informal	term	for	any	unspecified	short	period	of	time

This	definition	is	very	similar	to	the		jiffy		in	the	Linux	kernel.	There	is	global	variable	with
the		jiffies		which	holds	the	number	of	ticks	that	have	occurred	since	the	system	booted.
The	Linux	kernel	sets	this	variable	to	zero:

extern	unsigned	long	volatile	__jiffy_data	jiffies;

Introduction

424

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://en.wikipedia.org/wiki/Jiffy_%28time%29


during	initialization	process.	This	global	variable	will	be	increased	each	time	during	timer
interrupt.	Besides	this,	near	the		jiffies		variable	we	can	see	definition	of	the	similar
variable

extern	u64	jiffies_64;

Actually	only	one	of	these	variables	is	in	use	in	the	Linux	kernel.	And	it	depends	on	the
processor	type.	For	the	x86_64	it	will	be		u64		use	and	for	the	x86	is		unsigned	long	.	We	will
see	this	if	we	will	look	on	the	arch/x86/kernel/vmlinux.lds.S	linker	script:

#ifdef	CONFIG_X86_32

...

jiffies	=	jiffies_64;

...

#else

...

jiffies_64	=	jiffies;

...

#endif

In	the	case	of		x86_32		the		jiffies		will	be	lower		32		bits	of	the		jiffies_64		variable.
Schematically,	we	can	imagine	it	as	follows

																				jiffies_64

+-----------------------------------------------------+

|																							|																													|

|																							|																													|

|																							|							jiffies	on	`x86_32`			|

|																							|																													|

|																							|																													|

+-----------------------------------------------------+

63																					31																													0

Now	we	know	a	little	theory	about		jiffies		and	we	can	return	to	the	our	function.	There	is
no	architecture-specific	implementation	for	our	function	-	the		register_refined_jiffies	.
This	function	located	in	the	generic	kernel	code	-	kernel/time/jiffies.c	source	code	file.	Main
point	of	the		register_refined_jiffies		is	registration	of	the	jiffy		clocksource	.	Before	we	will
look	on	the	implementation	of	the		register_refined_jiffies		function,	we	must	know	what	is
it		clocksource	.	As	we	can	read	in	the	comments:

The	`clocksource`	is	hardware	abstraction	for	a	free-running	counter.

Introduction

425

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c


I'm	not	sure	about	you,	but	that	description	didn't	give	a	good	understanding	about	the
	clocksource		concept.	Let's	try	to	understand	what	is	it,	but	we	will	not	go	deeper	because
this	topic	will	be	described	in	a	separate	part	in	much	more	detail.	The	main	point	of	the
	clocksource		is	timekeeping	abstraction	or	in	very	simple	words	-	it	provides	a	time	value	to
the	kernel.	We	already	know	about		jiffies		interface	that	represents	number	of	ticks	that
have	occurred	since	the	system	booted.	It	represented	by	the	global	variable	in	the	Linux
kernel	and	increased	each	timer	interrupt.	The	Linux	kernel	can	use		jiffies		for	time
measurement.	So	why	do	we	need	in	separate	context	like	the		clocksource	?	Actually
different	hardware	devices	provide	different	clock	sources	that	are	widely	in	their
capabilities.	The	availability	of	more	precise	techniques	for	time	intervals	measurement	is
hardware-dependent.

For	example		x86		has	on-chip	a	64-bit	counter	that	is	called	Time	Stamp	Counter	and	its
frequency	can	be	equal	to	processor	frequency.	Or	for	example	High	Precision	Event	Timer
that	consists	of	a		64-bit		counter	of	at	least		10	MHz		frequency.	Two	different	timers	and
they	are	both	for		x86	.	If	we	will	add	timers	from	other	architectures,	this	only	makes	this
problem	more	complex.	The	Linux	kernel	provides		clocksource		concept	to	solve	the
problem.

The	clocksource	concept	represented	by	the		clocksource		structure	in	the	Linux	kernel.	This
structure	defined	in	the	include/linux/clocksource.h	header	file	and	contains	a	couple	of
fields	that	describe	a	time	counter.	For	example	it	contains	-		name		field	which	is	the	name	of
a	counter,		flags		field	that	describes	different	properties	of	a	counter,	pointers	to	the
	suspend		and		resume		functions,	and	many	more.

Let's	look	on	the		clocksource		structure	for	jiffies	that	defined	in	the	kernel/time/jiffies.c
source	code	file:

static	struct	clocksource	clocksource_jiffies	=	{

				.name								=	"jiffies",

				.rating								=	1,

				.read								=	jiffies_read,

				.mask								=	0xffffffff,

				.mult								=	NSEC_PER_JIFFY	<<	JIFFIES_SHIFT,

				.shift								=	JIFFIES_SHIFT,

				.max_cycles				=	10,

};

We	can	see	definition	of	the	default	name	here	-		jiffies	,	the	next	is		rating		field	allows
the	best	registered	clock	source	to	be	chosen	by	the	clock	source	management	code
available	for	the	specified	hardware.	The		rating		may	have	following	value:

	1-99		-	Only	available	for	bootup	and	testing	purposes;
	100-199		-	Functional	for	real	use,	but	not	desired.

Introduction

426

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c


	200-299		-	A	correct	and	usable	clocksource.
	300-399		-	A	reasonably	fast	and	accurate	clocksource.
	400-499		-	The	ideal	clocksource.	A	must-use	where	available;

For	example	rating	of	the	time	stamp	counter	is		300	,	but	rating	of	the	high	precision	event
timer	is		250	.	The	next	field	is		read		-	is	pointer	to	the	function	that	allows	to	read
clocksource's	cycle	value	or	in	other	words	it	just	returns		jiffies		variable	with		cycle_t	
type:

static	cycle_t	jiffies_read(struct	clocksource	*cs)

{

								return	(cycle_t)	jiffies;

}

that	is	just	64-bit	unsigned	type:

typedef	u64	cycle_t;

The	next	field	is	the		mask		value	ensures	that	subtraction	between	counters	values	from	non
	64	bit		counters	do	not	need	special	overflow	logic.	In	our	case	the	mask	is		0xffffffff	
and	it	is		32		bits.	This	means	that		jiffy		wraps	around	to	zero	after		42		seconds:

>>>	0xffffffff

4294967295

#	42	nanoseconds

>>>	42	*	pow(10,	-9)

4.2000000000000006e-08

#	43	nanoseconds

>>>	43	*	pow(10,	-9)

4.3e-08

The	next	two	fields		mult		and		shift		are	used	to	convert	the	clocksource's	period	to
nanoseconds	per	cycle.	When	the	kernel	calls	the		clocksource.read		function,	this	function
returns	value	in		machine		time	units	represented	with		cycle_t		data	type	that	we	saw	just
now.	To	convert	this	return	value	to	the	nanoseconds	we	need	in	these	two	fields:		mult		and
	shift	.	The		clocksource		provides		clocksource_cyc2ns		function	that	will	do	it	for	us	with	the
following	expression:

((u64)	cycles	*	mult)	>>	shift;

As	we	can	see	the		mult		field	is	equal:

Introduction

427

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Nanosecond


NSEC_PER_JIFFY	<<	JIFFIES_SHIFT

#define	NSEC_PER_JIFFY		((NSEC_PER_SEC+HZ/2)/HZ)

#define	NSEC_PER_SEC				1000000000L

by	default,	and	the		shift		is

#if	HZ	<	34

		#define	JIFFIES_SHIFT			6

#elif	HZ	<	67

		#define	JIFFIES_SHIFT			7

#else

		#define	JIFFIES_SHIFT			8

#endif

The		jiffies		clock	source	uses	the		NSEC_PER_JIFFY		multiplier	conversion	to	specify	the
nanosecond	over	cycle	ratio.	Note	that	values	of	the		JIFFIES_SHIFT		and		NSEC_PER_JIFFY	
depend	on		HZ		value.	The		HZ		represents	the	frequency	of	the	system	timer.	This	macro
defined	in	the	include/asm-generic/param.h	and	depends	on	the		CONFIG_HZ		kernel
configuration	option.	The	value	of		HZ		differs	for	each	supported	architecture,	but	for		x86	
it's	defined	like:

#define	HZ								CONFIG_HZ

Where		CONFIG_HZ		can	be	one	of	the	following	values:

Introduction

428

https://github.com/torvalds/linux/blob/master/include/asm-generic/param.h


This	means	that	in	our	case	the	timer	interrupt	frequency	is		250	HZ		or	occurs		250		times
per	second	or	one	timer	interrupt	each		4ms	.

The	last	field	that	we	can	see	in	the	definition	of	the		clocksource_jiffies		structure	is	the	-
	max_cycles		that	holds	the	maximum	cycle	value	that	can	safely	be	multiplied	without
potentially	causing	an	overflow.

Ok,	we	just	saw	definition	of	the	`clocksource_jiffies`	structure,	also	we	know	a	litt

le	about	`jiffies`	and	`clocksource`,	now	is	time	to	get	back	to	the	implementation	of

	the	our	function.	In	the	beginning	of	this	part	we	have	stopped	on	the	call	of	the:

register_refined_jiffies(CLOCK_TICK_RATE);

function	from	the	arch/x86/kernel/setup.c	source	code	file.

As	I	already	wrote,	the	main	purpose	of	the		register_refined_jiffies		function	is	to	register
	refined_jiffies		clocksource.	We	already	saw	the		clocksource_jiffies		structure
represents	standard		jiffies		clock	source.	Now,	if	you	look	in	the	kernel/time/jiffies.c
source	code	file,	you	will	find	yet	another	clock	source	definition:

struct	clocksource	refined_jiffies;

There	is	one	different	between		refined_jiffies		and		clocksource_jiffies	:	The	standard
	jiffies		based	clock	source	is	the	lowest	common	denominator	clock	source	which	should
function	on	all	systems.	As	we	already	know,	the		jiffies		global	variable	will	be	increased
during	each	timer	interrupt.	This	means	that	standard		jiffies		based	clock	source	has	the
same	resolution	as	the	timer	interrupt	frequency.	From	this	we	can	understand	that	standard
	jiffies		based	clock	source	may	suffer	from	inaccuracies.	The		refined_jiffies		uses
	CLOCK_TICK_RATE		as	the	base	of		jiffies		shift.

Let's	look	on	the	implementation	of	this	function.	First	of	all	we	can	see	that	the
	refined_jiffies		clock	source	based	on	the		clocksource_jiffies		structure:

Introduction

429

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c


int	register_refined_jiffies(long	cycles_per_second)

{

				u64	nsec_per_tick,	shift_hz;

				long	cycles_per_tick;

				refined_jiffies	=	clocksource_jiffies;

				refined_jiffies.name	=	"refined-jiffies";

				refined_jiffies.rating++;

				...

				...

				...

Here	we	can	see	that	we	update	the	name	of	the		refined_jiffies		to		refined-jiffies		and
increase	the	rating	of	this	structure.	As	you	remember,	the		clocksource_jiffies		has	rating	-
	1	,	so	our		refined_jiffies		clocksource	will	have	rating	-		2	.	This	means	that	the
	refined_jiffies		will	be	best	selection	for	clock	source	management	code.

In	the	next	step	we	need	to	calculate	number	of	cycles	per	one	tick:

cycles_per_tick	=	(cycles_per_second	+	HZ/2)/HZ;

Note	that	we	have	used		NSEC_PER_SEC		macro	as	the	base	of	the	standard		jiffies	
multiplier.	Here	we	are	using	the		cycles_per_second		which	is	the	first	parameter	of	the
	register_refined_jiffies		function.	We've	passed	the		CLOCK_TICK_RATE		macro	to	the
	register_refined_jiffies		function.	This	macro	definied	in	the	arch/x86/include/asm/timex.h
header	file	and	expands	to	the:

#define	CLOCK_TICK_RATE									PIT_TICK_RATE

where	the		PIT_TICK_RATE		macro	expands	to	the	frequency	of	the	Intel	8253:

#define	PIT_TICK_RATE	1193182ul

After	this	we	calculate		shift_hz		for	the		register_refined_jiffies		that	will	store		hz	<<	8	
or	in	other	words	frequency	of	the	system	timer.	We	shift	left	the		cycles_per_second		or
frequency	of	the	programmable	interval	timer	on		8		in	order	to	get	extra	accuracy:

shift_hz	=	(u64)cycles_per_second	<<	8;

shift_hz	+=	cycles_per_tick/2;

do_div(shift_hz,	cycles_per_tick);

Introduction

430

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/timex.h


In	the	next	step	we	calculate	the	number	of	seconds	per	one	tick	by	shifting	left	the
	NSEC_PER_SEC		on		8		too	as	we	did	it	with	the		shift_hz		and	do	the	same	calculation	as
before:

nsec_per_tick	=	(u64)NSEC_PER_SEC	<<	8;

nsec_per_tick	+=	(u32)shift_hz/2;

do_div(nsec_per_tick,	(u32)shift_hz);

refined_jiffies.mult	=	((u32)nsec_per_tick)	<<	JIFFIES_SHIFT;

In	the	end	of	the		register_refined_jiffies		function	we	register	new	clock	source	with	the
	__clocksource_register		function	that	defined	in	the	include/linux/clocksource.h	header	file
and	return:

__clocksource_register(&refined_jiffies);

return	0;

The	clock	source	management	code	provides	the	API	for	clock	source	registration	and
selection.	As	we	can	see,	clock	sources	are	registered	by	calling	the
	__clocksource_register		function	during	kernel	initialization	or	from	a	kernel	module.	During
registration,	the	clock	source	management	code	will	choose	the	best	clock	source	available
in	the	system	using	the		clocksource.rating		field	which	we	already	saw	when	we	initialized
	clocksource		structure	for		jiffies	.

Using	the	jiffies
We	just	saw	initialization	of	two		jiffies		based	clock	sources	in	the	previous	paragraph:

standard		jiffies		based	clock	source;
refined		jiffies		based	clock	source;

Don't	worry	if	you	don't	understand	the	calculations	here.	They	look	frightening	at	first.	Soon,
step	by	step	we	will	learn	these	things.	So,	we	just	saw	initialization	of		jffies		based	clock
sources	and	also	we	know	that	the	Linux	kernel	has	the	global	variable		jiffies		that	holds
the	number	of	ticks	that	have	occurred	since	the	kernel	started	to	work.	Now,	let's	look	how
to	use	it.	To	use		jiffies		we	just	can	use		jiffies		global	variable	by	its	name	or	with	the
call	of	the		get_jiffies_64		function.	This	function	defined	in	the	kernel/time/jiffies.c	source
code	file	and	just	returns	full		64-bit		value	of	the		jiffies	:

Introduction

431

https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c


u64	get_jiffies_64(void)

{

				unsigned	long	seq;

				u64	ret;

				do	{

								seq	=	read_seqbegin(&jiffies_lock);

								ret	=	jiffies_64;

				}	while	(read_seqretry(&jiffies_lock,	seq));

				return	ret;

}

EXPORT_SYMBOL(get_jiffies_64);

Note	that	the		get_jiffies_64		function	does	not	implemented	as		jiffies_read		for	example:

static	cycle_t	jiffies_read(struct	clocksource	*cs)

{

				return	(cycle_t)	jiffies;

}

We	can	see	that	implementation	of	the		get_jiffies_64		is	more	complex.	The	reading	of	the
	jiffies_64		variable	is	implemented	using	seqlocks.	Actually	this	is	done	for	machines	that
cannot	atomically	read	the	full	64-bit	values.

If	we	can	access	the		jiffies		or	the		jiffies_64		variable	we	can	convert	it	to		human		time
units.	To	get	one	second	we	can	use	following	expression:

jiffies	/	HZ

So,	if	we	know	this,	we	can	get	any	time	units.	For	example:

/*	Thirty	seconds	from	now	*/

jiffies	+	30*HZ

/*	Two	minutes	from	now	*/

jiffies	+	120*HZ

/*	One	millisecond	from	now	*/

jiffies	+	HZ	/	1000

That's	all.

Conclusion

Introduction

432

https://en.wikipedia.org/wiki/Seqlock


This	concludes	the	first	part	covering	time	and	time	management	related	concepts	in	the
Linux	kernel.	We	met	first	two	concepts	and	its	initialization	in	this	part:		jiffies		and
	clocksource	.	In	the	next	part	we	will	continue	to	dive	into	this	interesting	theme	and	as	I
already	wrote	in	this	part	we	will	acquainted	and	try	to	understand	insides	of	these	and	other
time	management	concepts	in	the	Linux	kernel.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
system	call
TCP
lock	validator
cgroups
bss
initrd
Intel	MID
TSC
void
Simple	Firmware	Interface
x86_64
real	time	clock
Jiffy
high	precision	event	timer
nanoseconds
Intel	8253
seqlocks
cloksource	documentation
Previous	chapter

Introduction

433

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/.bss
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Simple_Firmware_Interface
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Jiffy_%28time%29
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Seqlock
https://www.kernel.org/doc/Documentation/timers/timekeeping.txt
https://0xax.gitbooks.io/linux-insides/content/SysCall/index.html


Timers	and	time	management	in	the	Linux
kernel.	Part	2.

Introduction	to	the		clocksource		framework
The	previous	part	was	the	first	part	in	the	current	chapter	that	describes	timers	and	time
management	related	stuff	in	the	Linux	kernel.	We	got	acquainted	with	two	concepts	in	the
previous	part:

	jiffies	

	clocksource	

The	first	is	the	global	variable	that	is	defined	in	the	include/linux/jiffies.h	header	file	and
represents	the	counter	that	is	increased	during	each	timer	interrupt.	So	if	we	can	access	this
global	variable	and	we	know	the	timer	interrupt	rate	we	can	convert		jiffies		to	the	human
time	units.	As	we	already	know	the	timer	interrupt	rate	represented	by	the	compile-time
constant	that	is	called		HZ		in	the	Linux	kernel.	The	value	of		HZ		is	equal	to	the	value	of	the
	CONFIG_HZ		kernel	configuration	option	and	if	we	will	look	into	the
arch/x86/configs/x86_64_defconfig	kernel	configuration	file,	we	will	see	that:

CONFIG_HZ_1000=y

kernel	configuration	option	is	set.	This	means	that	value	of		CONFIG_HZ		will	be		1000		by
default	for	the	x86_64	architecture.	So,	if	we	divide	the	value	of		jiffies		by	the	value	of
	HZ	:

jiffies	/	HZ

we	will	get	the	amount	of	seconds	that	elapsed	since	the	beginning	of	the	moment	the	Linux
kernel	started	to	work	or	in	other	words	we	will	get	the	system	uptime.	Since		HZ		represents
the	amount	of	timer	interrupts	in	a	second,	we	can	set	a	value	for	some	time	in	the	future.
For	example:

/*	one	minute	from	now	*/

unsigned	long	later	=	jiffies	+	60*HZ;

/*	five	minutes	from	now	*/

unsigned	long	later	=	jiffies	+	5*60*HZ;

Clocksource	framework

434

https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://github.com/torvalds/linux/blob/master/include/linux/jiffies.h
https://github.com/torvalds/linux/blob/master/arch/x86/configs/x86_64_defconfig
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Uptime


This	is	a	very	common	practice	in	the	Linux	kernel.	For	example,	if	you	will	look	into	the
arch/x86/kernel/smpboot.c	source	code	file,	you	will	find	the		do_boot_cpu		function.	This
function	boots	all	processors	besides	bootstrap	processor.	You	can	find	a	snippet	that	waits
ten	seconds	for	a	response	from	the	application	processor:

if	(!boot_error)	{

				timeout	=	jiffies	+	10*HZ;

				while	(time_before(jiffies,	timeout))	{

								...

								...

								...

								udelay(100);

				}

				...

				...

				...

}

We	assign		jiffies	+	10*HZ		value	to	the		timeout		variable	here.	As	I	think	you	already
understood,	this	means	a	ten	seconds	timeout.	After	this	we	are	entering	a	loop	where	we
use	the		time_before		macro	to	compare	the	current		jiffies		value	and	our	timeout.

Or	for	example	if	we	look	into	the	sound/isa/sscape.c	source	code	file	which	represents	the
driver	for	the	Ensoniq	Soundscape	Elite	sound	card,	we	will	see	the		obp_startup_ack	
function	that	waits	upto	a	given	timeout	for	the	On-Board	Processor	to	return	its	start-up
acknowledgement	sequence:

static	int	obp_startup_ack(struct	soundscape	*s,	unsigned	timeout)

{

				unsigned	long	end_time	=	jiffies	+	msecs_to_jiffies(timeout);

				do	{

								...

								...

								...

								x	=	host_read_unsafe(s->io_base);

								...

								...

								...

								if	(x	==	0xfe	||	x	==	0xff)

												return	1;

								msleep(10);

				}	while	(time_before(jiffies,	end_time));

				return	0;

}

Clocksource	framework

435

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/smpboot.c
https://github.com/torvalds/linux/blob/master/sound/isa/sscape
https://en.wikipedia.org/wiki/Ensoniq_Soundscape_Elite


As	you	can	see,	the		jiffies		variable	is	very	widely	used	in	the	Linux	kernel	code.	As	I
already	wrote,	we	met	yet	another	new	time	management	related	concept	in	the	previous
part	-		clocksource	.	We	have	only	seen	a	short	description	of	this	concept	and	the	API	for	a
clock	source	registration.	Let's	take	a	closer	look	in	this	part.

Introduction	to		clocksource	
The		clocksource		concept	represents	the	generic	API	for	clock	sources	management	in	the
Linux	kernel.	Why	do	we	need	a	separate	framework	for	this?	Let's	go	back	to	the
beginning.	The		time		concept	is	the	fundamental	concept	in	the	Linux	kernel	and	other
operating	system	kernels.	And	the	timekeeping	is	one	of	the	necessities	to	use	this	concept.
For	example	Linux	kernel	must	know	and	update	the	time	elapsed	since	system	startup,	it
must	determine	how	long	the	current	process	has	been	running	for	every	processor	and
many	many	more.	Where	the	Linux	kernel	can	get	information	about	time?	First	of	all	it	is
Real	Time	Clock	or	RTC	that	represents	by	the	a	nonvolatile	device.	You	can	find	a	set	of
architecture-independent	real	time	clock	drivers	in	the	Linux	kernel	in	the	drivers/rtc
directory.	Besides	this,	each	architecture	can	provide	a	driver	for	the	architecture-dependent
real	time	clock,	for	example	-		CMOS/RTC		-	arch/x86/kernel/rtc.c	for	the	x86	architecture.	The
second	is	system	timer	-	timer	that	excites	interrupts	with	a	periodic	rate.	For	example,	for
IBM	PC	compatibles	it	was	-	programmable	interval	timer.

We	already	know	that	for	timekeeping	purposes	we	can	use		jiffies		in	the	Linux	kernel.
The		jiffies		can	be	considered	as	read	only	global	variable	which	is	updated	with		HZ	
frequency.	We	know	that	the		HZ		is	a	compile-time	kernel	parameter	whose	reasonable
range	is	from		100		to		1000		Hz.	So,	it	is	guaranteed	to	have	an	interface	for	time
measurement	with		1		-		10		milliseconds	resolution.	Besides	standard		jiffies	,	we	saw
the		refined_jiffies		clock	source	in	the	previous	part	that	is	based	on	the		i8253/i8254	
programmable	interval	timer	tick	rate	which	is	almost		1193182		hertz.	So	we	can	get
something	about		1		microsecond	resolution	with	the		refined_jiffies	.	In	this	time,
nanoseconds	are	the	favorite	choice	for	the	time	value	units	of	the	given	clock	source.

The	availability	of	more	precise	techniques	for	time	intervals	measurement	is	hardware-
dependent.	We	just	knew	a	little	about		x86		dependent	timers	hardware.	But	each
architecture	provides	own	timers	hardware.	Earlier	each	architecture	had	own
implementation	for	this	purpose.	Solution	of	this	problem	is	an	abstraction	layer	and
associated	API	in	a	common	code	framework	for	managing	various	clock	sources	and
independent	of	the	timer	interrupt.	This	common	code	framework	became	-		clocksource	
framework.

Clocksource	framework

436

http://lxr.free-electrons.com/ident?i=jiffies
https://en.wikipedia.org/wiki/Real-time_clock
https://github.com/torvalds/linux/tree/master/drivers/rtc
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/rtc.c
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Nanosecond


Generic	timeofday	and	clock	source	management	framework	moved	a	lot	of	timekeeping
code	into	the	architecture	independent	portion	of	the	code,	with	the	architecture-dependent
portion	reduced	to	defining	and	managing	low-level	hardware	pieces	of	clocksources.	It
takes	a	large	amount	of	funds	to	measure	the	time	interval	on	different	architectures	with
different	hardware,	and	it	is	very	complex.	Implementation	of	the	each	clock	related	service
is	strongly	associated	with	an	individual	hardware	device	and	as	you	can	understand,	it
results	in	similar	implementations	for	different	architectures.

Within	this	framework,	each	clock	source	is	required	to	maintain	a	representation	of	time	as
a	monotonically	increasing	value.	As	we	can	see	in	the	Linux	kernel	code,	nanoseconds	are
the	favorite	choice	for	the	time	value	units	of	a	clock	source	in	this	time.	One	of	the	main
point	of	the	clock	source	framework	is	to	allow	an	user	to	select	clock	source	among	a	range
of	available	hardware	devices	supporting	clock	functions	when	configuring	the	system	and
selecting,	accessing	and	scaling	different	clock	sources.

The	clocksource	structure
The	fundamental	of	the		clocksource		framework	is	the		clocksource		structure	that	defined	in
the	include/linux/clocksource.h	header	file.	We	already	saw	some	fields	that	are	provided	by
the		clocksource		structure	in	the	previous	part.	Let's	look	on	the	full	definition	of	this
structure	and	try	to	describe	all	of	its	fields:

Clocksource	framework

437

https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html


struct	clocksource	{

				cycle_t	(*read)(struct	clocksource	*cs);

				cycle_t	mask;

				u32	mult;

				u32	shift;

				u64	max_idle_ns;

				u32	maxadj;

#ifdef	CONFIG_ARCH_CLOCKSOURCE_DATA

				struct	arch_clocksource_data	archdata;

#endif

				u64	max_cycles;

				const	char	*name;

				struct	list_head	list;

				int	rating;

				int	(*enable)(struct	clocksource	*cs);

				void	(*disable)(struct	clocksource	*cs);

				unsigned	long	flags;

				void	(*suspend)(struct	clocksource	*cs);

				void	(*resume)(struct	clocksource	*cs);

#ifdef	CONFIG_CLOCKSOURCE_WATCHDOG

				struct	list_head	wd_list;

				cycle_t	cs_last;

				cycle_t	wd_last;

#endif

				struct	module	*owner;

}	____cacheline_aligned;

We	already	saw	the	first	field	of	the		clocksource		structure	in	the	previous	part	-	it	is	pointer
to	the		read		function	that	returns	best	counter	selected	by	the	clocksource	framework.	For
example	we	use		jiffies_read		function	to	read		jiffies		value:

static	struct	clocksource	clocksource_jiffies	=	{

				...

				.read								=	jiffies_read,

				...

}

where		jiffies_read		just	returns:

static	cycle_t	jiffies_read(struct	clocksource	*cs)

{

				return	(cycle_t)	jiffies;

}

Or	the		read_tsc		function:

Clocksource	framework

438



static	struct	clocksource	clocksource_tsc	=	{

				...

				.read																			=	read_tsc,

				...

};

for	the	time	stamp	counter	reading.

The	next	field	is		mask		that	allows	to	ensure	that	subtraction	between	counters	values	from
non		64	bit		counters	do	not	need	special	overflow	logic.	After	the		mask		field,	we	can	see
two	fields:		mult		and		shift	.	These	are	the	fields	that	are	base	of	mathematical	functions
that	are	provide	ability	to	convert	time	values	specific	to	each	clock	source.	In	other	words
these	two	fields	help	us	to	convert	an	abstract	machine	time	units	of	a	counter	to
nanoseconds.

After	these	two	fields	we	can	see	the		64		bits		max_idle_ns		field	represents	max	idle	time
permitted	by	the	clocksource	in	nanoseconds.	We	need	in	this	field	for	the	Linux	kernel	with
enabled		CONFIG_NO_HZ		kernel	configuration	option.	This	kernel	configuration	option	enables
the	Linux	kernel	to	run	without	a	regular	timer	tick	(we	will	see	full	explanation	of	this	in	other
part).	The	problem	that	dynamic	tick	allows	the	kernel	to	sleep	for	periods	longer	than	a
single	tick,	moreover	sleep	time	could	be	unlimited.	The		max_idle_ns		field	represents	this
sleeping	limit.

The	next	field	after	the		max_idle_ns		is	the		maxadj		field	which	is	the	maximum	adjustment
value	to		mult	.	The	main	formula	by	which	we	convert	cycles	to	the	nanoseconds:

((u64)	cycles	*	mult)	>>	shift;

is	not		100%		accurate.	Instead	the	number	is	taken	as	close	as	possible	to	a	nanosecond
and		maxadj		helps	to	correct	this	and	allows	clocksource	API	to	avoid		mult		values	that
might	overflow	when	adjusted.	The	next	four	fields	are	pointers	to	the	function:

	enable		-	optional	function	to	enable	clocksource;
	disable		-	optional	function	to	disable	clocksource;
	suspend		-	suspend	function	for	the	clocksource;
	resume		-	resume	function	for	the	clocksource;

The	next	field	is	the		max_cycles		and	as	we	can	understand	from	its	name,	this	field
represents	maximum	cycle	value	before	potential	overflow.	And	the	last	field	is		owner	
represents	reference	to	a	kernel	module	that	is	owner	of	a	clocksource.	This	is	all.	We	just
went	through	all	the	standard	fields	of	the		clocksource		structure.	But	you	can	noted	that	we
missed	some	fields	of	the		clocksource		structure.	We	can	divide	all	of	missed	field	on	two
types:	Fields	of	the	first	type	are	already	known	for	us.	For	example,	they	are		name		field

Clocksource	framework

439

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Loadable_kernel_module


that	represents	name	of	a		clocksource	,	the		rating		field	that	helps	to	the	Linux	kernel	to
select	the	best	clocksource	and	etc.	The	second	type,	fields	which	are	dependent	from	the
different	Linux	kernel	configuration	options.	Let's	look	on	these	fields.

The	first	field	is	the		archdata	.	This	field	has		arch_clocksource_data		type	and	depends	on
the		CONFIG_ARCH_CLOCKSOURCE_DATA		kernel	configuration	option.	This	field	is	actual	only	for	the
x86	and	IA64	architectures	for	this	moment.	And	again,	as	we	can	understand	from	the
field's	name,	it	represents	architecture-specific	data	for	a	clock	source.	For	example,	it
represents		vDSO		clock	mode:

struct	arch_clocksource_data	{

				int	vclock_mode;

};

for	the		x86		architectures.	Where	the		vDSO		clock	mode	can	be	one	of	the:

#define	VCLOCK_NONE	0

#define	VCLOCK_TSC		1

#define	VCLOCK_HPET	2

#define	VCLOCK_PVCLOCK	3

The	last	three	fields	are		wd_list	,		cs_last		and	the		wd_last		depends	on	the
	CONFIG_CLOCKSOURCE_WATCHDOG		kernel	configuration	option.	First	of	all	let's	try	to	understand
what	is	it		watchdog	.	In	a	simple	words,	watchdog	is	a	timer	that	is	used	for	detection	of	the
computer	malfunctions	and	recovering	from	it.	All	of	these	three	fields	contain	watchdog
related	data	that	is	used	by	the		clocksource		framework.	If	we	will	grep	the	Linux	kernel
source	code,	we	will	see	that	only	arch/x86/KConfig	kernel	configuration	file	contains	the
	CONFIG_CLOCKSOURCE_WATCHDOG		kernel	configuration	option.	So,	why	do		x86		and		x86_64	
need	in	watchdog?	You	already	may	know	that	all		x86		processors	has	special	64-bit
register	-	time	stamp	counter.	This	register	contains	number	of	cycles	since	the	reset.
Sometimes	the	time	stamp	counter	needs	to	be	verified	against	another	clock	source.	We
will	not	see	initialization	of	the		watchdog		timer	in	this	part,	before	this	we	must	learn	more
about	timers.

That's	all.	From	this	moment	we	know	all	fields	of	the		clocksource		structure.	This
knowledge	will	help	us	to	learn	insides	of	the		clocksource		framework.

New	clock	source	registration

Clocksource	framework

440

https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/IA-64
https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig#L54
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Clock_rate


We	saw	only	one	function	from	the		clocksource		framework	in	the	previous	part.	This
function	was	-		__clocksource_register	.	This	function	defined	in	the
include/linux/clocksource.h	header	file	and	as	we	can	understand	from	the	function's	name,
main	point	of	this	function	is	to	register	new	clocksource.	If	we	will	look	on	the
implementation	of	the		__clocksource_register		function,	we	will	see	that	it	just	makes	call	of
the		__clocksource_register_scale		function	and	returns	its	result:

static	inline	int	__clocksource_register(struct	clocksource	*cs)

{

				return	__clocksource_register_scale(cs,	1,	0);

}

Before	we	will	see	implementation	of	the		__clocksource_register_scale		function,	we	can
see	that		clocksource		provides	additional	API	for	a	new	clock	source	registration:

static	inline	int	clocksource_register_hz(struct	clocksource	*cs,	u32	hz)

{

								return	__clocksource_register_scale(cs,	1,	hz);

}

static	inline	int	clocksource_register_khz(struct	clocksource	*cs,	u32	khz)

{

								return	__clocksource_register_scale(cs,	1000,	khz);

}

And	all	of	these	functions	do	the	same.	They	return	value	of	the
	__clocksource_register_scale		function	but	with	different	set	of	parameters.	The
	__clocksource_register_scale		function	defined	in	the	kernel/time/clocksource.c	source	code
file.	To	understand	difference	between	these	functions,	let's	look	on	the	parameters	of	the
	clocksource_register_khz		function.	As	we	can	see,	this	function	takes	three	parameters:

	cs		-	clocksource	to	be	installed;
	scale		-	scale	factor	of	a	clock	source.	In	other	words,	if	we	will	multiply	value	of	this
parameter	on	frequency,	we	will	get		hz		of	a	clocksource;
	freq		-	clock	source	frequency	divided	by	scale.

Now	let's	look	on	the	implementation	of	the		__clocksource_register_scale		function:

Clocksource	framework

441

https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://github.com/torvalds/linux/tree/master/include/linux/clocksource.h
https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c


int	__clocksource_register_scale(struct	clocksource	*cs,	u32	scale,	u32	freq)

{

								__clocksource_update_freq_scale(cs,	scale,	freq);

								mutex_lock(&clocksource_mutex);

								clocksource_enqueue(cs);

								clocksource_enqueue_watchdog(cs);

								clocksource_select();

								mutex_unlock(&clocksource_mutex);

								return	0;

}

First	of	all	we	can	see	that	the		__clocksource_register_scale		function	starts	from	the	call	of
the		__clocksource_update_freq_scale		function	that	defined	in	the	same	source	code	file	and
updates	given	clock	source	with	the	new	frequency.	Let's	look	on	the	implementation	of	this
function.	In	the	first	step	we	need	to	check	given	frequency	and	if	it	was	not	passed	as
	zero	,	we	need	to	calculate		mult		and		shift		parameters	for	the	given	clock	source.	Why
do	we	need	to	check	value	of	the		frequency	?	Actually	it	can	be	zero.	if	you	attentively
looked	on	the	implementation	of	the		__clocksource_register		function,	you	may	have	noticed
that	we	passed		frequency		as		0	.	We	will	do	it	only	for	some	clock	sources	that	have	self
defined		mult		and		shift		parameters.	Look	in	the	previous	part	and	you	will	see	that	we
saw	calculation	of	the		mult		and		shift		for		jiffies	.	The
	__clocksource_update_freq_scale		function	will	do	it	for	us	for	other	clock	sources.

So	in	the	start	of	the		__clocksource_update_freq_scale		function	we	check	the	value	of	the
	frequency		parameter	and	if	is	not	zero	we	need	to	calculate		mult		and		shift		for	the	given
clock	source.	Let's	look	on	the		mult		and		shift		calculation:

Clocksource	framework

442

https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html


void	__clocksource_update_freq_scale(struct	clocksource	*cs,	u32	scale,	u32	freq)

{

								u64	sec;

								if	(freq)	{

													sec	=	cs->mask;

													do_div(sec,	freq);

													do_div(sec,	scale);

													if	(!sec)

																			sec	=	1;

													else	if	(sec	>	600	&&	cs->mask	>	UINT_MAX)

																			sec	=	600;

													clocks_calc_mult_shift(&cs->mult,	&cs->shift,	freq,

																																				NSEC_PER_SEC	/	scale,	sec	*	scale);

								}

								...

								...

								...

}

Here	we	can	see	calculation	of	the	maximum	number	of	seconds	which	we	can	run	before	a
clock	source	counter	will	overflow.	First	of	all	we	fill	the		sec		variable	with	the	value	of	a
clock	source	mask.	Remember	that	a	clock	source's	mask	represents	maximum	amount	of
bits	that	are	valid	for	the	given	clock	source.	After	this,	we	can	see	two	division	operations.
At	first	we	divide	our		sec		variable	on	a	clock	source	frequency	and	then	on	scale	factor.
The		freq		parameter	shows	us	how	many	timer	interrupts	will	be	occurred	in	one	second.
So,	we	divide		mask		value	that	represents	maximum	number	of	a	counter	(for	example
	jiffy	)	on	the	frequency	of	a	timer	and	will	get	the	maximum	number	of	seconds	for	the
certain	clock	source.	The	second	division	operation	will	give	us	maximum	number	of
seconds	for	the	certain	clock	source	depends	on	its	scale	factor	which	can	be		1		hertz	or
	1		kilohertz	(10^	Hz).

After	we	have	got	maximum	number	of	seconds,	we	check	this	value	and	set	it	to		1		or
	600		depends	on	the	result	at	the	next	step.	These	values	is	maximum	sleeping	time	for	a
clocksource	in	seconds.	In	the	next	step	we	can	see	call	of	the		clocks_calc_mult_shift	.
Main	point	of	this	function	is	calculation	of	the		mult		and		shift		values	for	a	given	clock
source.	In	the	end	of	the		__clocksource_update_freq_scale		function	we	check	that	just
calculated		mult		value	of	a	given	clock	source	will	not	cause	overflow	after	adjustment,
update	the		max_idle_ns		and		max_cycles		values	of	a	given	clock	source	with	the	maximum
nanoseconds	that	can	be	converted	to	a	clock	source	counter	and	print	result	to	the	kernel
buffer:

Clocksource	framework

443



pr_info("%s:	mask:	0x%llx	max_cycles:	0x%llx,	max_idle_ns:	%lld	ns\n",

				cs->name,	cs->mask,	cs->max_cycles,	cs->max_idle_ns);

that	we	can	see	in	the	dmesg	output:

$	dmesg	|	grep	"clocksource:"

[				0.000000]	clocksource:	refined-jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	

max_idle_ns:	1910969940391419	ns

[				0.000000]	clocksource:	hpet:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns

:	133484882848	ns

[				0.094084]	clocksource:	jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle

_ns:	1911260446275000	ns

[				0.205302]	clocksource:	acpi_pm:	mask:	0xffffff	max_cycles:	0xffffff,	max_idle_ns:

	2085701024	ns

[				1.452979]	clocksource:	tsc:	mask:	0xffffffffffffffff	max_cycles:	0x7350b459580,	m

ax_idle_ns:	881591204237	ns

After	the		__clocksource_update_freq_scale		function	will	finish	its	work,	we	can	return	back	to
the		__clocksource_register_scale		function	that	will	register	new	clock	source.	We	can	see
the	call	of	the	following	three	functions:

mutex_lock(&clocksource_mutex);

clocksource_enqueue(cs);

clocksource_enqueue_watchdog(cs);

clocksource_select();

mutex_unlock(&clocksource_mutex);

Note	that	before	the	first	will	be	called,	we	lock	the		clocksource_mutex		mutex.	The	point	of
the		clocksource_mutex		mutex	is	to	protect		curr_clocksource		variable	which	represents
currently	selected		clocksource		and		clocksource_list		variable	which	represents	list	that
contains	registered		clocksources	.	Now,	let's	look	on	these	three	functions.

The	first		clocksource_enqueue		function	and	other	two	defined	in	the	same	source	code	file.
We	go	through	all	already	registered		clocksources		or	in	other	words	we	go	through	all
elements	of	the		clocksource_list		and	tries	to	find	best	place	for	a	given		clocksource	:

Clocksource	framework

444

https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Mutual_exclusion
https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c


static	void	clocksource_enqueue(struct	clocksource	*cs)

{

				struct	list_head	*entry	=	&clocksource_list;

				struct	clocksource	*tmp;

				list_for_each_entry(tmp,	&clocksource_list,	list)

								if	(tmp->rating	>=	cs->rating)

												entry	=	&tmp->list;

				list_add(&cs->list,	entry);

}

In	the	end	we	just	insert	new	clocksource	to	the		clocksource_list	.	The	second	function	-
	clocksource_enqueue_watchdog		does	almost	the	same	that	previous	function,	but	it	inserts
new	clock	source	to	the		wd_list		depends	on	flags	of	a	clock	source	and	starts	new
watchdog	timer.	As	I	already	wrote,	we	will	not	consider		watchdog		related	stuff	in	this	part
but	will	do	it	in	next	parts.

The	last	function	is	the		clocksource_select	.	As	we	can	understand	from	the	function's
name,	main	point	of	this	function	-	select	the	best		clocksource		from	registered
clocksources.	This	function	consists	only	from	the	call	of	the	function	helper:

static	void	clocksource_select(void)

{

				return	__clocksource_select(false);

}

Note	that	the		__clocksource_select		function	takes	one	parameter	(	false		in	our	case).	This
bool	parameter	shows	how	to	traverse	the		clocksource_list	.	In	our	case	we	pass		false	
that	is	meant	that	we	will	go	through	all	entries	of	the		clocksource_list	.	We	already	know
that		clocksource		with	the	best	rating	will	the	first	in	the		clocksource_list		after	the	call	of
the		clocksource_enqueue		function,	so	we	can	easily	get	it	from	this	list.	After	we	found	a
clock	source	with	the	best	rating,	we	switch	to	it:

if	(curr_clocksource	!=	best	&&	!timekeeping_notify(best))	{

				pr_info("Switched	to	clocksource	%s\n",	best->name);

				curr_clocksource	=	best;

}

The	result	of	this	operation	we	can	see	in	the		dmesg		output:

$	dmesg	|	grep	Switched

[				0.199688]	clocksource:	Switched	to	clocksource	hpet

[				2.452966]	clocksource:	Switched	to	clocksource	tsc

Clocksource	framework

445

https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Boolean_data_type


Note	that	we	can	see	two	clock	sources	in	the		dmesg		output	(	hpet		and		tsc		in	our	case).
Yes,	actually	there	can	be	many	different	clock	sources	on	a	particular	hardware.	So	the
Linux	kernel	knows	about	all	registered	clock	sources	and	switches	to	a	clock	source	with	a
better	rating	each	time	after	registration	of	a	new	clock	source.

If	we	will	look	on	the	bottom	of	the	kernel/time/clocksource.c	source	code	file,	we	will	see
that	it	has	sysfs	interface.	Main	initialization	occurs	in	the		init_clocksource_sysfs		function
which	will	be	called	during	device		initcalls	.	Let's	look	on	the	implementation	of	the
	init_clocksource_sysfs		function:

static	struct	bus_type	clocksource_subsys	=	{

				.name	=	"clocksource",

				.dev_name	=	"clocksource",

};

static	int	__init	init_clocksource_sysfs(void)

{

				int	error	=	subsys_system_register(&clocksource_subsys,	NULL);

				if	(!error)

								error	=	device_register(&device_clocksource);

				if	(!error)

								error	=	device_create_file(

																&device_clocksource,

																&dev_attr_current_clocksource);

				if	(!error)

								error	=	device_create_file(&device_clocksource,

																							&dev_attr_unbind_clocksource);

				if	(!error)

								error	=	device_create_file(

																&device_clocksource,

																&dev_attr_available_clocksource);

				return	error;

}

device_initcall(init_clocksource_sysfs);

First	of	all	we	can	see	that	it	registers	a		clocksource		subsystem	with	the	call	of	the
	subsys_system_register		function.	In	other	words,	after	the	call	of	this	function,	we	will	have
following	directory:

$	pwd

/sys/devices/system/clocksource

After	this	step,	we	can	see	registration	of	the		device_clocksource		device	which	is
represented	by	the	following	structure:

Clocksource	framework

446

https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c
https://en.wikipedia.org/wiki/Sysfs


static	struct	device	device_clocksource	=	{

				.id				=	0,

				.bus				=	&clocksource_subsys,

};

and	creation	of	three	files:

	dev_attr_current_clocksource	;
	dev_attr_unbind_clocksource	;
	dev_attr_available_clocksource	.

These	files	will	provide	information	about	current	clock	source	in	the	system,	available	clock
sources	in	the	system	and	interface	which	allows	to	unbind	the	clock	source.

After	the		init_clocksource_sysfs		function	will	be	executed,	we	will	be	able	find	some
information	about	available	clock	sources	in	the:

$	cat	/sys/devices/system/clocksource/clocksource0/available_clocksource	

tsc	hpet	acpi_pm

Or	for	example	information	about	current	clock	source	in	the	system:

$	cat	/sys/devices/system/clocksource/clocksource0/current_clocksource	

tsc

In	the	previous	part,	we	saw	API	for	the	registration	of	the		jiffies		clock	source,	but	didn't
dive	into	details	about	the		clocksource		framework.	In	this	part	we	did	it	and	saw
implementation	of	the	new	clock	source	registration	and	selection	of	a	clock	source	with	the
best	rating	value	in	the	system.	Of	course,	this	is	not	all	API	that		clocksource		framework
provides.	There	a	couple	additional	functions	like		clocksource_unregister		for	removing
given	clock	source	from	the		clocksource_list		and	etc.	But	I	will	not	describe	this	functions
in	this	part,	because	they	are	not	important	for	us	right	now.	Anyway	if	you	are	interesting	in
it,	you	can	find	it	in	the	kernel/time/clocksource.c.

That's	all.

Conclusion
This	is	the	end	of	the	second	part	of	the	chapter	that	describes	timers	and	timer
management	related	stuff	in	the	Linux	kernel.	In	the	previous	part	got	acquainted	with	the
following	two	concepts:		jiffies		and		clocksource	.	In	this	part	we	saw	some	examples	of
the		jiffies		usage	and	knew	more	details	about	the		clocksource		concept.

Clocksource	framework

447

https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c


If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
x86
x86_64
uptime
Ensoniq	Soundscape	Elite
RTC
interrupts
IBM	PC
programmable	interval	timer
Hz
nanoseconds
dmesg
time	stamp	counter
loadable	kernel	module
IA64
watchdog
clock	rate
mutex
sysfs
previous	part

Clocksource	framework

448

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Uptime
https://en.wikipedia.org/wiki/Ensoniq_Soundscape_Elite
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Sysfs
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html


Timers	and	time	management	in	the	Linux
kernel.	Part	3.

The	tick	broadcast	framework	and	dyntick
This	is	third	part	of	the	chapter	which	describes	timers	and	time	management	related	stuff	in
the	Linux	kernel	and	we	stopped	on	the		clocksource		framework	in	the	previous	part.	We
have	started	to	consider	this	framework	because	it	is	closely	related	to	the	special	counters
which	are	provided	by	the	Linux	kernel.	One	of	these	counters	which	we	already	saw	in	the
first	part	of	this	chapter	is	-		jiffies	.	As	I	already	wrote	in	the	first	part	of	this	chapter,	we
will	consider	time	management	related	stuff	step	by	step	during	the	Linux	kernel
initialization.	Previous	step	was	call	of	the:

register_refined_jiffies(CLOCK_TICK_RATE);

function	which	defined	in	the	kernel/time/jiffies.c	source	code	file	and	executes	initialization
of	the		refined_jiffies		clock	source	for	us.	Recall	that	this	function	is	called	from	the
	setup_arch		function	that	defined	in	the
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c	source	code	and
executes	architecture-specific	(x86_64	in	our	case)	initialization.	Look	on	the	implementation
of	the		setup_arch		and	you	will	note	that	the	call	of	the		register_refined_jiffies		is	the	last
step	before	the		setup_arch		function	will	finish	its	work.

There	are	many	different		x86_64		specific	things	already	configured	after	the	end	of	the
	setup_arch		execution.	For	example	some	early	interrupt	handlers	already	able	to	handle
interrupts,	memory	space	reserved	for	the	initrd,	DMI	scanned,	the	Linux	kernel	log	buffer	is
already	set	and	this	means	that	the	printk	function	is	able	to	work,	e820	parsed	and	the
Linux	kernel	already	knows	about	available	memory	and	and	many	many	other	architecture
specific	things	(if	you	are	interesting,	you	can	read	more	about	the		setup_arch		function	and
Linux	kernel	initialization	process	in	the	second	chapter	of	this	book).

Now,	the		setup_arch		finished	its	work	and	we	can	back	to	the	generic	Linux	kernel	code.
Recall	that	the		setup_arch		function	was	called	from	the		start_kernel		function	which	is
defined	in	the	init/main.c	source	code	file.	So,	we	shall	return	to	this	function.	You	can	see
that	there	are	many	different	function	are	called	right	after		setup_arch		function	inside	of	the
	start_kernel		function,	but	since	our	chapter	is	devoted	to	timers	and	time	management
related	stuff,	we	will	skip	all	code	which	is	not	related	to	this	topic.	The	first	function	which	is
related	to	the	time	management	in	the	Linux	kernel	is:

The	tick	broadcast	framework	and	dyntick

449

https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-2.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/E820
https://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/master/init/main.c


tick_init();

in	the		start_kernel	.	The		tick_init		function	defined	in	the	kernel/time/tick-common.c
source	code	file	and	does	two	things:

Initialization	of		tick	broadcast		framework	related	data	structures;
Initialization	of		full		tickless	mode	related	data	structures.

We	didn't	see	anything	related	to	the		tick	broadcast		framework	in	this	book	and	didn't
know	anything	about	tickless	mode	in	the	Linux	kernel.	So,	the	main	point	of	this	part	is	to
look	on	these	concepts	and	to	know	what	are	they.

The	idle	process
First	of	all,	let's	look	on	the	implementation	of	the		tick_init		function.	As	I	already	wrote,
this	function	defined	in	the	kernel/time/tick-common.c	source	code	file	and	consists	from	the
two	calls	of	following	functions:

void	__init	tick_init(void)

{

				tick_broadcast_init();

				tick_nohz_init();

}

As	you	can	understand	from	the	paragraph's	title,	we	are	interesting	only	in	the
	tick_broadcast_init		function	for	now.	This	function	defined	in	the	kernel/time/tick-
broadcast.c	source	code	file	and	executes	initialization	of	the		tick	broadcast		framework
related	data	structures.	Before	we	will	look	on	the	implementation	of	the
	tick_broadcast_init		function	and	will	try	to	understand	what	does	this	function	do,	we	need
to	know	about		tick	broadcast		framework.

Main	point	of	a	central	processor	is	to	execute	programs.	But	sometimes	a	processor	may
be	in	a	special	state	when	it	is	not	being	used	by	any	program.	This	special	state	is	called	-
idle.	When	the	processor	has	no	anything	to	execute,	the	Linux	kernel	launches		idle		task.
We	already	saw	a	little	about	this	in	the	last	part	of	the	Linux	kernel	initialization	process.
When	the	Linux	kernel	will	finish	all	initialization	processes	in	the		start_kernel		function
from	the	init/main.c	source	code	file,	it	will	call	the		rest_init		function	from	the	same	source
code	file.	Main	point	of	this	function	is	to	launch	kernel		init		thread	and	the		kthreadd	
thread,	to	call	the		schedule		function	to	start	task	scheduling	and	to	go	to	sleep	by	calling
the		cpu_idle_loop		function	that	defined	in	the	kernel/sched/idle.c	source	code	file.

The	tick	broadcast	framework	and	dyntick

450

https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/time/tick-broadcast.c
https://en.wikipedia.org/wiki/Idle_%28CPU%29
https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-10.html
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/sched/idle.c


The		cpu_idle_loop		function	represents	infinite	loop	which	checks	the	need	for	rescheduling
on	each	iteration.	After	the	scheduler	finds	something	to	execute,	the		idle		process	will
finish	its	work	and	the	control	will	be	moved	to	a	new	runnable	task	with	the	call	of	the
	schedule_preempt_disabled		function:

static	void	cpu_idle_loop(void)

{

				while	(1)	{

								while	(!need_resched())	{

								...

								...

								...

								/*	the	main	idle	function	*/

								cpuidle_idle_call();

				}

				...

				...

				...

				schedule_preempt_disabled();

}

Of	course,	we	will	not	consider	full	implementation	of	the		cpu_idle_loop		function	and	details
of	the		idle		state	in	this	part,	because	it	is	not	related	to	our	topic.	But	there	is	one
interesting	moment	for	us.	We	know	that	the	processor	can	execute	only	one	task	in	one
time.	How	does	the	Linux	kernel	decide	to	reschedule	and	stop		idle		process	if	the
processor	executes	infinite	loop	in	the		cpu_idle_loop	?	The	answer	is	system	timer
interrupts.	When	an	interrupt	occurs,	the	processor	stops	the		idle		thread	and	transfers
control	to	an	interrupt	handler.	After	the	system	timer	interrupt	handler	will	be	handled,	the
	need_resched		will	return	true	and	the	Linux	kernel	will	stop		idle		process	and	will	transfer
control	to	the	current	runnable	task.	But	handling	of	the	system	timer	interrupts	is	not
effective	for	power	management,	because	if	a	processor	is	in		idle		state,	there	is	little	point
in	sending	it	a	system	timer	interrupt.

By	default,	there	is	the		CONFIG_HZ_PERIODIC		kernel	configuration	option	which	is	enabled	in
the	Linux	kernel	and	tells	to	handle	each	interrupt	of	the	system	timer.	To	solve	this	problem,
the	Linux	kernel	provides	two	additional	ways	of	managing	scheduling-clock	interrupts:

The	first	is	to	omit	scheduling-clock	ticks	on	idle	processors.	To	enable	this	behaviour	in	the
Linux	kernel,	we	need	to	enable	the		CONFIG_NO_HZ_IDLE		kernel	configuration	option.	This
option	allows	Linux	kernel	to	avoid	sending	timer	interrupts	to	idle	processors.	In	this	case
periodic	timer	interrupts	will	be	replaced	with	on-demand	interrupts.	This	mode	is	called	-
	dyntick-idle		mode.	But	if	the	kernel	does	not	handle	interrupts	of	a	system	timer,	how	can
the	kernel	decide	if	the	system	has	nothing	to	do?

The	tick	broadcast	framework	and	dyntick

451

https://en.wikipedia.org/wiki/Power_management


Whenever	the	idle	task	is	selected	to	run,	the	periodic	tick	is	disabled	with	the	call	of	the
	tick_nohz_idle_enter		function	that	defined	in	the	kernel/time/tick-sched.c	source	code	file
and	enabled	with	the	call	of	the		tick_nohz_idle_exit		function.	There	is	special	concept	in
the	Linux	kernel	which	is	called	-		clock	event	devices		that	are	used	to	schedule	the	next
interrupt.	This	concept	provides	API	for	devices	which	can	deliver	interrupts	at	a	specific
time	in	the	future	and	represented	by	the		clock_event_device		structure	in	the	Linux	kernel.
We	will	not	dive	into	implementation	of	the		clock_event_device		structure	now.	We	will	see	it
in	the	next	prat	of	this	chapter.	But	there	is	one	interesting	moment	for	us	right	now.

The	second	way	is	to	omit	scheduling-clock	ticks	on	processors	that	are	either	in		idle	
state	or	that	have	only	one	runnable	task	or	in	other	words	busy	processor.	We	can	enable
this	feature	with	the		CONFIG_NO_HZ_FULL		kernel	configuration	option	and	it	allows	to	reduce
the	number	of	timer	interrupts	significantly.

Besides	the		cpu_idle_loop	,	idle	processor	can	be	in	a	sleeping	state.	The	Linux	kernel
provides	special		cpuidle		framework.	Main	point	of	this	framework	is	to	put	an	idle
processor	to	sleeping	states.	The	name	of	the	set	of	these	states	is	-		C-states	.	But	how
does	a	processor	will	be	woken	if	local	timer	is	disabled?	The	linux	kernel	provides		tick
broadcast		framework	for	this.	The	main	point	of	this	framework	is	assign	a	timer	which	is	not
affected	by	the		C-states	.	This	timer	will	wake	a	sleeping	processor.

Now,	after	some	theory	we	can	return	to	the	implementation	of	our	function.	Let's	recall	that
the		tick_init		function	just	calls	two	following	functions:

void	__init	tick_init(void)

{

				tick_broadcast_init();

				tick_nohz_init();

}

Let's	consider	the	first	function.	The	first		tick_broadcast_init		function	defined	in	the
kernel/time/tick-broadcast.c	source	code	file	and	executes	initialization	of	the		tick
broadcast		framework	related	data	structures.	Let's	look	on	the	implementation	of	the
	tick_broadcast_init		function:

The	tick	broadcast	framework	and	dyntick

452

https://github.com/torvalds/linux/blob/master/kernel/time/tich-sched.c
https://github.com/torvalds/linux/blob/master/kernel/time/tick-broadcast.c


void	__init	tick_broadcast_init(void)

{

								zalloc_cpumask_var(&tick_broadcast_mask,	GFP_NOWAIT);

								zalloc_cpumask_var(&tick_broadcast_on,	GFP_NOWAIT);

								zalloc_cpumask_var(&tmpmask,	GFP_NOWAIT);

#ifdef	CONFIG_TICK_ONESHOT

									zalloc_cpumask_var(&tick_broadcast_oneshot_mask,	GFP_NOWAIT);

									zalloc_cpumask_var(&tick_broadcast_pending_mask,	GFP_NOWAIT);

									zalloc_cpumask_var(&tick_broadcast_force_mask,	GFP_NOWAIT);

#endif

}

As	we	can	see,	the		tick_broadcast_init		function	allocates	different	cpumasks	with	the	help
of	the		zalloc_cpumask_var		function.	The		zalloc_cpumask_var		function	defined	in	the
lib/cpumask.c	source	code	file	and	expands	to	the	call	of	the	following	function:

bool	zalloc_cpumask_var(cpumask_var_t	*mask,	gfp_t	flags)

{

								return	alloc_cpumask_var(mask,	flags	|	__GFP_ZERO);

}

Ultimately,	the	memory	space	will	be	allocated	for	the	given		cpumask		with	the	certain	flags
with	the	help	of	the		kmalloc_node		function:

*mask	=	kmalloc_node(cpumask_size(),	flags,	node);

Now	let's	look	on	the		cpumasks		that	will	be	initialized	in	the		tick_broadcast_init		function.
As	we	can	see,	the		tick_broadcast_init		function	will	initialize	six		cpumasks	,	and	moreover,
initialization	of	the	last	three		cpumasks		will	be	depended	on	the		CONFIG_TICK_ONESHOT		kernel
configuration	option.

The	first	three		cpumasks		are:

	tick_broadcast_mask		-	the	bitmap	which	represents	list	of	processors	that	are	in	a
sleeping	mode;
	tick_broadcast_on		-	the	bitmap	that	stores	numbers	of	processors	which	are	in	a
periodic	broadcast	state;
	tmpmask		-	this	bitmap	for	temporary	usage.

As	we	already	know,	the	next	three		cpumasks		depends	on	the		CONFIG_TICK_ONESHOT		kernel
configuration	option.	Actually	each	clock	event	devices	can	be	in	one	of	two	modes:

	periodic		-	clock	events	devices	that	support	periodic	events;
	oneshot		-	clock	events	devices	that	capable	of	issuing	events	that	happen	only	once.

The	tick	broadcast	framework	and	dyntick

453

https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/master/lib/cpumask.c


The	linux	kernel	defines	two	mask	for	such	clock	events	devices	in	the
include/linux/clockchips.h	header	file:

#define	CLOCK_EVT_FEAT_PERIODIC								0x000001

#define	CLOCK_EVT_FEAT_ONESHOT									0x000002

So,	the	last	three		cpumasks		are:

	tick_broadcast_oneshot_mask		-	stores	numbers	of	processors	that	must	be	notified;
	tick_broadcast_pending_mask		-	stores	numbers	of	processors	that	pending	broadcast;
	tick_broadcast_force_mask		-	stores	numbers	of	processors	with	enforced	broadcast.

We	have	initialized	six		cpumasks		in	the		tick	broadcast		framework,	and	now	we	can
proceed	to	implementation	of	this	framework.

The		tick	broadcast		framework
Hardware	may	provide	some	clock	source	devices.	When	a	processor	sleeps	and	its	local
timer	stopped,	there	must	be	additional	clock	source	device	that	will	handle	awakening	of	a
processor.	The	Linux	kernel	uses	these		special		clock	source	devices	which	can	raise	an
interrupt	at	a	specified	time.	We	already	know	that	such	timers	called		clock	events		devices
in	the	Linux	kernel.	Besides		clock	events		devices.	Actually,	each	processor	in	the	system
has	its	own	local	timer	which	is	programmed	to	issue	interrupt	at	the	time	of	the	next
deferred	task.	Also	these	timers	can	be	programmed	to	do	a	periodical	job,	like	updating
	jiffies		and	etc.	These	timers	represented	by	the		tick_device		structure	in	the	Linux
kernel.	This	structure	defined	in	the	kernel/time/tick-sched.h	header	file	and	looks:

struct	tick_device	{

								struct	clock_event_device	*evtdev;

								enum	tick_device_mode	mode;

};

Note,	that	the		tick_device		structure	contains	two	fields.	The	first	field	-		evtdev		represents
pointer	to	the		clock_event_device		structure	that	defined	in	the	include/linux/clockchips.h
header	file	and	represents	descriptor	of	a	clock	event	device.	A		clock	event		device	allows
to	register	an	event	that	will	happen	in	the	future.	As	I	already	wrote,	we	will	not	consider
	clock_event_device		structure	and	related	API	in	this	part,	but	will	see	it	in	the	next	part.

The	second	field	of	the		tick_device		structure	represents	mode	of	the		tick_device	.	As	we
already	know,	the	mode	can	be	one	of	the:

The	tick	broadcast	framework	and	dyntick

454

https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/time/tick-sched.h
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h


num	tick_device_mode	{

								TICKDEV_MODE_PERIODIC,

								TICKDEV_MODE_ONESHOT,

};

Each		clock	events		device	in	the	system	registers	itself	by	the	call	of	the
	clockevents_register_device		function	or		clockevents_config_and_register		function	during
initialization	process	of	the	Linux	kernel.	During	the	registration	of	a	new		clock	events	
device,	the	Linux	kernel	calls	the		tick_check_new_device		function	that	defined	in	the
kernel/time/tick-common.c	source	code	file	and	checks	the	given		clock	events		device
should	be	used	by	the	Linux	kernel.	After	all	checks,	the		tick_check_new_device		function
executes	a	call	of	the:

tick_install_broadcast_device(newdev);

function	that	checks	that	the	given		clock	event		device	can	be	broadcast	device	and	install
it,	if	the	given	device	can	be	broadcast	device.	Let's	look	on	the	implementation	of	the
	tick_install_broadcast_device		function:

void	tick_install_broadcast_device(struct	clock_event_device	*dev)

{

				struct	clock_event_device	*cur	=	tick_broadcast_device.evtdev;

				if	(!tick_check_broadcast_device(cur,	dev))

								return;

				if	(!try_module_get(dev->owner))

								return;

				clockevents_exchange_device(cur,	dev);

				if	(cur)

								cur->event_handler	=	clockevents_handle_noop;

				tick_broadcast_device.evtdev	=	dev;

				if	(!cpumask_empty(tick_broadcast_mask))

								tick_broadcast_start_periodic(dev);

				if	(dev->features	&	CLOCK_EVT_FEAT_ONESHOT)

								tick_clock_notify();

}

First	of	all	we	get	the	current		clock	event		device	from	the		tick_broadcast_device	.	The
	tick_broadcast_device		defined	in	the	kernel/time/tick-common.c	source	code	file:

The	tick	broadcast	framework	and	dyntick

455

https://github.com/torvalds/linux/blob/master/kernel/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/tick-common.c


static	struct	tick_device	tick_broadcast_device;

and	represents	external	clock	device	that	keeps	track	of	events	for	a	processor.	The	first
step	after	we	got	the	current	clock	device	is	the	call	of	the		tick_check_broadcast_device	
function	which	checks	that	a	given	clock	events	device	can	be	utilized	as	broadcast	device.
The	main	point	of	the		tick_check_broadcast_device		function	is	to	check	value	of	the
	features		field	of	the	given		clock	events		device.	As	we	can	understand	from	the	name	of
this	field,	the		features		field	contains	a	clock	event	device	features.	Available	values
defined	in	the	include/linux/clockchips.h	header	file	and	can	be	one	of	the
	CLOCK_EVT_FEAT_PERIODIC		-	which	represents	a	clock	events	device	which	supports	periodic
events	and	etc.	So,	the		tick_check_broadcast_device		function	check		features		flags	for
	CLOCK_EVT_FEAT_ONESHOT	,		CLOCK_EVT_FEAT_DUMMY		and	other	flags	and	returns		false		if	the
given	clock	events	device	has	one	of	these	features.	In	other	way	the
	tick_check_broadcast_device		function	compares		ratings		of	the	given	clock	event	device
and	current	clock	event	device	and	returns	the	best.

After	the		tick_check_broadcast_device		function,	we	can	see	the	call	of	the		try_module_get	
function	that	checks	module	owner	of	the	clock	events.	We	need	to	do	it	to	be	sure	that	the
given		clock	events		device	was	correctly	initialized.	The	next	step	is	the	call	of	the
	clockevents_exchange_device		function	that	defined	in	the	kernel/time/clockevents.c	source
code	file	and	will	release	old	clock	events	device	and	replace	the	previous	functional	handler
with	a	dummy	handler.

In	the	last	step	of	the		tick_install_broadcast_device		function	we	check	that	the
	tick_broadcast_mask		is	not	empty	and	start	the	given		clock	events		device	in	periodic	mode
with	the	call	of	the		tick_broadcast_start_periodic		function:

if	(!cpumask_empty(tick_broadcast_mask))

				tick_broadcast_start_periodic(dev);

if	(dev->features	&	CLOCK_EVT_FEAT_ONESHOT)

				tick_clock_notify();

The		tick_broadcast_mask		filled	in	the		tick_device_uses_broadcast		function	that	checks	a
	clock	events		device	during	registration	of	this		clock	events		device:

The	tick	broadcast	framework	and	dyntick

456

https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c


int	cpu	=	smp_processor_id();

int	tick_device_uses_broadcast(struct	clock_event_device	*dev,	int	cpu)

{

				...

				...

				...

				if	(!tick_device_is_functional(dev))	{

								...

								cpumask_set_cpu(cpu,	tick_broadcast_mask);

								...

				}

				...

				...

				...

}

More	about	the		smp_processor_id		macro	you	can	read	in	the	fourth	part	of	the	Linux	kernel
initialization	process	chapter.

The		tick_broadcast_start_periodic		function	check	the	given		clock	event		device	and	call
the		tick_setup_periodic		function:

static	void	tick_broadcast_start_periodic(struct	clock_event_device	*bc)

{

				if	(bc)

								tick_setup_periodic(bc,	1);

}

that	defined	in	the	kernel/time/tick-common.c	source	code	file	and	sets	broadcast	handler	for
the	given		clock	event		device	by	the	call	of	the	following	function:

tick_set_periodic_handler(dev,	broadcast);

This	function	checks	the	second	parameter	which	represents	broadcast	state	(	on		or		off	)
and	sets	the	broadcast	handler	depends	on	its	value:

void	tick_set_periodic_handler(struct	clock_event_device	*dev,	int	broadcast)

{

				if	(!broadcast)

								dev->event_handler	=	tick_handle_periodic;

				else

								dev->event_handler	=	tick_handle_periodic_broadcast;

}

The	tick	broadcast	framework	and	dyntick

457

https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c


When	an		clock	event		device	will	issue	an	interrupt,	the		dev->event_handler		will	be	called.
For	example,	let's	look	on	the	interrupt	handler	of	the	high	precision	event	timer	which	is
located	in	the	arch/x86/kernel/hpet.c	source	code	file:

static	irqreturn_t	hpet_interrupt_handler(int	irq,	void	*data)

{

				struct	hpet_dev	*dev	=	(struct	hpet_dev	*)data;

				struct	clock_event_device	*hevt	=	&dev->evt;

				if	(!hevt->event_handler)	{

								printk(KERN_INFO	"Spurious	HPET	timer	interrupt	on	HPET	timer	%d\n",

																dev->num);

								return	IRQ_HANDLED;

				}

				hevt->event_handler(hevt);

				return	IRQ_HANDLED;

}

The		hpet_interrupt_handler		gets	the	irq	specific	data	and	check	the	event	handler	of	the
	clock	event		device.	Recall	that	we	just	set	in	the		tick_set_periodic_handler		function.	So
the		tick_handler_periodic_broadcast		function	will	be	called	in	the	end	of	the	high	precision
event	timer	interrupt	handler.

The		tick_handler_periodic_broadcast		function	calls	the

bc_local	=	tick_do_periodic_broadcast();

function	which	stores	numbers	of	processors	which	have	asked	to	be	woken	up	in	the
temporary		cpumask		and	call	the		tick_do_broadcast		function:

cpumask_and(tmpmask,	cpu_online_mask,	tick_broadcast_mask);

return	tick_do_broadcast(tmpmask);

The		tick_do_broadcast		calls	the		broadcast		function	of	the	given	clock	events	which	sends
IPI	interrupt	to	the	set	of	the	processors.	In	the	end	we	can	call	the	event	handler	of	the
given		tick_device	:

if	(bc_local)

				td->evtdev->event_handler(td->evtdev);

which	actually	represents	interrupt	handler	of	the	local	timer	of	a	processor.	After	this	a
processor	will	wake	up.	That	is	all	about		tick	broadcast		framework	in	the	Linux	kernel.	We
have	missed	some	aspects	of	this	framework,	for	example	reprogramming	of	a		clock	event	

The	tick	broadcast	framework	and	dyntick

458

https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/hpet.c
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Inter-processor_interrupt


device	and	broadcast	with	the	oneshot	timer	and	etc.	But	the	Linux	kernel	is	very	big,	it	is
not	real	to	cover	all	aspects	of	it.	I	think	it	will	be	interesting	to	dive	into	with	yourself.

If	you	remember,	we	have	started	this	part	with	the	call	of	the		tick_init		function.	We	just
consider	the		tick_broadcast_init		function	and	releated	theory,	but	the		tick_init		function
contains	another	call	of	a	function	and	this	function	is	-		tick_nohz_init	.	Let's	look	on	the
implementation	of	this	function.

Initialization	of	dyntick	related	data	structures
We	already	saw	some	information	about		dyntick		concept	in	this	part	and	we	know	that	this
concept	allows	kernel	to	disable	system	timer	interrupts	in	the		idle		state.	The
	tick_nohz_init		function	makes	initialization	of	the	different	data	structures	which	are
related	to	this	concept.	This	function	defined	in	the	kernel/time/tick-sched.c	source	code	file
and	starts	from	the	check	of	the	value	of	the		tick_nohz_full_running		variable	which
represents	state	of	the	tick-less	mode	for	the		idle		state	and	the	state	when	system	timer
interrups	are	disabled	during	a	processor	has	only	one	runnable	task:

if	(!tick_nohz_full_running)	{

				if	(tick_nohz_init_all()	<	0)

				return;

}

If	this	mode	is	not	running	we	call	the		tick_nohz_init_all		function	that	defined	in	the	same
source	code	file	and	check	its	result.	The		tick_nohz_init_all		function	tries	to	allocate	the
	tick_nohz_full_mask		with	the	call	of	the		alloc_cpumask_var		that	will	allocate	space	for	a
	tick_nohz_full_mask	.	The		tck_nohz_full_mask		will	store	numbers	of	processors	that	have
enabled	full		NO_HZ	.	After	successful	allocation	of	the		tick_nohz_full_mask		we	set	all	bits	in
the		tick_nogz_full_mask	,	set	the		tick_nohz_full_running		and	return	result	to	the
	tick_nohz_init		function:

The	tick	broadcast	framework	and	dyntick

459

https://github.com/torvalds/linux/blob/master/kernel/time/tich-sched.c


static	int	tick_nohz_init_all(void)

{

								int	err	=	-1;

#ifdef	CONFIG_NO_HZ_FULL_ALL

								if	(!alloc_cpumask_var(&tick_nohz_full_mask,	GFP_KERNEL))	{

																WARN(1,	"NO_HZ:	Can't	allocate	full	dynticks	cpumask\n");

																return	err;

								}

								err	=	0;

								cpumask_setall(tick_nohz_full_mask);

								tick_nohz_full_running	=	true;

#endif

								return	err;

}

In	the	next	step	we	try	to	allocate	a	memory	space	for	the		housekeeping_mask	:

if	(!alloc_cpumask_var(&housekeeping_mask,	GFP_KERNEL))	{

				WARN(1,	"NO_HZ:	Can't	allocate	not-full	dynticks	cpumask\n");

				cpumask_clear(tick_nohz_full_mask);

				tick_nohz_full_running	=	false;

				return;

}

This		cpumask		will	store	number	of	processor	for		housekeeping		or	in	other	words	we	need	at
least	in	one	processor	that	will	not	be	in		NO_HZ		mode,	because	it	will	do	timekeeping	and
etc.	After	this	we	check	the	result	of	the	architecture-specific		arch_irq_work_has_interrupt	
function.	This	function	checks	ability	to	send	inter-processor	interrupt	for	the	certain
architecture.	We	need	to	check	this,	because	system	timer	of	a	processor	will	be	disabled
during		NO_HZ		mode,	so	there	must	be	at	least	one	online	processor	which	can	send	inter-
processor	interrupt	to	awake	offline	processor.	This	function	defined	in	the
arch/x86/include/asm/irq_work.h	header	file	for	the	x86_64	and	just	checks	that	a	processor
has	APIC	from	the	CPUID:

static	inline	bool	arch_irq_work_has_interrupt(void)

{

				return	cpu_has_apic;

}

If	a	processor	has	not		APIC	,	the	Linux	kernel	prints	warning	message,	clears	the
	tick_nohz_full_mask		cpumask,	copies	numbers	of	all	possible	processors	in	the	system	to
the		housekeeping_mask		and	resets	the	value	of	the		tick_nohz_full_running		variable:

The	tick	broadcast	framework	and	dyntick

460

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irq_work.h
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/CPUID


if	(!arch_irq_work_has_interrupt())	{

				pr_warning("NO_HZ:	Can't	run	full	dynticks	because	arch	doesn't	"

											"support	irq	work	self-IPIs\n");

				cpumask_clear(tick_nohz_full_mask);

				cpumask_copy(housekeeping_mask,	cpu_possible_mask);

				tick_nohz_full_running	=	false;

				return;

}

After	this	step,	we	get	the	number	of	the	current	processor	by	the	call	of	the
	smp_processor_id		and	check	this	processor	in	the		tick_nohz_full_mask	.	If	the
	tick_nohz_full_mask		contains	a	given	processor	we	clear	appropriate	bit	in	the
	tick_nohz_full_mask	:

cpu	=	smp_processor_id();

if	(cpumask_test_cpu(cpu,	tick_nohz_full_mask))	{

				pr_warning("NO_HZ:	Clearing	%d	from	nohz_full	range	for	timekeeping\n",	cpu);

				cpumask_clear_cpu(cpu,	tick_nohz_full_mask);

}

Because	this	processor	will	be	used	for	timekeeping.	After	this	step	we	put	all	numbers	of
processors	that	are	in	the		cpu_possible_mask		and	not	in	the		tick_nohz_full_mask	:

cpumask_andnot(housekeeping_mask,

											cpu_possible_mask,	tick_nohz_full_mask);

After	this	operation,	the		housekeeping_mask		will	contain	all	processors	of	the	system	except
a	processor	for	timekeeping.	In	the	last	step	of	the		tick_nohz_init_all		function,	we	are
going	through	all	processors	that	are	defined	in	the		tick_nohz_full_mask		and	call	the
following	function	for	an	each	processor:

for_each_cpu(cpu,	tick_nohz_full_mask)

				context_tracking_cpu_set(cpu);

The		context_tracking_cpu_set		function	defined	in	the	kernel/context_tracking.c	source	code
file	and	main	point	of	this	function	is	to	set	the		context_tracking.active		percpu	variable	to
	true	.	When	the		active		field	will	be	set	to		true		for	the	certain	processor,	all	context
switches	will	be	ignored	by	the	Linux	kernel	context	tracking	subsystem	for	this	processor.

That's	all.	This	is	the	end	of	the		tick_nohz_init		function.	After	this		NO_HZ		related	data
structures	will	be	initialzed.	We	didn't	see	API	of	the		NO_HZ		mode,	but	will	see	it	soon.

The	tick	broadcast	framework	and	dyntick

461

https://github.com/torvalds/linux/blob/master/kernel/context_tracking.c
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Context_switch


Conclusion
This	is	the	end	of	the	third	part	of	the	chapter	that	describes	timers	and	timer	management
related	stuff	in	the	Linux	kernel.	In	the	previous	part	got	acquainted	with	the		clocksource	
concept	in	the	Linux	kernel	which	represents	framework	for	managing	different	clock	source
in	a	interrupt	and	hardware	characteristics	independent	way.	We	continued	to	look	on	the
Linux	kernel	initialization	process	in	a	time	management	context	in	this	part	and	got
acquainted	with	two	new	concepts	for	us:	the		tick	broadcast		framework	and		tick-less	
mode.	The	first	concept	helps	the	Linux	kernel	to	deal	with	processors	which	are	in	deep
sleep	and	the	second	concept	represents	the	mode	in	which	kernel	may	work	to	improve
power	management	of		idle		processors.

In	the	next	part	we	will	continue	to	dive	into	timer	management	related	things	in	the	Linux
kernel	and	will	see	new	concept	for	us	-		timers	.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
x86_64
initrd
interrupt
DMI
printk
CPU	idle
power	management
NO_HZ	documentation
cpumasks
high	precision	event	timer
irq
IPI
CPUID
APIC
percpu
context	switches
Previous	part

The	tick	broadcast	framework	and	dyntick

462

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/Idle_%28CPU%29
https://en.wikipedia.org/wiki/Power_management
https://github.com/torvalds/linux/blob/master/Documentation/timers/NO_HZ.txt
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://en.wikipedia.org/wiki/CPUID
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Context_switch
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-2.html


The	tick	broadcast	framework	and	dyntick

463



Timers	and	time	management	in	the	Linux
kernel.	Part	4.

Timers
This	is	fourth	part	of	the	chapter	which	describes	timers	and	time	management	related	stuff
in	the	Linux	kernel	and	in	the	previous	part	we	knew	about	the		tick	broadcast		framework
and		NO_HZ		mode	in	the	Linux	kernel.	We	will	continue	to	dive	into	the	time	management
related	stuff	in	the	Linux	kernel	in	this	part	and	will	be	acquainted	with	yet	another	concept	in
the	Linux	kernel	-		timers	.	Before	we	will	look	at	timers	in	the	Linux	kernel,	we	have	to	learn
some	theory	about	this	concept.	Note	that	we	will	consider	software	timers	in	this	part.

The	Linux	kernel	provides	a		software	timer		concept	to	allow	to	kernel	functions	could	be
invoked	at	future	moment.	Timers	are	widely	used	in	the	Linux	kernel.	For	example,	look	in
the	net/netfilter/ipset/ip_set_list_set.c	source	code	file.	This	source	code	file	provides
implementation	of	the	framework	for	the	managing	of	groups	of	IP	addresses.

We	can	find	the		list_set		structure	that	contains		gc		filed	in	this	source	code	file:

struct	list_set	{

				...

				struct	timer_list	gc;

				...

};

Not	that	the		gc		filed	has		timer_list		type.	This	structure	defined	in	the
include/linux/timer.h	header	file	and	main	point	of	this	structure	is	to	store		dynamic		timers	in
the	Linux	kernel.	Actually,	the	Linux	kernel	provides	two	types	of	timers	called	dynamic
timers	and	interval	timers.	First	type	of	timers	is	used	by	the	kernel,	and	the	second	can	be
used	by	user	mode.	The		timer_list		structure	contains	actual		dynamic		timers.	The
	list_set		contains		gc		timer	in	our	example	represents	timer	for	garbage	collection.	This
timer	will	be	initialized	in	the		list_set_gc_init		function:

Introduction	to	timers

464

https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-3.html
https://github.com/torvalds/linux/blob/master/net/netfilter/ipset/ip_set_list_set.c
https://en.wikipedia.org/wiki/Internet_Protocol
https://github.com/torvalds/linux/blob/master/include/linux/timer.h


static	void

list_set_gc_init(struct	ip_set	*set,	void	(*gc)(unsigned	long	ul_set))

{

				struct	list_set	*map	=	set->data;

				...

				...

				...

				map->gc.function	=	gc;

				map->gc.expires	=	jiffies	+	IPSET_GC_PERIOD(set->timeout)	*	HZ;

				...

				...

				...

}

A	function	that	is	pointed	by	the		gc		pointer,	will	be	called	after	timeout	which	is	equal	to	the
	map->gc.expires	.

Ok,	we	will	not	dive	into	this	example	with	the	netfilter,	because	this	chapter	is	not	about
network	related	stuff.	But	we	saw	that	timers	are	widely	used	in	the	Linux	kernel	and	learned
that	they	represent	concept	which	allows	to	functions	to	be	called	in	future.

Now	let's	continue	to	research	source	code	of	Linux	kernel	which	is	related	to	the	timers	and
time	management	stuff	as	we	did	it	in	all	previous	chapters.

Introduction	to	dynamic	timers	in	the	Linux
kernel
As	I	already	wrote,	we	knew	about	the		tick	broadcast		framework	and		NO_HZ		mode	in	the
previous	part.	They	will	be	initialized	in	the	init/main.c	source	code	file	by	the	call	of	the
	tick_init		function.	If	we	will	look	at	this	source	code	file,	we	will	see	that	the	next	time
management	related	function	is:

init_timers();

This	function	defined	in	the	kernel/time/timer.c	source	code	file	and	contains	calls	of	four
functions:

Introduction	to	timers

465

https://en.wikipedia.org/wiki/Netfilter
https://en.wikipedia.org/wiki/Computer_network
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-3.html
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/time/timer.c


void	__init	init_timers(void)

{

				init_timer_cpus();

				init_timer_stats();

				timer_register_cpu_notifier();

				open_softirq(TIMER_SOFTIRQ,	run_timer_softirq);

}

Let's	look	on	implementation	of	each	function.	The	first	function	is		init_timer_cpus		defined
in	the	same	source	code	file	and	just	calls	the		init_timer_cpu		function	for	each	possible
processor	in	the	system:

static	void	__init	init_timer_cpus(void)

{

				int	cpu;

				for_each_possible_cpu(cpu)

								init_timer_cpu(cpu);

}

If	you	do	not	know	or	do	not	remember	what	is	it	a		possible		cpu,	you	can	read	the	special
part	of	this	book	which	describes		cpumask		concept	in	the	Linux	kernel.	In	short	words,	a
	possible		processor	is	a	processor	which	can	be	plugged	in	anytime	during	the	life	of	the
system.

The		init_timer_cpu		function	does	main	work	for	us,	namely	it	executes	initialization	of	the
	tvec_base		structure	for	each	processor.	This	structure	defined	in	the	kernel/time/timer.c
source	code	file	and	stores	data	related	to	a		dynamic		timer	for	a	certain	processor.	Let's
look	on	the	definition	of	this	structure:

struct	tvec_base	{

				spinlock_t	lock;

				struct	timer_list	*running_timer;

				unsigned	long	timer_jiffies;

				unsigned	long	next_timer;

				unsigned	long	active_timers;

				unsigned	long	all_timers;

				int	cpu;

				bool	migration_enabled;

				bool	nohz_active;

				struct	tvec_root	tv1;

				struct	tvec	tv2;

				struct	tvec	tv3;

				struct	tvec	tv4;

				struct	tvec	tv5;

}	____cacheline_aligned;

Introduction	to	timers

466

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/master/kernel/time/timer.c


The		thec_base		structure	contains	following	fields:	The		lock		for		tvec_base		protection,	the
next		running_timer		field	points	to	the	currently	running	timer	for	the	certain	processor,	the
	timer_jiffies		fields	represents	the	earliest	expiration	time	(it	will	be	used	by	the	Linux
kernel	to	find	already	expired	timers).	The	next	field	-		next_timer		contains	the	next	pending
timer	for	a	next	timer	interrupt	in	a	case	when	a	processor	goes	to	sleep	and	the		NO_HZ	
mode	is	enabled	in	the	Linux	kernel.	The		active_timers		field	provides	accounting	of	non-
deferrable	timers	or	in	other	words	all	timers	that	will	not	be	stopped	during	a	processor	will
go	to	sleep.	The		all_timers		field	tracks	total	number	of	timers	or		active_timers		+
deferrable	timers.	The		cpu		field	represents	number	of	a	processor	which	owns	timers.	The
	migration_enabled		and		nohz_active		fields	are	represent	opportunity	of	timers	migration	to
another	processor	and	status	of	the		NO_HZ		mode	respectively.

The	last	five	fields	of	the		tvec_base		structure	represent	lists	of	dynamic	timers.	The	first
	tv1		field	has:

#define	TVR_SIZE	(1	<<	TVR_BITS)

#define	TVR_BITS	(CONFIG_BASE_SMALL	?	6	:	8)

...

...

...

struct	tvec_root	{

				struct	hlist_head	vec[TVR_SIZE];

};

type.	Note	that	the	value	of	the		TVR_SIZE		depends	on	the		CONFIG_BASE_SMALL		kernel
configuration	option:

Introduction	to	timers

467

https://en.wikipedia.org/wiki/Interrupt


that	reduces	size	of	the	kernel	data	structures	if	disabled.	The		v1		is	array	that	may	contain
	64		or		256		elements	where	an	each	element	represents	a	dynamic	timer	that	will	decay
within	the	next		255		system	timer	interrupts.	Next	three	fields:		tv2	,		tv3		and		tv4		are	lists
with	dynamic	timers	too,	but	they	store	dynamic	timers	which	will	decay	the	next		2^14	-	1	,
	2^20	-	1		and		2^26		respectively.	The	last		tv5		field	represents	list	which	stores	dynamic
timers	with	a	large	expiring	period.

So,	now	we	saw	the		tvec_base		structure	and	description	of	its	fields	and	we	can	look	on	the
implementation	of	the		init_timer_cpu		function.	As	I	already	wrote,	this	function	defined	in
the	kernel/time/timer.c	source	code	file	and	executes	initialization	of	the		tvec_bases	:

static	void	__init	init_timer_cpu(int	cpu)

{

				struct	tvec_base	*base	=	per_cpu_ptr(&tvec_bases,	cpu);

				base->cpu	=	cpu;

				spin_lock_init(&base->lock);

				base->timer_jiffies	=	jiffies;

				base->next_timer	=	base->timer_jiffies;

}

The		tvec_bases		represents	per-cpu	variable	which	represents	main	data	structure	for	a
dynamic	timer	for	a	given	processor.	This		per-cpu		variable	defined	in	the	same	source
code	file:

Introduction	to	timers

468

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html


static	DEFINE_PER_CPU(struct	tvec_base,	tvec_bases);

First	of	all	we're	getting	the	address	of	the		tvec_bases		for	the	given	processor	to		base	
variable	and	as	we	got	it,	we	are	starting	to	initialize	some	of	the		tvec_base		fields	in	the
	init_timer_cpu		function.	After	initialization	of	the		per-cpu		dynamic	timers	with	the	jiffies
and	the	number	of	a	possible	processor,	we	need	to	initialize	a		tstats_lookup_lock		spinlock
in	the		init_timer_stats		function:

void	__init	init_timer_stats(void)

{

				int	cpu;

				for_each_possible_cpu(cpu)

								raw_spin_lock_init(&per_cpu(tstats_lookup_lock,	cpu));

}

The		tstats_lookcup_lock		variable	represents		per-cpu		raw	spinlock:

static	DEFINE_PER_CPU(raw_spinlock_t,	tstats_lookup_lock);

which	will	be	used	for	protection	of	operation	with	statistics	of	timers	that	can	be	accessed
through	the	procfs:

static	int	__init	init_tstats_procfs(void)

{

				struct	proc_dir_entry	*pe;

				pe	=	proc_create("timer_stats",	0644,	NULL,	&tstats_fops);

				if	(!pe)

								return	-ENOMEM;

				return	0;

}

For	example:

Introduction	to	timers

469

https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Procfs


$	cat	/proc/timer_stats

Timerstats	sample	period:	3.888770	s

		12,					0	swapper										hrtimer_stop_sched_tick	(hrtimer_sched_tick)

		15,					1	swapper										hcd_submit_urb	(rh_timer_func)

			4,			959	kedac												schedule_timeout	(process_timeout)

			1,					0	swapper										page_writeback_init	(wb_timer_fn)

		28,					0	swapper										hrtimer_stop_sched_tick	(hrtimer_sched_tick)

		22,		2948	IRQ	4												tty_flip_buffer_push	(delayed_work_timer_fn)

		...

		...

		...

The	next	step	after	initialization	of	the		tstats_lookup_lock		spinlock	is	the	call	of	the
	timer_register_cpu_notifier		function.	This	function	depends	on	the		CONFIG_HOTPLUG_CPU	
kernel	configuration	option	which	enables	support	for	hotplug	processors	in	the	Linux	kernel.

When	a	processor	will	be	logically	offlined,	a	notification	will	be	sent	to	the	Linux	kernel	with
the		CPU_DEAD		or	the		CPU_DEAD_FROZEN		event	by	the	call	of	the		cpu_notifier		macro:

#ifdef	CONFIG_HOTPLUG_CPU

...

...

static	inline	void	timer_register_cpu_notifier(void)

{

				cpu_notifier(timer_cpu_notify,	0);

}

...

...

#else

...

...

static	inline	void	timer_register_cpu_notifier(void)	{	}

...

...

#endif	/*	CONFIG_HOTPLUG_CPU	*/

In	this	case	the		timer_cpu_notify		will	be	called	which	checks	an	event	type	and	will	call	the
	migrate_timers		function:

Introduction	to	timers

470

https://en.wikipedia.org/wiki/Hot_swapping


static	int	timer_cpu_notify(struct	notifier_block	*self,

																												unsigned	long	action,	void	*hcpu)

{

				switch	(action)	{

				case	CPU_DEAD:

				case	CPU_DEAD_FROZEN:

								migrate_timers((long)hcpu);

								break;

				default:

								break;

				}

				return	NOTIFY_OK;

}

This	chapter	will	not	describe		hotplug		related	events	in	the	Linux	kernel	source	code,	but	if
you	are	interesting	in	such	things,	you	can	find	implementation	of	the		migrate_timers	
function	in	the	kernel/time/timer.c	source	code	file.

The	last	step	in	the		init_timers		function	is	the	call	of	the:

open_softirq(TIMER_SOFTIRQ,	run_timer_softirq);

function.	The		open_softirq		function	may	be	already	familar	to	you	if	you	have	read	the
ninth	part	about	the	interrupts	and	interrupt	handling	in	the	Linux	kernel.	In	short	words,	the
	open_softirq		function	defined	in	the	kernel/softirq.c	source	code	file	and	executes
initialization	of	the	deferred	interrupt	handler.

In	our	case	the	deferred	function	is	the		run_timer_softirq		function	that	is	will	be	called	after
a	hardware	interrupt	in	the		do_IRQ		function	which	defined	in	the	arch/x86/kernel/irq.c
source	code	file.	The	main	point	of	this	function	is	to	handle	a	software	dynamic	timer.	The
Linux	kernel	does	not	do	this	thing	during	the	hardware	timer	interrupt	handling	because	this
is	time	consuming	operation.

Let's	look	on	the	implementation	of	the		run_timer_softirq		function:

static	void	run_timer_softirq(struct	softirq_action	*h)

{

				struct	tvec_base	*base	=	this_cpu_ptr(&tvec_bases);

				if	(time_after_eq(jiffies,	base->timer_jiffies))

								__run_timers(base);

}

Introduction	to	timers

471

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html
https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c


At	the	beginning	of	the		run_timer_softirq		function	we	get	a		dynamic		timer	for	a	current
processor	and	compares	the	current	value	of	the	jiffies	with	the	value	of	the		timer_jiffies	
for	the	current	structure	by	the	call	of	the		time_after_eq		macro	which	is	defined	in	the
include/linux/jiffies.h	header	file:

#define	time_after_eq(a,b)										\

				(typecheck(unsigned	long,	a)	&&	\

					typecheck(unsigned	long,	b)	&&	\

				((long)((a)	-	(b))	>=	0))

Reclaim	that	the		timer_jiffies		field	of	the		tvec_base		structure	represents	the	relative	time
when	functions	delayed	by	the	given	timer	will	be	executed.	So	we	compare	these	two
values	and	if	the	current	time	represented	by	the		jiffies		is	greater	than		base-
>timer_jiffies	,	we	call	the		__run_timers		function	that	defined	in	the	same	source	code	file.
Let's	look	on	the	implementation	of	this	function.

As	I	just	wrote,	the		__run_timers		function	runs	all	expired	timers	for	a	given	processor.	This
function	starts	from	the	acquiring	of	the		tvec_base's		lock	to	protect	the		tvec_base		structure

static	inline	void	__run_timers(struct	tvec_base	*base)

{

				struct	timer_list	*timer;

				spin_lock_irq(&base->lock);

				...

				...

				...

				spin_unlock_irq(&base->lock);

}

After	this	it	starts	the	loop	while	the		timer_jiffies		will	not	be	greater	than	the		jiffies	:

while	(time_after_eq(jiffies,	base->timer_jiffies))	{

				...

				...

				...

}

We	can	find	many	different	manipulations	in	the	our	loop,	but	the	main	point	is	to	find
expired	timers	and	call	delayed	functions.	First	of	all	we	need	to	calculate	the		index		of	the
	base->tv1		list	that	stores	the	next	timer	to	be	handled	with	the	following	expression:

index	=	base->timer_jiffies	&	TVR_MASK;

Introduction	to	timers

472

https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://github.com/torvalds/linux/blob/master/include/linux/jiffies.h


where	the		TVR_MASK		is	a	mask	for	the	getting	of	the		tvec_root->vec		elements.	As	we	got
the	index	with	the	next	timer	which	must	be	handled	we	check	its	value.	If	the	index	is	zero,
we	go	through	all	lists	in	our	cascade	table		tv2	,		tv3		and	etc.,	and	rehashing	it	with	the
call	of	the		cascade		function:

if	(!index	&&

				(!cascade(base,	&base->tv2,	INDEX(0)))	&&

								(!cascade(base,	&base->tv3,	INDEX(1)))	&&

																!cascade(base,	&base->tv4,	INDEX(2)))

								cascade(base,	&base->tv5,	INDEX(3));

After	this	we	increase	the	value	of	the		base->timer_jiffies	:

++base->timer_jiffies;

In	the	last	step	we	are	executing	a	corresponding	function	for	each	timer	from	the	list	in	a
following	loop:

hlist_move_list(base->tv1.vec	+	index,	head);

while	(!hlist_empty(head))	{

				...

				...

				...

				timer	=	hlist_entry(head->first,	struct	timer_list,	entry);

				fn	=	timer->function;

				data	=	timer->data;

				spin_unlock(&base->lock);

				call_timer_fn(timer,	fn,	data);

				spin_lock(&base->lock);

				...

				...

				...

}

where	the		call_timer_fn		just	call	the	given	function:

Introduction	to	timers

473



static	void	call_timer_fn(struct	timer_list	*timer,	void	(*fn)(unsigned	long),

																										unsigned	long	data)

{

				...

				...

				...

				fn(data);

				...

				...

				...

}

That's	all.	The	Linux	kernel	has	infrastructure	for		dynamic	timers		from	this	moment.	We	will
not	dive	into	this	interesting	theme.	As	I	already	wrote	the		timers		is	a	widely	used	concept
in	the	Linux	kernel	and	nor	one	part,	nor	two	parts	will	not	cover	understanding	of	such
things	how	it	implemented	and	how	it	works.	But	now	we	know	about	this	concept,	why	does
the	Linux	kernel	needs	in	it	and	some	data	structures	around	it.

Now	let's	look	usage	of		dynamic	timers		in	the	Linux	kernel.

Usage	of	dynamic	timers
As	you	already	can	noted,	if	the	Linux	kernel	provides	a	concept,	it	also	provides	API	for
managing	of	this	concept	and	the		dynamic	timers		concept	is	not	exception	here.	To	use	a
timer	in	the	Linux	kernel	code,	we	must	define	a	variable	with	a		timer_list		type.	We	can
initialize	our		timer_list		structure	in	two	ways.	The	first	is	to	use	the		init_timer		macro
that	defined	in	the	include/linux/timer.h	header	file:

#define	init_timer(timer)				\

				__init_timer((timer),	0)

#define	__init_timer(_timer,	_flags)			\

									init_timer_key((_timer),	(_flags),	NULL,	NULL)

where	the		init_timer_key		function	just	calls	the:

do_init_timer(timer,	flags,	name,	key);

function	which	fields	the	given		timer		with	default	values.	The	second	way	is	to	use	the:

#define	TIMER_INITIALIZER(_function,	_expires,	_data)								\

				__TIMER_INITIALIZER((_function),	(_expires),	(_data),	0)

Introduction	to	timers

474

http://lxr.free-electrons.com/ident?i=timer_list
https://github.com/torvalds/linux/blob/master/include/linux/timer.h


macro	which	will	initilize	the	given		timer_list		structure	too.

After	a		dynamic	timer		is	initialzed	we	can	start	this		timer		with	the	call	of	the:

void	add_timer(struct	timer_list	*	timer);

function	and	stop	it	with	the:

int	del_timer(struct	timer_list	*	timer);

function.

That's	all.

Conclusion
This	is	the	end	of	the	fourth	part	of	the	chapter	that	describes	timers	and	timer	management
related	stuff	in	the	Linux	kernel.	In	the	previous	part	we	got	acquainted	with	the	two	new
concepts:	the		tick	broadcast		framework	and	the		NO_HZ		mode.	In	this	part	we	continued	to
dive	into	time	managemented	related	stuff	and	got	acquainted	with	the	new	concept	-
	dynamic	timer		or	software	timer.	We	didn't	saw	implementation	of	a		dynamic	timers	
management	code	in	details	in	this	part	but	saw	data	structures	and	API	around	this
concept.

In	the	next	part	we	will	continue	to	dive	into	timer	management	related	things	in	the	Linux
kernel	and	will	see	new	concept	for	us	-		timers	.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
IP
netfilter
network
cpumask
interrupt
jiffies

Introduction	to	timers

475

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Netfilter
https://en.wikipedia.org/wiki/Computer_network
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Interrupt
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html


per-cpu
spinlock
procfs
previous	part

Introduction	to	timers

476

https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Procfs
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-3.html


Timers	and	time	management	in	the	Linux
kernel.	Part	5.

Introduction	to	the		clockevents		framework
This	is	fifth	part	of	the	chapter	which	describes	timers	and	time	management	related	stuff	in
the	Linux	kernel.	As	you	might	noted	from	the	title	of	this	part,	the		clockevents		framework
will	be	discussed.	We	already	saw	one	framework	in	the	second	part	of	this	chapter.	It	was
	clocksource		framework.	Both	of	these	frameworks	represent	timekeeping	abstractions	in
the	Linux	kernel.

At	first	let's	refresh	your	memory	and	try	to	remember	what	is	it		clocksource		framework	and
and	what	its	purpose.	The	main	goal	of	the		clocksource		framework	is	to	provide		timeline	.
As	described	in	the	documentation:

For	example	issuing	the	command	'date'	on	a	Linux	system	will	eventually	read	the
clock	source	to	determine	exactly	what	time	it	is.

The	Linux	kernel	supports	many	different	clock	sources.	You	can	find	some	of	them	in	the
drivers/closksource.	For	example	old	good	Intel	8253	-	programmable	interval	timer	with
	1193182		Hz	frequency,	yet	another	one	-	ACPI	PM	timer	with		3579545		Hz	frequency.
Besides	the	drivers/closksource	directory,	each	architecture	may	provide	own	architecture-
specific	clock	sources.	For	example	x86	architecture	provides	High	Precision	Event	Timer,
or	for	example	powerpc	provides	access	to	the	processor	timer	through		timebase		register.

Each	clock	source	provides	monotonic	atomic	counter.	As	I	already	wrote,	the	Linux	kernel
supports	a	huge	set	of	different	clock	source	and	each	clock	source	has	own	parameters	like
frequency.	The	main	goal	of	the		clocksource		framework	is	to	provide	API	to	select	best
available	clock	source	in	the	system	i.e.	a	clock	source	with	the	highest	frequency.
Additional	goal	of	the		clocksource		framework	is	to	represent	an	atomic	counter	provided	by
a	clock	source	in	human	units.	In	this	time,	nanoseconds	are	the	favorite	choice	for	the	time
value	units	of	the	given	clock	source	in	the	Linux	kernel.

The		clocksource		framework	represented	by	the		clocksource		structure	which	is	defined	in
the	include/linux/clocksource.h	header	code	file	which	contains		name		of	a	clock	source,
rating	of	certain	clock	source	in	the	system	(a	clock	source	with	the	higher	frequency	has	the
biggest	rating	in	the	system),		list		of	all	registered	clock	source	in	the	system,		enable	
and		disable		fields	to	enable	and	disable	a	clock	source,	pointer	to	the		read		function
which	must	return	an	atomic	counter	of	a	clock	source	and	etc.

Clockevents	framework

477

https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-2.html
https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://github.com/torvalds/linux/tree/master/drivers/clocksource
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Programmable_interval_timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://github.com/torvalds/linux/tree/master/drivers/clocksource
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h


Additionally	the		clocksource		structure	provides	two	fields:		mult		and		shift		which	are
needed	for	translation	of	an	atomic	counter	which	is	provided	by	a	certain	clock	source	to
the	human	units,	i.e.	nanoseconds.	Translation	occurs	via	following	formula:

ns	~=	(clocksource	*	mult)	>>	shift

As	we	already	know,	besides	the		clocksource		structure,	the		clocksource		framework
provides	an	API	for	registration	of	clock	source	with	different	frequency	scale	factor:

static	inline	int	clocksource_register_hz(struct	clocksource	*cs,	u32	hz)

static	inline	int	clocksource_register_khz(struct	clocksource	*cs,	u32	khz)

A	clock	source	unregistration:

int	clocksource_unregister(struct	clocksource	*cs)

and	etc.

Additionally	to	the		clocksource		framework,	the	Linux	kernel	provides		clockevents	
framework.	As	described	in	the	documentation:

Clock	events	are	the	conceptual	reverse	of	clock	sources

Main	goal	of	the	is	to	manage	clock	event	devices	or	in	other	words	-	to	manage	devices
that	allow	to	register	an	event	or	in	other	words	interrupt	that	is	going	to	happen	at	a	defined
point	of	time	in	the	future.

Now	we	know	a	little	about	the		clockevents		framework	in	the	Linux	kernel,	and	now	time	is
to	see	on	it	API.

API	of		clockevents		framework
The	main	structure	which	described	a	clock	event	device	is		clock_event_device		structure.
This	structure	is	defined	in	the	include/linux/clockchips.h	header	file	and	contains	a	huge	set
of	fields.	as	well	as	the		clocksource		structure	it	has		name		fields	which	contains	human
readable	name	of	a	clock	event	device,	for	example	local	APIC	timer:

Clockevents	framework

478

https://en.wikipedia.org/wiki/Nanosecond
https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller


static	struct	clock_event_device	lapic_clockevent	=	{

				.name																			=	"lapic",

				...

				...

				...

}

Addresses	of	the		event_handler	,		set_next_event	,		next_event		functions	for	a	certain	clock
event	device	which	are	an	interrupt	handler,	setter	of	next	event	and	local	storage	for	next
event	respectively.	Yet	another	field	of	the		clock_event_device		structure	is	-		features		field.
Its	value	maybe	on	of	the	following	generic	features:

#define	CLOCK_EVT_FEAT_PERIODIC				0x000001

#define	CLOCK_EVT_FEAT_ONESHOT								0x000002

Where	the		CLOCK_EVT_FEAT_PERIODIC		represents	device	which	may	be	programmed	to
generate	events	periodically.	The		CLOCK_EVT_FEAT_ONESHOT		represents	device	which	may
generate	an	event	only	once.	Besides	these	two	features,	there	are	also	architecture-
specific	features.	For	example	x86_64	supports	two	additional	features:

#define	CLOCK_EVT_FEAT_C3STOP								0x000008

The	first		CLOCK_EVT_FEAT_C3STOP		means	that	a	clock	event	device	will	be	stopped	in	the	C3
state.	Additionally	the		clock_event_device		structure	has		mult		and		shift		fields	as	well	as
	clocksource		structure.	The		clocksource		structure	also	contains	other	fields,	but	we	will
consider	it	later.

After	we	considered	part	of	the		clock_event_device		structure,	time	is	to	look	at	the		API		of
the		clockevents		framework.	To	work	with	a	clock	event	device,	first	of	all	we	need	to
initialize		clock_event_device		structure	and	register	a	clock	events	device.	The		clockevents	
framework	provides	following		API		for	registration	of	clock	event	devices:

void	clockevents_register_device(struct	clock_event_device	*dev)

{

			...

			...

			...

}

This	function	defined	in	the	kernel/time/clockevents.c	source	code	file	and	as	we	may	see,
the		clockevents_register_device		function	takes	only	one	parameter:

address	of	a		clock_event_device		structure	which	represents	a	clock	event	device.

Clockevents	framework

479

https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface#Device_states
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c


So,	to	register	a	clock	event	device,	at	first	we	need	to	initialize		clock_event_device	
structure	with	parameters	of	a	certain	clock	event	device.	Let's	take	a	look	at	one	random
clock	event	device	in	the	Linux	kernel	source	code.	We	can	find	one	in	the
drivers/closksource	directory	or	try	to	take	a	look	at	an	architecture-specific	clock	event
device.	Let's	take	for	example	-	Periodic	Interval	Timer	(PIT)	for	at91sam926x.	You	can	find
its	implementation	in	the	drivers/closksource.

First	of	all	let's	look	at	initialization	of	the		clock_event_device		structure.	This	occurs	in	the
	at91sam926x_pit_common_init		function:

struct	pit_data	{

				...

				...

				struct	clock_event_device							clkevt;

				...

				...

};

static	void	__init	at91sam926x_pit_common_init(struct	pit_data	*data)

{

				...

				...

				...

				data->clkevt.name	=	"pit";

				data->clkevt.features	=	CLOCK_EVT_FEAT_PERIODIC;

				data->clkevt.shift	=	32;

				data->clkevt.mult	=	div_sc(pit_rate,	NSEC_PER_SEC,	data->clkevt.shift);

				data->clkevt.rating	=	100;

				data->clkevt.cpumask	=	cpumask_of(0);

				data->clkevt.set_state_shutdown	=	pit_clkevt_shutdown;

				data->clkevt.set_state_periodic	=	pit_clkevt_set_periodic;

				data->clkevt.resume	=	at91sam926x_pit_resume;

				data->clkevt.suspend	=	at91sam926x_pit_suspend;

				...

}

Here	we	can	see	that		at91sam926x_pit_common_init		takes	one	parameter	-	pointer	to	the
	pit_data		structure	which	contains		clock_event_device		structure	which	will	contain	clock
event	related	information	of	the		at91sam926x		periodic	Interval	Timer.	At	the	start	we	fill
	name		of	the	timer	device	and	its		features	.	In	our	case	we	deal	with	periodic	timer	which	as
we	already	know	may	be	programmed	to	generate	events	periodically.

The	next	two	fields		shift		and		mult		are	familiar	to	us.	They	will	be	used	to	translate
counter	of	our	timer	to	nanoseconds.	After	this	we	set	rating	of	the	timer	to		100	.	This
means	if	there	will	not	be	timers	with	higher	rating	in	the	system,	this	timer	will	be	used	for

Clockevents	framework

480

https://github.com/torvalds/linux/tree/master/drivers/clocksource
http://www.atmel.com/Images/doc6062.pdf
https://github.com/torvalds/linux/tree/master/drivers/clocksource/timer-atmel-pit.c
https://en.wikipedia.org/wiki/Programmable_interval_timer


timekeeping.	The	next	field	-		cpumask		indicates	for	which	processors	in	the	system	the
device	will	work.	In	our	case,	the	device	will	work	for	the	first	processor.	The		cpumask_of	
macro	defined	in	the	include/linux/cpumask.h	header	file	and	just	expands	to	the	call	of	the:

#define	cpumask_of(cpu)	(get_cpu_mask(cpu))

Where	the		get_cpu_mask		returns	the	cpumask	containing	just	a	given		cpu		number.	More
about		cpumasks		concept	you	may	read	in	the	CPU	masks	in	the	Linux	kernel	part.	In	the	last
four	lines	of	code	we	set	callbacks	for	the	clock	event	device	suspend/resume,	device
shutdown	and	update	of	the	clock	event	device	state.

After	we	finished	with	the	initialization	of	the		at91sam926x		periodic	timer,	we	can	register	it
by	the	call	of	the	following	functions:

clockevents_register_device(&data->clkevt);

Now	we	can	consider	implementation	of	the		clockevent_register_device		function.	As	I
already	wrote	above,	this	function	is	defined	in	the	kernel/time/clockevents.c	source	code	file
and	starts	from	the	initialization	of	the	initial	event	device	state:

clockevent_set_state(dev,	CLOCK_EVT_STATE_DETACHED);

Actually,	an	event	device	may	be	in	one	of	this	states:

enum	clock_event_state	{

				CLOCK_EVT_STATE_DETACHED,

				CLOCK_EVT_STATE_SHUTDOWN,

				CLOCK_EVT_STATE_PERIODIC,

				CLOCK_EVT_STATE_ONESHOT,

				CLOCK_EVT_STATE_ONESHOT_STOPPED,

};

Where:

	CLOCK_EVT_STATE_DETACHED		-	a	clock	event	device	is	not	not	used	by		clockevents	
framework.	Actually	it	is	initial	state	of	all	clock	event	devices;
	CLOCK_EVT_STATE_SHUTDOWN		-	a	clock	event	device	is	powered-off;
	CLOCK_EVT_STATE_PERIODIC		-	a	clock	event	device	may	be	programmed	to	generate
event	periodically;
	CLOCK_EVT_STATE_ONESHOT		-	a	clock	event	device	may	be	programmed	to	generate	event
only	once;
	CLOCK_EVT_STATE_ONESHOT_STOPPED		-	a	clock	event	device	was	programmed	to	generate

Clockevents	framework

481

https://github.com/torvalds/linux/tree/master/include/linux/cpumask.h
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c


event	only	once	and	now	it	is	temporary	stopped.

The	implementation	of	the		clock_event_set_state		function	is	pretty	easy:

static	inline	void	clockevent_set_state(struct	clock_event_device	*dev,

																				enum	clock_event_state	state)

{

				dev->state_use_accessors	=	state;

}

As	we	can	see,	it	just	fills	the		state_use_accessors		field	of	the	given		clock_event_device	
structure	with	the	given	value	which	is	in	our	case	is		CLOCK_EVT_STATE_DETACHED	.	Actually	all
clock	event	devices	has	this	initial	state	during	registration.	The		state_use_accessors		field	of
the		clock_event_device		structure	provides		current		state	of	the	clock	event	device.

After	we	have	set	initial	state	of	the	given		clock_event_device		structure	we	check	that	the
	cpumask		of	the	given	clock	event	device	is	not	zero:

if	(!dev->cpumask)	{

				WARN_ON(num_possible_cpus()	>	1);

				dev->cpumask	=	cpumask_of(smp_processor_id());

}

Remember	that	we	have	set	the		cpumask		of	the		at91sam926x		periodic	timer	to	first
processor.	If	the		cpumask		field	is	zero,	we	check	the	number	of	possible	processors	in	the
system	and	print	warning	message	if	it	is	less	than	on.	Additionally	we	set	the		cpumask		of
the	given	clock	event	device	to	the	current	processor.	If	you	are	interested	in	how	the
	smp_processor_id		macro	is	implemented,	you	can	read	more	about	it	in	the	fourth	part	of	the
Linux	kernel	initialization	process	chapter.

After	this	check	we	lock	the	actual	code	of	the	clock	event	device	registration	by	the	call
following	macros:

raw_spin_lock_irqsave(&clockevents_lock,	flags);

...

...

...

raw_spin_unlock_irqrestore(&clockevents_lock,	flags);

Additionally	the		raw_spin_lock_irqsave		and	the		raw_spin_unlock_irqrestore		macros	disable
local	interrupts,	however	interrupts	on	other	processors	still	may	occur.	We	need	to	do	it	to
prevent	potential	deadlock	if	we	adding	new	clock	event	device	to	the	list	of	clock	event
devices	and	an	interrupt	occurs	from	other	clock	event	device.

Clockevents	framework

482

https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://en.wikipedia.org/wiki/Deadlock


We	can	see	following	code	of	clock	event	device	registration	between	the
	raw_spin_lock_irqsave		and		raw_spin_unlock_irqrestore		macros:

list_add(&dev->list,	&clockevent_devices);

tick_check_new_device(dev);

clockevents_notify_released();

First	of	all	we	add	the	given	clock	event	device	to	the	list	of	clock	event	devices	which	is
represented	by	the		clockevent_devices	:

static	LIST_HEAD(clockevent_devices);

At	the	next	step	we	call	the		tick_check_new_device		function	which	is	defined	in	the
kernel/time/tick-common.c	source	code	file	and	checks	do	the	new	registered	clock	event
device	should	be	used	or	not.	The		tick_check_new_device		function	checks	the	given
	clock_event_device		gets	the	current	registered	tick	device	which	is	represented	by	the
	tick_device		structure	and	compares	their	ratings	and	features.	Actually
	CLOCK_EVT_STATE_ONESHOT		is	preferred:

static	bool	tick_check_preferred(struct	clock_event_device	*curdev,

																	struct	clock_event_device	*newdev)

{

				if	(!(newdev->features	&	CLOCK_EVT_FEAT_ONESHOT))	{

								if	(curdev	&&	(curdev->features	&	CLOCK_EVT_FEAT_ONESHOT))

												return	false;

								if	(tick_oneshot_mode_active())

												return	false;

				}

				return	!curdev	||

								newdev->rating	>	curdev->rating	||

											!cpumask_equal(curdev->cpumask,	newdev->cpumask);

}

If	the	new	registered	clock	event	device	is	more	preferred	than	old	tick	device,	we	exchange
old	and	new	registered	devices	and	install	new	device:

clockevents_exchange_device(curdev,	newdev);

tick_setup_device(td,	newdev,	cpu,	cpumask_of(cpu));

The		clockevents_exchange_device		function	releases	or	in	other	words	deleted	the	old	clock
event	device	from	the		clockevent_devices		list.	The	next	function	-		tick_setup_device		as	we
may	understand	from	its	name,	setups	new	tick	device.	This	function	check	the	mode	of	the

Clockevents	framework

483

https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c


new	registered	clock	event	device	and	call	the		tick_setup_periodic		function	or	the
	tick_setup_oneshot		depends	on	the	tick	device	mode:

if	(td->mode	==	TICKDEV_MODE_PERIODIC)

				tick_setup_periodic(newdev,	0);

else

				tick_setup_oneshot(newdev,	handler,	next_event);

Both	of	this	functions	calls	the		clockevents_switch_state		to	change	state	of	the	clock	event
device	and	the		clockevents_program_event		function	to	set	next	event	of	clock	event	device
based	on	delta	between	the	maximum	and	minimum	difference	current	time	and	time	for	the
next	event.	The		tick_setup_periodic	:

clockevents_switch_state(dev,	CLOCK_EVT_STATE_PERIODIC);

clockevents_program_event(dev,	next,	false))

and	the		tick_setup_oneshot_periodic	:

clockevents_switch_state(newdev,	CLOCK_EVT_STATE_ONESHOT);

clockevents_program_event(newdev,	next_event,	true);

The		clockevents_switch_state		function	checks	that	the	clock	event	device	is	not	in	the
given	state	and	calls	the		__clockevents_switch_state		function	from	the	same	source	code
file:

if	(clockevent_get_state(dev)	!=	state)	{

				if	(__clockevents_switch_state(dev,	state))

								return;

The		__clockevents_switch_state		function	just	makes	a	call	of	the	certain	callback	depends
on	the	given	state:

Clockevents	framework

484



static	int	__clockevents_switch_state(struct	clock_event_device	*dev,

																						enum	clock_event_state	state)

{

				if	(dev->features	&	CLOCK_EVT_FEAT_DUMMY)

								return	0;

				switch	(state)	{

				case	CLOCK_EVT_STATE_DETACHED:

				case	CLOCK_EVT_STATE_SHUTDOWN:

								if	(dev->set_state_shutdown)

												return	dev->set_state_shutdown(dev);

								return	0;

				case	CLOCK_EVT_STATE_PERIODIC:

								if	(!(dev->features	&	CLOCK_EVT_FEAT_PERIODIC))

												return	-ENOSYS;

								if	(dev->set_state_periodic)

												return	dev->set_state_periodic(dev);

								return	0;

				...

				...

				...

In	our	case	for		at91sam926x		periodic	timer,	the	state	is	the		CLOCK_EVT_FEAT_PERIODIC	:

data->clkevt.features	=	CLOCK_EVT_FEAT_PERIODIC;

data->clkevt.set_state_periodic	=	pit_clkevt_set_periodic;

So,	for	the		pit_clkevt_set_periodic		callback	will	be	called.	If	we	will	read	the
documentation	of	the	Periodic	Interval	Timer	(PIT)	for	at91sam926x,	we	will	see	that	there	is
	Periodic	Interval	Timer	Mode	Register		which	allows	us	to	control	of	periodic	interval	timer.

It	looks	like:

Clockevents	framework

485

http://www.atmel.com/Images/doc6062.pdf


31																																																			25								24

+---------------------------------------------------------------+

|																																										|		PITIEN		|		PITEN		|

+---------------------------------------------------------------+

23																												19																															16

+---------------------------------------------------------------+

|																													|															PIV															|

+---------------------------------------------------------------+

15																																																														8

+---------------------------------------------------------------+

|																												PIV																																|

+---------------------------------------------------------------+

7																																																															0

+---------------------------------------------------------------+

|																												PIV																																|

+---------------------------------------------------------------+

Where		PIV		or		Periodic	Interval	Value		-	defines	the	value	compared	with	the	primary		20-
bit		counter	of	the	Periodic	Interval	Timer.	The		PITEN		or		Period	Interval	Timer	Enabled		if
the	bit	is		1		and	the		PITIEN		or		Periodic	Interval	Timer	Interrupt	Enable		if	the	bit	is		1	.
So,	to	set	periodic	mode,	we	need	to	set		24	,		25		bits	in	the		Periodic	Interval	Timer	Mode
Register	.	And	we	are	doing	it	in	the		pit_clkevt_set_periodic		function:

static	int	pit_clkevt_set_periodic(struct	clock_event_device	*dev)

{

								struct	pit_data	*data	=	clkevt_to_pit_data(dev);

								...

								...

								...

								pit_write(data->base,	AT91_PIT_MR,

																		(data->cycle	-	1)	|	AT91_PIT_PITEN	|	AT91_PIT_PITIEN);

								return	0;

}

Where	the		AT91_PT_MR	,		AT91_PT_PITEN		and	the		AT91_PIT_PITIEN		are	declared	as:

#define	AT91_PIT_MR													0x00

#define	AT91_PIT_PITIEN							BIT(25)

#define	AT91_PIT_PITEN								BIT(24)

After	the	setup	of	the	new	clock	event	device	is	finished,	we	can	return	to	the
	clockevents_register_device		function.	The	last	function	in	the		clockevents_register_device	
function	is:

Clockevents	framework

486



clockevents_notify_released();

This	function	checks	the		clockevents_released		list	which	contains	released	clock	event
devices	(remember	that	they	may	occur	after	the	call	of	the		clockevents_exchange_device	
function).	If	this	list	is	not	empty,	we	go	through	clock	event	devices	from	the
	clock_events_released		list	and	delete	it	from	the		clockevent_devices	:

static	void	clockevents_notify_released(void)

{

				struct	clock_event_device	*dev;

				while	(!list_empty(&clockevents_released))	{

								dev	=	list_entry(clockevents_released.next,

																	struct	clock_event_device,	list);

								list_del(&dev->list);

								list_add(&dev->list,	&clockevent_devices);

								tick_check_new_device(dev);

				}

}

That's	all.	From	this	moment	we	have	registered	new	clock	event	device.	So	the	usage	of
the		clockevents		framework	is	simple	and	clear.	Architectures	registered	their	clock	event
devices,	in	the	clock	events	core.	Users	of	the	clockevents	core	can	get	clock	event	devices
for	their	use.	The		clockevents		framework	provides	notification	mechanisms	for	various
clock	related	management	events	like	a	clock	event	device	registered	or	unregistered,	a
processor	is	offlined	in	system	which	supports	CPU	hotplug	and	etc.

We	saw	implementation	only	of	the		clockevents_register_device		function.	But	generally,	the
clock	event	layer	API	is	small.	Besides	the		API		for	clock	event	device	registration,	the
	clockevents		framework	provides	functions	to	schedule	the	next	event	interrupt,	clock	event
device	notification	service	and	support	for	suspend	and	resume	for	clock	event	devices.

If	you	want	to	know	more	about		clockevents		API	you	can	start	to	research	following	source
code	and	header	files:	kernel/time/tick-common.c,	kernel/time/clockevents.c	and
include/linux/clockchips.h.

That's	all.

Conclusion
This	is	the	end	of	the	fifth	part	of	the	chapter	that	describes	timers	and	timer	management
related	stuff	in	the	Linux	kernel.	In	the	previous	part	got	acquainted	with	the		timers	
concept.	In	this	part	we	continued	to	learn	time	management	related	stuff	in	the	Linux	kernel

Clockevents	framework

487

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://0xax.gitbooks.io/linux-insides/content/Timers/index.html


and	saw	a	little	about	yet	another	framework	-		clockevents	.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
timekeeping	documentation
Intel	8253
programmable	interval	timer
ACPI	pdf
x86
High	Precision	Event	Timer
powerpc
frequency
API
nanoseconds
interrupt
interrupt	handler
local	APIC
C3	state
Periodic	Interval	Timer	(PIT)	for	at91sam926x
CPU	masks	in	the	Linux	kernel
deadlock
CPU	hotplug
previous	part

Clockevents	framework

488

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Programmable_interval_timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface#Device_states
http://www.atmel.com/Images/doc6062.pdf
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Deadlock
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-3.html


Timers	and	time	management	in	the	Linux
kernel.	Part	6.

x86_64	related	clock	sources
This	is	sixth	part	of	the	chapter	which	describes	timers	and	time	management	related	stuff	in
the	Linux	kernel.	In	the	previous	part	we	saw		clockevents		framework	and	now	we	will
continue	to	dive	into	time	management	related	stuff	in	the	Linux	kernel.	This	part	will
describe	implementation	of	x86	architecture	related	clock	sources	(more	about		clocksource	
concept	you	can	read	in	the	second	part	of	this	chapter).

First	of	all	we	must	know	what	clock	sources	may	be	used	at		x86		architecture.	It	is	easy	to
know	from	the	sysfs	or	from	content	of	the
	/sys/devices/system/clocksource/clocksource0/available_clocksource	.	The
	/sys/devices/system/clocksource/clocksourceN		provides	two	special	files	to	achieve	this:

	available_clocksource		-	provides	information	about	available	clock	sources	in	the
system;
	current_clocksource		-	provides	information	about	currently	used	clock	source	in	the
system.

So,	let's	look:

$	cat	/sys/devices/system/clocksource/clocksource0/available_clocksource	

tsc	hpet	acpi_pm

We	can	see	that	there	are	three	registered	clock	sources	in	my	system:

	tsc		-	Time	Stamp	Counter;
	hpet		-	High	Precision	Event	Timer;
	acpi_pm		-	ACPI	Power	Management	Timer.

Now	let's	look	at	the	second	file	which	provides	best	clock	source	(a	clock	source	which	has
the	best	rating	in	the	system):

$	cat	/sys/devices/system/clocksource/clocksource0/current_clocksource	

tsc

x86	related	clock	sources

489

https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-5.html
https://en.wikipedia.org/wiki/X86
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-2.html
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf


For	me	it	is	Time	Stamp	Counter.	As	we	may	know	from	the	second	part	of	this	chapter,
which	describes	internals	of	the		clocksource		framework	in	the	Linux	kernel,	the	best	clock
source	in	a	system	is	a	clock	source	with	the	best	(highest)	rating	or	in	other	words	with	the
highest	frequency.

Frequency	of	the	ACPI	power	management	timer	is		3.579545	MHz	.	Frequency	of	the	High
Precision	Event	Timer	is	at	least		10	MHz	.	And	the	frequency	of	the	Time	Stamp	Counter
depends	on	processor.	For	example	On	older	processors,	the		Time	Stamp	Counter		was
counting	internal	processor	clock	cycles.	This	means	its	frequency	changed	when	the
processor's	frequency	scaling	changed.	The	situation	has	changed	for	newer	processors.
Newer	processors	have	an		invariant	Time	Stamp	counter		that	increments	at	a	constant	rate
in	all	operational	states	of	processor.	Actually	we	can	get	its	frequency	in	the	output	of	the
	/proc/cpuinfo	.	For	example	for	the	first	processor	in	the	system:

$	cat	/proc/cpuinfo

...

model	name				:	Intel(R)	Core(TM)	i7-4790K	CPU	@	4.00GHz

...

And	although	Intel	manual	says	that	the	frequency	of	the		Time	Stamp	Counter	,	while
constant,	is	not	necessarily	the	maximum	qualified	frequency	of	the	processor,	or	the
frequency	given	in	the	brand	string,	anyway	we	may	see	that	it	will	be	much	more	than
frequency	of	the		ACPI	PM		timer	or		High	Precision	Event	Timer	.	And	we	can	see	that	the
clock	source	with	the	best	rating	or	highest	frequency	is	current	in	the	system.

You	can	note	that	besides	these	three	clock	source,	we	don't	see	yet	another	two	familiar	us
clock	sources	in	the	output	of	the
	/sys/devices/system/clocksource/clocksource0/available_clocksource	.	These	clock	sources
are		jiffy		and		refined_jiffies	.	We	don't	see	them	because	this	filed	maps	only	high
resolution	clock	sources	or	in	other	words	clock	sources	with	the
CLOCK_SOURCE_VALID_FOR_HRES	flag.

As	I	already	wrote	above,	we	will	consider	all	of	these	three	clock	sources	in	this	part.	We
will	consider	it	in	order	of	their	initialization	or:

	hpet	;
	acpi_pm	;
	tsc	.

We	can	make	sure	that	the	order	is	exactly	like	this	in	the	output	of	the	dmesg	util:

x86	related	clock	sources

490

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-2.html
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h#L113
https://en.wikipedia.org/wiki/Dmesg


$	dmesg	|	grep	clocksource

[				0.000000]	clocksource:	refined-jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	

max_idle_ns:	1910969940391419	ns

[				0.000000]	clocksource:	hpet:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns

:	133484882848	ns

[				0.094369]	clocksource:	jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle

_ns:	1911260446275000	ns

[				0.186498]	clocksource:	Switched	to	clocksource	hpet

[				0.196827]	clocksource:	acpi_pm:	mask:	0xffffff	max_cycles:	0xffffff,	max_idle_ns:

	2085701024	ns

[				1.413685]	tsc:	Refined	TSC	clocksource	calibration:	3999.981	MHz

[				1.413688]	clocksource:	tsc:	mask:	0xffffffffffffffff	max_cycles:	0x73509721780,	m

ax_idle_ns:	881591102108	ns

[				2.413748]	clocksource:	Switched	to	clocksource	tsc

The	first	clock	source	is	the	High	Precision	Event	Timer,	so	let's	start	from	it.

High	Precision	Event	Timer
The	implementation	of	the		High	Precision	Event	Timer		for	the	x86	architecture	is	located	in
the	arch/x86/kernel/hpet.c	source	code	file.	Its	initialization	starts	from	the	call	of	the
	hpet_enable		function.	This	function	is	called	during	Linux	kernel	initialization.	If	we	will	look
into		start_kernel		function	from	the	init/main.c	source	code	file,	we	will	see	that	after	the	all
architecture-specific	stuff	initialized,	early	console	is	disabled	and	time	management
subsystem	already	ready,	call	of	the	following	function:

if	(late_time_init)

				late_time_init();

which	does	initialization	of	the	late	architecture	specific	timers	after	early	jiffy	counter	already
initialized.	The	definition	of	the		late_time_init		function	for	the		x86		architecture	is	located
in	the	arch/x86/kernel/time.c	source	code	file.	It	looks	pretty	easy:

static	__init	void	x86_late_time_init(void)

{

				x86_init.timers.timer_init();

				tsc_init();

}

As	we	may	see,	it	does	initialization	of	the		x86		related	timer	and	initialization	of	the		Time
Stamp	Counter	.	The	seconds	we	will	see	in	the	next	paragraph,	but	now	let's	consider	the
call	of	the		x86_init.timers.timer_init		function.	The		timer_init		points	to	the

x86	related	clock	sources

491

https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/hpet.c
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/time.c


	hpet_time_init		function	from	the	same	source	code	file.	We	can	verify	this	by	looking	on
the	definition	of	the		x86_init		structure	from	the	arch/x86/kernel/x86_init.c:

struct	x86_init_ops	x86_init	__initdata	=	{

			...

			...

			...

			.timers	=	{

								.setup_percpu_clockev				=	setup_boot_APIC_clock,

								.timer_init								=	hpet_time_init,

								.wallclock_init								=	x86_init_noop,

			},

			...

			...

			...

The		hpet_time_init		function	does	setup	of	the	programmable	interval	timer	if	we	can	not
enable		High	Precision	Event	Timer		and	setups	default	timer	IRQ	for	the	enabled	timer:

void	__init	hpet_time_init(void)

{

				if	(!hpet_enable())

								setup_pit_timer();

				setup_default_timer_irq();

}

First	of	all	the		hpet_enable		function	check	we	can	enable		High	Precision	Event	Timer		in
the	system	by	the	call	of	the		is_hpet_capable		function	and	if	we	can,	we	map	a	virtual
address	space	for	it:

int	__init	hpet_enable(void)

{

				if	(!is_hpet_capable())

								return	0;

				hpet_set_mapping();

}

The		is_hpet_capable		function	checks	that	we	didn't	pass		hpet=disable		to	the	kernel
command	line	and	the		hpet_address		is	received	from	the	ACPI	HPET	table.	The
	hpet_set_mapping		function	just	maps	the	virtual	address	spaces	for	the	timer	registers:

hpet_virt_address	=	ioremap_nocache(hpet_address,	HPET_MMAP_SIZE);

As	we	can	read	in	the	IA-PC	HPET	(High	Precision	Event	Timers)	Specification:

x86	related	clock	sources

492

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf


The	timer	register	space	is	1024	bytes

So,	the		HPET_MMAP_SIZE		is		1024		bytes	too:

#define	HPET_MMAP_SIZE								1024

After	we	mapped	virtual	space	for	the		High	Precision	Event	Timer	,	we	read		HPET_ID	
register	to	get	number	of	the	timers:

id	=	hpet_readl(HPET_ID);

last	=	(id	&	HPET_ID_NUMBER)	>>	HPET_ID_NUMBER_SHIFT;

We	need	to	get	this	number	to	allocate	correct	amount	of	space	for	the		General
Configuration	Register		of	the		High	Precision	Event	Timer	:

cfg	=	hpet_readl(HPET_CFG);

hpet_boot_cfg	=	kmalloc((last	+	2)	*	sizeof(*hpet_boot_cfg),	GFP_KERNEL);

After	the	space	is	allocated	for	the	configuration	register	of	the		High	Precision	Event	Timer	,
we	allow	to	main	counter	to	run,	and	allow	timer	interrupts	if	they	are	enabled	by	the	setting
of		HPET_CFG_ENABLE		bit	in	the	configuration	register	for	all	timers.	In	the	end	we	just	register
new	clock	source	by	the	call	of	the		hpet_clocksource_register		function:

if	(hpet_clocksource_register())

				goto	out_nohpet;

which	just	calls	already	familiar

clocksource_register_hz(&clocksource_hpet,	(u32)hpet_freq);

function.	Where	the		clocksource_hpet		is	the		clocksource		structure	with	the	rating		250	
(remember	rating	of	the	previous		refined_jiffies		clock	source	was		2	),	name	-		hpet		and
	read_hpet		callback	for	the	reading	of	atomic	counter	provided	by	the		High	Precision	Event
Timer	:

x86	related	clock	sources

493



static	struct	clocksource	clocksource_hpet	=	{

				.name								=	"hpet",

				.rating								=	250,

				.read								=	read_hpet,

				.mask								=	HPET_MASK,

				.flags								=	CLOCK_SOURCE_IS_CONTINUOUS,

				.resume								=	hpet_resume_counter,

				.archdata				=	{	.vclock_mode	=	VCLOCK_HPET	},

};

After	the		clocksource_hpet		is	registered,	we	can	return	to	the		hpet_time_init()		function
from	the	arch/x86/kernel/time.c	source	code	file.	We	can	remember	that	the	last	step	is	the
call	of	the:

setup_default_timer_irq();

function	in	the		hpet_time_init()	.	The		setup_default_timer_irq		function	checks	existence
of		legacy		IRQs	or	in	other	words	support	for	the	i8259	and	setups	IRQ0	depends	on	this.

That's	all.	From	this	moment	the	High	Precision	Event	Timer	clock	source	registered	in	the
Linux	kernel		clock	source		framework	and	may	be	used	from	generic	kernel	code	via	the
	read_hpet	:

static	cycle_t	read_hpet(struct	clocksource	*cs)

{

				return	(cycle_t)hpet_readl(HPET_COUNTER);

}

function	which	just	reads	and	returns	atomic	counter	from	the		Main	Counter	Register	.

ACPI	PM	timer
The	seconds	clock	source	is	ACPI	Power	Management	Timer.	Implementation	of	this	clock
source	is	located	in	the	drivers/clocksource/acpi_pm.c	source	code	file	and	starts	from	the
call	of	the		init_acpi_pm_clocksource		function	during		fs		initcall.

If	we	will	look	at	implementation	of	the		init_acpi_pm_clocksource		function,	we	will	see	that	it
starts	from	the	check	of	the	value	of		pmtmr_ioport		variable:

x86	related	clock	sources

494

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/time.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29#Master_PIC
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://github.com/torvalds/linux/blob/master/drivers/clocksource_acpi_pm.c
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html


static	int	__init	init_acpi_pm_clocksource(void)

{

				...

				...

				...

				if	(!pmtmr_ioport)

								return	-ENODEV;

				...

				...

				...

This		pmtmr_ioport		variable	contains	extended	address	of	the		Power	Management	Timer
Control	Register	Block	.	It	gets	its	value	in	the		acpi_parse_fadt		function	which	is	defined	in
the	arch/x86/kernel/acpi/boot.c	source	code	file.	This	function	parses		FADT		or		Fixed	ACPI
Description	Table		ACPI	table	and	tries	to	get	the	values	of	the		X_PM_TMR_BLK		field	which
contains	extended	address	of	the		Power	Management	Timer	Control	Register	Block	,
represented	in		Generic	Address	Structure		format:

static	int	__init	acpi_parse_fadt(struct	acpi_table_header	*table)

{

#ifdef	CONFIG_X86_PM_TIMER

								...

								...

								...

								pmtmr_ioport	=	acpi_gbl_FADT.xpm_timer_block.address;

								...

								...

								...

#endif

				return	0;

}

So,	if	the		CONFIG_X86_PM_TIMER		Linux	kernel	configuration	option	is	disabled	or	something
going	wrong	in	the		acpi_parse_fadt		function,	we	can't	access	the		Power	Management	Timer	
register	and	return	from	the		init_acpi_pm_clocksource	.	In	other	way,	if	the	value	of	the
	pmtmr_ioport		variable	is	not	zero,	we	check	rate	of	this	timer	and	register	this	clock	source
by	the	call	of	the:

clocksource_register_hz(&clocksource_acpi_pm,	PMTMR_TICKS_PER_SEC);

function.	After	the	call	of	the		clocksource_register_hs	,	the		acpi_pm		clock	source	will	be
registered	in	the		clocksource		framework	of	the	Linux	kernel:

x86	related	clock	sources

495

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/acpi/boot.c
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface


static	struct	clocksource	clocksource_acpi_pm	=	{

				.name								=	"acpi_pm",

				.rating								=	200,

				.read								=	acpi_pm_read,

				.mask								=	(cycle_t)ACPI_PM_MASK,

				.flags								=	CLOCK_SOURCE_IS_CONTINUOUS,

};

with	the	rating	-		200		and	the		acpi_pm_read		callback	to	read	atomic	counter	provided	by	the
	acpi_pm		clock	source.	The		acpi_pm_read		function	just	executes		read_pmtmr		function:

static	cycle_t	acpi_pm_read(struct	clocksource	*cs)

{

				return	(cycle_t)read_pmtmr();

}

which	reads	value	of	the		Power	Management	Timer		register.	This	register	has	following
structure:

+-------------------------------+----------------------------------+

|																															|																																		|

|		upper	eight	bits	of	a								|						running	count	of	the								|

|	32-bit	power	management	timer	|					power	management	timer							|

|																															|																																		|

+-------------------------------+----------------------------------+

31										E_TMR_VAL											24															TMR_VAL											0

Address	of	this	register	is	stored	in	the		Fixed	ACPI	Description	Table		ACPI	table	and	we
already	have	it	in	the		pmtmr_ioport	.	So,	the	implementation	of	the		read_pmtmr		function	is
pretty	easy:

static	inline	u32	read_pmtmr(void)

{

				return	inl(pmtmr_ioport)	&	ACPI_PM_MASK;

}

We	just	read	the	value	of	the		Power	Management	Timer		register	and	mask	its		24		bits.

That's	all.	Now	we	move	to	the	last	clock	source	in	this	part	-		Time	Stamp	Counter	.

Time	Stamp	Counter

x86	related	clock	sources

496

https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface


The	third	and	last	clock	source	in	this	part	is	-	Time	Stamp	Counter	clock	source	and	its
implementation	is	located	in	the	arch/x86/kernel/tsc.c	source	code	file.	We	already	saw	the
	x86_late_time_init		function	in	this	part	and	initialization	of	the	Time	Stamp	Counter	starts
from	this	place.	This	function	calls	the		tsc_init()		function	from	the	arch/x86/kernel/tsc.c
source	code	file.

At	the	beginning	of	the		tsc_init		function	we	can	see	check,	which	checks	that	a	processor
has	support	of	the		Time	Stamp	Counter	:

void	__init	tsc_init(void)

{

				u64	lpj;

				int	cpu;

				if	(!cpu_has_tsc)	{

								setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);

								return;

				}

				...

				...

				...

The		cpu_has_tsc		macro	expands	to	the	call	of	the		cpu_has		macro:

#define	cpu_has_tsc								boot_cpu_has(X86_FEATURE_TSC)

#define	boot_cpu_has(bit)				cpu_has(&boot_cpu_data,	bit)

#define	cpu_has(c,	bit)																												\

				(__builtin_constant_p(bit)	&&	REQUIRED_MASK_BIT_SET(bit)	?	1	:				\

					test_cpu_cap(c,	bit))

which	check	the	given	bit	(the		X86_FEATURE_TSC_DEADLINE_TIMER		in	our	case)	in	the
	boot_cpu_data		array	which	is	filled	during	early	Linux	kernel	initialization.	If	the	processor
has	support	of	the		Time	Stamp	Counter	,	we	get	the	frequency	of	the		Time	Stamp	Counter		by
the	call	of	the		calibrate_tsc		function	from	the	same	source	code	file	which	tries	to	get
frequency	from	the	different	source	like	Model	Specific	Register,	calibrate	over
programmable	interval	timer	and	etc,	after	this	we	initialize	frequency	and	scale	factor	for	the
all	processors	in	the	system:

x86	related	clock	sources

497

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc.c
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc.c
https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Programmable_interval_timer


tsc_khz	=	x86_platform.calibrate_tsc();

cpu_khz	=	tsc_khz;

for_each_possible_cpu(cpu)	{

				cyc2ns_init(cpu);

				set_cyc2ns_scale(cpu_khz,	cpu);

}

because	only	first	bootstrap	processor	will	call	the		tsc_init	.	After	this	we	check	hat		Time
Stamp	Counter		is	not	disabled:

if	(tsc_disabled	>	0)

				return;

...

...

...

check_system_tsc_reliable();

and	call	the		check_system_tsc_reliable		function	which	sets	the		tsc_clocksource_reliable		if
bootstrap	processor	has	the		X86_FEATURE_TSC_RELIABLE		feature.	Note	that	we	went	through
the		tsc_init		function,	but	did	not	register	our	clock	source.	Actual	registration	of	the		Time
Stamp	Counter		clock	source	occurs	in	the:

static	int	__init	init_tsc_clocksource(void)

{

				if	(!cpu_has_tsc	||	tsc_disabled	>	0	||	!tsc_khz)

								return	0;

				...

				...

				...

				if	(boot_cpu_has(X86_FEATURE_TSC_RELIABLE))	{

								clocksource_register_khz(&clocksource_tsc,	tsc_khz);

								return	0;

				}

function.	This	function	called	during	the		device		initcall.	We	do	it	to	be	sure	that	the		Time
Stamp	Counter		clock	source	will	be	registered	after	the	High	Precision	Event	Timer	clock
source.

After	these	all	three	clock	sources	will	be	registered	in	the		clocksource		framework	and	the
	Time	Stamp	Counter		clock	source	will	be	selected	as	active,	because	it	has	the	highest
rating	among	other	clock	sources:

x86	related	clock	sources

498

http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html
https://en.wikipedia.org/wiki/High_Precision_Event_Timer


static	struct	clocksource	clocksource_tsc	=	{

				.name																			=	"tsc",

				.rating																	=	300,

				.read																			=	read_tsc,

				.mask																			=	CLOCKSOURCE_MASK(64),

				.flags																		=	CLOCK_SOURCE_IS_CONTINUOUS	|	CLOCK_SOURCE_MUST_VERIFY,

				.archdata															=	{	.vclock_mode	=	VCLOCK_TSC	},

};

That's	all.

Conclusion
This	is	the	end	of	the	sixth	part	of	the	chapter	that	describes	timers	and	timer	management
related	stuff	in	the	Linux	kernel.	In	the	previous	part	got	acquainted	with	the		clockevents	
framework.	In	this	part	we	continued	to	learn	time	management	related	stuff	in	the	Linux
kernel	and	saw	a	little	about	three	different	clock	sources	which	are	used	in	the	x86
architecture.	The	next	part	will	be	last	part	of	this	chapter	and	we	will	see	some	user	space
related	stuff,	i.e.	how	some	time	related	system	calls	implemented	in	the	Linux	kernel.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
x86
sysfs
Time	Stamp	Counter
High	Precision	Event	Timer
ACPI	Power	Management	Timer	(PDF)
frequency.
dmesg
programmable	interval	timer
IRQ
IA-PC	HPET	(High	Precision	Event	Timers)	Specification
IRQ0
i8259
initcall

x86	related	clock	sources

499

https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://en.wikipedia.org/wiki/X86
https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://en.wikipedia.org/wiki/System_call
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29#Master_PIC
https://en.wikipedia.org/wiki/Intel_8259
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html


previous	part

x86	related	clock	sources

500

https://0xax.gitbooks.io/linux-insides/content/Timers/timers-5.html


Timers	and	time	management	in	the	Linux
kernel.	Part	7.

Time	related	system	calls	in	the	Linux	kernel
This	is	the	seventh	and	last	part	chapter	which	describes	timers	and	time	management
related	stuff	in	the	Linux	kernel.	In	the	previous	part	we	saw	some	x86_64	like	High
Precision	Event	Timer	and	Time	Stamp	Counter.	Internal	time	management	is	interesting
part	of	the	Linux	kernel,	but	of	course	not	only	the	kernel	needs	in	the		time		concept.	Our
programs	need	to	know	time	too.	In	this	part,	we	will	consider	implementation	of	some	time
management	related	system	calls.	These	system	calls	are:

	clock_gettime	;
	gettimeofday	;
	nanosleep	.

We	will	start	from	simple	userspace	C	program	and	see	all	way	from	the	call	of	the	standard
library	function	to	the	implementation	of	certain	system	call.	As	each	architecture	provides	its
own	implementation	of	certain	system	call,	we	will	consider	only	x86_64	specific
implementations	of	system	calls,	as	this	book	is	related	to	this	architecture.

Additionally	we	will	not	consider	concept	of	system	calls	in	this	part,	but	only
implementations	of	these	three	system	calls	in	the	Linux	kernel.	If	you	are	interested	in	what
is	it	a		system	call	,	there	is	special	chapter	about	this.

So,	let's	from	the		gettimeofday		system	call.

Implementation	of	the		gettimeofday		system
call
As	we	can	understand	from	the	name	of	the		gettimeofday	,	this	function	returns	current
time.	First	of	all,	let's	look	on	the	following	simple	example:

Time	related	system	calls

501

https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-6.html
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Standard_library
https://github.com/torvalds/linux/tree/master/arch
https://en.wikipedia.org/wiki/X86-64
https://0xax.gitbooks.io/linux-insides/content/SysCall/index.html


#include	<time.h>

#include	<sys/time.h>

#include	<stdio.h>

int	main(int	argc,	char	**argv)

{

				char	buffer[40];

				struct	timeval	time;

				gettimeofday(&time,	NULL);

				strftime(buffer,	40,	"Current	date/time:	%m-%d-%Y/%T",	localtime(&time.tv_sec));

				printf("%s\n",buffer);

				return	0;

}

As	you	can	see,	here	we	call	the		gettimeofday		function	which	takes	two	parameters:
pointer	to	the		timeval		structure	which	represents	an	elapsed	tim:

struct	timeval	{

				time_t						tv_sec;					/*	seconds	*/

				suseconds_t	tv_usec;				/*	microseconds	*/

};

The	second	parameter	of	the		gettimeofday		function	is	pointer	to	the		timezone		structure
which	represents	a	timezone.	In	our	example,	we	pass	address	of	the		timeval	time		to	the
	gettimeofday		function,	the	Linux	kernel	fills	the	given		timeval		structure	and	returns	it	back
to	us.	Additionally,	we	format	the	time	with	the		strftime		function	to	get	something	more
human	readable	than	elapsed	microseconds.	Let's	see	on	result:

~$	gcc	date.c	-o	date

~$	./date

Current	date/time:	03-26-2016/16:42:02

As	you	already	may	know,	an	userspace	application	does	not	call	a	system	call	directly	from
the	kernel	space.	Before	the	actual	system	call	entry	will	be	called,	we	call	a	function	from
the	standard	library.	In	my	case	it	is	glibc,	so	I	will	consider	this	case.	The	implementation	of
the		gettimeofday		function	is	located	in	the	sysdeps/unix/sysv/linux/x86/gettimeofday.c
source	code	file.	As	you	already	may	know,	the		gettimeofday		is	not	usual	system	call.	It	is
located	in	the	special	area	which	is	called		vDSO		(you	can	read	more	about	it	in	the	part
which	describes	this	concept).

Time	related	system	calls

502

https://en.wikipedia.org/wiki/GNU_C_Library
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86/gettimeofday.c;h=36f7c26ffb0e818709d032c605fec8c4bd22a14e;hb=HEAD
https://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-3.html


The		glibc		implementation	of	the		gettimeofday		tries	to	resolve	the	given	symbol,	in	our
case	this	symbol	is		__vdso_gettimeofday		by	the	call	of	the		_dl_vdso_vsym		internal	function.
If	the	symbol	will	not	be	resolved,	it	returns		NULL		and	we	fallback	to	the	call	of	the	usual
system	call:

return	(_dl_vdso_vsym	("__vdso_gettimeofday",	&linux26)

		?:	(void*)	(&__gettimeofday_syscall));

The		gettimeofday		entry	is	located	in	the	arch/x86/entry/vdso/vclock_gettime.c	source	code
file.	As	we	can	see	the		gettimeofday		is	weak	alias	of	the		__vdso_gettimeofday	:

int	gettimeofday(struct	timeval	*,	struct	timezone	*)

				__attribute__((weak,	alias("__vdso_gettimeofday")));

The		__vdso_gettimeofday		is	defined	in	the	same	source	code	file	and	calls	the		do_realtime	
function	if	the	given		timeval		is	not	null:

notrace	int	__vdso_gettimeofday(struct	timeval	*tv,	struct	timezone	*tz)

{

				if	(likely(tv	!=	NULL))	{

								if	(unlikely(do_realtime((struct	timespec	*)tv)	==	VCLOCK_NONE))

												return	vdso_fallback_gtod(tv,	tz);

								tv->tv_usec	/=	1000;

				}

				if	(unlikely(tz	!=	NULL))	{

								tz->tz_minuteswest	=	gtod->tz_minuteswest;

								tz->tz_dsttime	=	gtod->tz_dsttime;

				}

				return	0;

}

If	the		do_realtime		will	fail,	we	fallback	to	the	real	system	call	via	call	the		syscall	
instruction	and	passing	the		__NR_gettimeofday		system	call	number	and	the	given		timeval	
and		timezone	:

notrace	static	long	vdso_fallback_gtod(struct	timeval	*tv,	struct	timezone	*tz)

{

				long	ret;

				asm("syscall"	:	"=a"	(ret)	:

								"0"	(__NR_gettimeofday),	"D"	(tv),	"S"	(tz)	:	"memory");

				return	ret;

}

Time	related	system	calls

503

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vclock_gettime.c


The		do_realtime		function	gets	the	time	data	from	the		vsyscall_gtod_data		structure	which
is	defined	in	the	arch/x86/include/asm/vgtod.h	header	file	and	contains	mapping	of	the
	timespec		structure	and	a	couple	of	fields	which	are	related	to	the	current	clock	source	in
the	system.	This	function	fills	the	given		timeval		structure	with	values	from	the
	vsyscall_gtod_data		which	contains	a	time	related	data	which	is	updated	via	timer	interrupt.

First	of	all	we	try	to	access	the		gtod		or		global	time	of	day		the		vsyscall_gtod_data	
structure	via	the	call	of	the		gtod_read_begin		and	will	continue	to	do	it	until	it	will	be
successful:

do	{

				seq	=	gtod_read_begin(gtod);

				mode	=	gtod->vclock_mode;

				ts->tv_sec	=	gtod->wall_time_sec;

				ns	=	gtod->wall_time_snsec;

				ns	+=	vgetsns(&mode);

				ns	>>=	gtod->shift;

}	while	(unlikely(gtod_read_retry(gtod,	seq)));

ts->tv_sec	+=	__iter_div_u64_rem(ns,	NSEC_PER_SEC,	&ns);

ts->tv_nsec	=	ns;

As	we	got	access	to	the		gtod	,	we	fill	the		ts->tv_sec		with	the		gtod->wall_time_sec		which
stores	current	time	in	seconds	gotten	from	the	real	time	clock	during	initialization	of	the
timekeeping	subsystem	in	the	Linux	kernel	and	the	same	value	but	in	nanoseconds.	In	the
end	of	this	code	we	just	fill	the	given		timespec		structure	with	the	resulted	values.

That's	all	about	the		gettimeofday		system	call.	The	next	system	call	in	our	list	is	the
	clock_gettime	.

Implementation	of	the	clock_gettime	system
call
The		clock_gettime		function	gets	the	time	which	is	specified	by	the	second	parameter.
Generally	the		clock_gettime		function	takes	two	parameters:

	clk_id		-	clock	identifier;
	timespec		-	address	of	the		timespec		structure	which	represent	elapsed	time.

Let's	look	on	the	following	simple	example:

Time	related	system	calls

504

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/vgtod.h#L16
https://en.wikipedia.org/wiki/Real-time_clock


#include	<time.h>

#include	<sys/time.h>

#include	<stdio.h>

int	main(int	argc,	char	**argv)

{

				struct	timespec	elapsed_from_boot;

				clock_gettime(CLOCK_BOOTTIME,	&elapsed_from_boot);

				printf("%d	-	seconds	elapsed	from	boot\n",	elapsed_from_boot.tv_sec);

				return	0;

}

which	prints		uptime		information:

~$	gcc	uptime.c	-o	uptime

~$	./uptime

14180	-	seconds	elapsed	from	boot

We	can	easily	check	the	result	with	the	help	of	the	uptime	util:

~$	uptime

up		3:56

The		elapsed_from_boot.tv_sec		represents	elapsed	time	in	seconds,	so:

>>>	14180	/	60

236

>>>	14180	/	60	/	60

3

>>>	14180	/	60	%	60

56

The		clock_id		maybe	one	of	the	following:

	CLOCK_REALTIME		-	system	wide	clock	which	measures	real	or	wall-clock	time;
	CLOCK_REALTIME_COARSE		-	faster	version	of	the		CLOCK_REALTIME	;
	CLOCK_MONOTONIC		-	represents	monotonic	time	since	some	unspecified	starting	point;
	CLOCK_MONOTONIC_COARSE		-	faster	version	of	the		CLOCK_MONOTONIC	;
	CLOCK_MONOTONIC_RAW		-	the	same	as	the		CLOCK_MONOTONIC		but	provides	non	NTP
adjusted	time.
	CLOCK_BOOTTIME		-	the	same	as	the		CLOCK_MONOTONIC		but	plus	time	that	the	system	was
suspended;

Time	related	system	calls

505

https://en.wikipedia.org/wiki/Uptime#Using_uptime
https://en.wikipedia.org/wiki/Network_Time_Protocol


	CLOCK_PROCESS_CPUTIME_ID		-	per-process	time	consumed	by	all	threads	in	the	process;
	CLOCK_THREAD_CPUTIME_ID		-	thread-specific	clock.

The		clock_gettime		is	not	usual	syscall	too,	but	as	the		gettimeofday	,	this	system	call	is
placed	in	the		vDSO		area.	Entry	of	this	system	call	is	located	in	the	same	source	code	file	-
arch/x86/entry/vdso/vclock_gettime.c)	as	for		gettimeofday	.

The	Implementation	of	the		clock_gettime		depends	on	the	clock	id.	If	we	have	passed	the
	CLOCK_REALTIME		clock	id,	the		do_realtime		function	will	be	called:

notrace	int	__vdso_clock_gettime(clockid_t	clock,	struct	timespec	*ts)

{

				switch	(clock)	{

				case	CLOCK_REALTIME:

								if	(do_realtime(ts)	==	VCLOCK_NONE)

												goto	fallback;

								break;

				...

				...

				...

fallback:

				return	vdso_fallback_gettime(clock,	ts);

}

In	other	cases,	the		do_{name_of_clock_id}		function	is	called.	Implementations	of	some	of
them	is	similar.	For	example	if	we	will	pass	the		CLOCK_MONOTONIC		clock	id:

...

...

...

case	CLOCK_MONOTONIC:

				if	(do_monotonic(ts)	==	VCLOCK_NONE)

								goto	fallback;

				break;

...

...

...

the		do_monotonic		function	will	be	called	which	is	very	similar	on	the	implementation	of	the
	do_realtime	:

Time	related	system	calls

506

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vclock_gettime.c


notrace	static	int	__always_inline	do_monotonic(struct	timespec	*ts)

{

				do	{

								seq	=	gtod_read_begin(gtod);

								mode	=	gtod->vclock_mode;

								ts->tv_sec	=	gtod->monotonic_time_sec;

								ns	=	gtod->monotonic_time_snsec;

								ns	+=	vgetsns(&mode);

								ns	>>=	gtod->shift;

				}	while	(unlikely(gtod_read_retry(gtod,	seq)));

				ts->tv_sec	+=	__iter_div_u64_rem(ns,	NSEC_PER_SEC,	&ns);

				ts->tv_nsec	=	ns;

				return	mode;

}

We	already	saw	a	little	about	the	implementation	of	this	function	in	the	previous	paragraph
about	the		gettimeofday	.	There	is	only	one	difference	here,	that	the		sec		and		nsec		of	our
	timespec		value	will	be	based	on	the		gtod->monotonic_time_sec		instead	of		gtod-
>wall_time_sec		which	maps	the	value	of	the		tk->tkr_mono.xtime_nsec		or	number	of
nanoseconds	elapsed.

That's	all.

Implementation	of	the		nanosleep		system	call
The	last	system	call	in	our	list	is	the		nanosleep	.	As	you	can	understand	from	its	name,	this
function	provides		sleeping		ability.	Let's	look	on	the	following	simple	example:

#include	<time.h>

#include	<stdlib.h>

#include	<stdio.h>

int	main	(void)

{				

			struct	timespec	ts	=	{5,0};

			printf("sleep	five	seconds\n");

			nanosleep(&ts,	NULL);

			printf("end	of	sleep\n");

			return	0;

}

If	we	will	compile	and	run	it,	we	will	see	the	first	line

Time	related	system	calls

507

https://en.wikipedia.org/wiki/Nanosecond


~$	gcc	sleep_test.c	-o	sleep

~$	./sleep

sleep	five	seconds

end	of	sleep

and	the	second	line	after	five	seconds.

The		nanosleep		is	not	located	in	the		vDSO		area	like	the		gettimeofday		and	the
	clock_gettime		functions.	So,	let's	look	how	the		real		system	call	which	is	located	in	the
kernel	space	will	be	called	by	the	standard	library.	The	implementation	of	the		nanosleep	
system	call	will	be	called	with	the	help	of	the	syscall	instruction.	Before	the	execution	of	the
	syscall		instruction,	parameters	of	the	system	call	must	be	put	in	processor	registers
according	to	order	which	is	described	in	the	System	V	Application	Binary	Interface	or	in
other	words:

	rdi		-	first	parameter;
	rsi		-	second	parameter;
	rdx		-	third	parameter;
	r10		-	fourth	parameter;
	r8		-	fifth	parameter;
	r9		-	sixth	parameter.

The		nanosleep		system	call	has	two	parameters	-	two	pointers	to	the		timespec		structures.
The	system	call	suspends	the	calling	thread	until	the	given	timeout	has	elapsed.	Additionally
it	will	finish	if	a	signal	interrupts	its	execution.	It	takes	two	parameters,	the	first	is		timespec	
which	represents	timeout	for	the	sleep.	The	second	parameter	is	the	pointer	to	the
	timespec		structure	too	and	it	contains	remainder	of	time	if	the	call	of	the		nanosleep		was
interrupted.

As		nanosleep		has	two	parameters:

int	nanosleep(const	struct	timespec	*req,	struct	timespec	*rem);

To	call	system	call,	we	need	put	the		req		to	the		rdi		register,	and	the		rem		parameter	to
the		rsi		register.	The	glibc	does	these	job	in	the		INTERNAL_SYSCALL		macro	which	is	located
in	the	sysdeps/unix/sysv/linux/x86_64/sysdep.h	header	file.

#	define	INTERNAL_SYSCALL(name,	err,	nr,	args...)	\

		INTERNAL_SYSCALL_NCS	(__NR_##name,	err,	nr,	##args)

Time	related	system	calls

508

http://www.felixcloutier.com/x86/SYSCALL.html
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/GNU_C_Library
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86_64/sysdep.h;h=d023d68174d3dfb4e698160b31ae31ad291802e1;hb=HEAD


which	takes	the	name	of	the	system	call,	storage	for	possible	error	during	execution	of
system	call,	number	of	the	system	call	(all		x86_64		system	calls	you	can	find	in	the	system
calls	table)	and	arguments	of	certain	system	call.	The		INTERNAL_SYSCALL		macro	just	expands
to	the	call	of	the		INTERNAL_SYSCALL_NCS		macro,	which	prepares	arguments	of	system	call
(puts	them	into	the	processor	registers	in	correct	order),	executes		syscall		instruction	and
returns	the	result:

#	define	INTERNAL_SYSCALL_NCS(name,	err,	nr,	args...)						\

		({																																																																										\

				unsigned	long	int	resultvar;																																														\

				LOAD_ARGS_##nr	(args)																																																						\

				LOAD_REGS_##nr																																																														\

				asm	volatile	(																																																														\

				"syscall\n\t"																																																														\

				:	"=a"	(resultvar)																																																										\

				:	"0"	(name)	ASM_ARGS_##nr	:	"memory",	REGISTERS_CLOBBERED_BY_SYSCALL);			\

				(long	int)	resultvar;	})

The		LOAD_ARGS_##nr		macro	calls	the		LOAD_ARGS_N		macro	where	the		N		is	number	of
arguments	of	the	system	call.	In	our	case,	it	will	be	the		LOAD_ARGS_2		macro.	Ultimately	all	of
these	macros	will	be	expanded	to	the	following:

#	define	LOAD_REGS_TYPES_1(t1,	a1)																							\

		register	t1	_a1	asm	("rdi")	=	__arg1;																							\

		LOAD_REGS_0

#	define	LOAD_REGS_TYPES_2(t1,	a1,	t2,	a2)																			\

		register	t2	_a2	asm	("rsi")	=	__arg2;																							\

		LOAD_REGS_TYPES_1(t1,	a1)

...

...

...

After	the		syscall		instruction	will	be	executed,	the	context	switch	will	occur	and	the	kernel
will	transfer	execution	to	the	system	call	handler.	The	system	call	handler	for	the		nanosleep	
system	call	is	located	in	the	kernel/time/hrtimer.c	source	code	file	and	defined	with	the
	SYSCALL_DEFINE2		macro	helper:

Time	related	system	calls

509

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/kernel/time/hrtimer.c


SYSCALL_DEFINE2(nanosleep,	struct	timespec	__user	*,	rqtp,

								struct	timespec	__user	*,	rmtp)

{

				struct	timespec	tu;

				if	(copy_from_user(&tu,	rqtp,	sizeof(tu)))

								return	-EFAULT;

				if	(!timespec_valid(&tu))

								return	-EINVAL;

				return	hrtimer_nanosleep(&tu,	rmtp,	HRTIMER_MODE_REL,	CLOCK_MONOTONIC);

}

More	about	the		SYSCALL_DEFINE2		macro	you	may	read	in	the	chapter	about	system	calls.	If
we	look	at	the	implementation	of	the		nanosleep		system	call,	first	of	all	we	will	see	that	it
starts	from	the	call	of	the		copy_from_user		function.	This	function	copies	the	given	data	from
the	userspace	to	kernelspace.	In	our	case	we	copy	timeout	value	to	sleep	to	the	kernelspace
	timespec		structure	and	check	that	the	given		timespec		is	valid	by	the	call	of	the
	timesc_valid		function:

static	inline	bool	timespec_valid(const	struct	timespec	*ts)

{

				if	(ts->tv_sec	<	0)

								return	false;

				if	((unsigned	long)ts->tv_nsec	>=	NSEC_PER_SEC)

								return	false;

				return	true;

}

which	just	checks	that	the	given		timespec		does	not	represent	date	before		1970		and
nanoseconds	does	not	overflow		1		second.	The		nanosleep		function	ends	with	the	call	of
the		hrtimer_nanosleep		function	from	the	same	source	code	file.	The		hrtimer_nanosleep	
function	creates	a	timer	and	calls	the		do_nanosleep		function.	The		do_nanosleep		does	main
job	for	us.	This	function	provides	loop:

Time	related	system	calls

510

https://0xax.gitbooks.io/linux-insides/content/SysCall/index.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-4.html


do	{

				set_current_state(TASK_INTERRUPTIBLE);

				hrtimer_start_expires(&t->timer,	mode);

				if	(likely(t->task))

								freezable_schedule();

}	while	(t->task	&&	!signal_pending(current));

__set_current_state(TASK_RUNNING);

return	t->task	==	NULL;

Which	freezes	current	task	during	sleep.	After	we	set		TASK_INTERRUPTIBLE		flag	for	the
current	task,	the		hrtimer_start_expires		function	starts	the	give	high-resolution	timer	on	the
current	processor.	As	the	given	high	resolution	timer	will	expire,	the	task	will	be	again
running.

That's	all.

Conclusion
This	is	the	end	of	the	seventh	part	of	the	chapter	that	describes	timers	and	timer
management	related	stuff	in	the	Linux	kernel.	In	the	previous	part	we	saw	x86_64	specific
clock	sources.	As	I	wrote	in	the	beginning,	this	part	is	the	last	part	of	this	chapter.	We	saw
important	time	management	related	concepts	like		clocksource		and		clockevents	
frameworks,		jiffies		counter	and	etc.,	in	this	chpater.	Of	course	this	does	not	cover	all	of
the	time	management	in	the	Linux	kernel.	Many	parts	of	this	mostly	related	to	the	scheduling
which	we	will	see	in	other	chapter.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
system	call
C	programming	language
standard	library
glibc
real	time	clock

Time	related	system	calls

511

https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://en.wikipedia.org/wiki/X86-64
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Real-time_clock


NTP
nanoseconds
register
System	V	Application	Binary	Interface
context	switch
Introduction	to	timers	in	the	Linux	kernel
uptime
system	calls	table	for	x86_64
High	Precision	Event	Timer
Time	Stamp	Counter
x86_64
previous	part

Time	related	system	calls

512

https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/Context_switch
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-4.html
https://en.wikipedia.org/wiki/Uptime#Using_uptime
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/X86-64
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-6.html


Synchronization	primitives	in	the	Linux
kernel.
This	chapter	describes	synchronization	primitives	in	the	Linux	kernel.

Introduction	to	spinlocks	-	the	first	part	of	this	chapter	describes	implementation	of
spinlock	mechanism	in	the	Linux	kernel.
Queued	spinlocks	-	the	second	part	describes	another	type	of	spinlocks	-	queued
spinlocks.
Semaphores	-	this	part	describes	implementation	of		semaphore		synchronization
primitive	in	the	Linux	kernel.
Mutual	exclusion	-	this	part	describes	-		mutex		in	the	Linux	kernel.
Reader/Writer	semaphores	-	this	part	describes	special	type	of	semaphores	-
	reader/writer		semaphores.

Synchronization	primitives

513

http://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-1.html
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-2.html
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-5.html


Synchronization	primitives	in	the	Linux
kernel.	Part	1.

Introduction
This	part	opens	new	chapter	in	the	linux-insides	book.	Timers	and	time	management	related
stuff	was	described	in	the	previous	chapter.	Now	time	to	go	next.	As	you	may	understand
from	the	part's	title,	this	chapter	will	describe	synchronization	primitives	in	the	Linux	kernel.

As	always,	before	we	will	consider	something	synchronization	related,	we	will	try	to	know
what	is		synchronization	primitive		in	general.	Actually,	synchronization	primitive	is	a
software	mechanism	which	provides	ability	to	two	or	more	parallel	processes	or	threads	to
not	execute	simultaneously	one	the	same	segment	of	a	code.	For	example	let's	look	on	the
following	piece	of	code:

mutex_lock(&clocksource_mutex);

...

...

...

clocksource_enqueue(cs);

clocksource_enqueue_watchdog(cs);

clocksource_select();

...

...

...

mutex_unlock(&clocksource_mutex);

from	the	kernel/time/clocksource.c	source	code	file.	This	code	is	from	the
	__clocksource_register_scale		function	which	adds	the	given	clocksource	to	the	clock
sources	list.	This	function	produces	different	operations	on	a	list	with	registered	clock
sources.	For	example	the		clocksource_enqueue		function	adds	the	given	clock	source	to	the
list	with	registered	clocksources	-		clocksource_list	.	Note	that	these	lines	of	code	wrapped
to	two	functions:		mutex_lock		and		mutex_unlock		which	are	takes	one	parameter	-	the
	clocksource_mutex		in	our	case.

These	functions	represents	locking	and	unlocking	based	on	mutex	synchronization	primitive.
As		mutex_lock		will	be	executed,	it	allows	us	to	prevent	situation	when	two	or	more	threads
will	execute	this	code	while	the		mute_unlock		will	not	be	executed	by	process-owner	of	the
mutex.	In	other	words,	we	prevent	parallel	operations	on	a		clocksource_list	.	Why	do	we
need		mutex		here?	What	if	two	parallel	processes	will	try	to	register	a	clock	source.	As	we

Introduction	to	spinlocks

514

http://0xax.gitbooks.io/linux-insides/content/
https://0xax.gitbooks.io/linux-insides/content/Timers/index.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Parallel_computing
https://github.com/torvalds/linux/master/kernel/time/clocksource.c
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-2.html
https://en.wikipedia.org/wiki/Mutual_exclusion


already	know,	the		clocksource_enqueue		function	adds	the	given	clock	source	to	the
	clocksource_list		list	right	after	a	clock	source	in	the	list	which	has	the	biggest	rating	(a
registered	clock	source	which	has	the	highest	frequency	in	the	system):

static	void	clocksource_enqueue(struct	clocksource	*cs)

{

				struct	list_head	*entry	=	&clocksource_list;

				struct	clocksource	*tmp;

				list_for_each_entry(tmp,	&clocksource_list,	list)

								if	(tmp->rating	>=	cs->rating)

												entry	=	&tmp->list;

				list_add(&cs->list,	entry);

}

If	two	parallel	processes	will	try	to	do	it	simultaneously,	both	process	may	found	the	same
	entry		may	occur	race	condition	or	in	other	words,	the	second	process	which	will	execute
	list_add	,	will	overwrite	a	clock	source	from	first	thread.

Besides	this	simple	example,	synchronization	primitives	are	ubiquitous	in	the	Linux	kernel.	If
we	will	go	through	the	previous	chapter	or	other	chapters	again	or	if	we	will	look	at	the	Linux
kernel	source	code	in	general,	we	will	meet	many	places	like	this.	We	will	not	consider	how
	mutex		is	implemented	in	the	Linux	kernel.	Actually,	the	Linux	kernel	provides	a	set	of
different	synchronization	primitives	like:

	mutex	;
	semaphores	;
	seqlocks	;
	atomic	operations	;
etc.

We	will	start	this	chapter	from	the		spinlock	.

Spinlocks	in	the	Linux	kernel.
The		spinlock		is	a	low-level	synchronization	mechanism	which	in	simple	words,	represents
a	variable	which	can	be	in	two	states:

	acquired	;
	released	.

Each	process	which	wants	to	acquire	a		spinlock	,	must	write	a	value	which	represents
	spinlock	acquired		state	to	this	variable	and	write		spinlock	released		state	to	the	variable.
If	a	process	tries	to	execute	code	which	is	protected	by	a		spinlock	,	it	will	be	locked	while	a

Introduction	to	spinlocks

515

https://en.wikipedia.org/wiki/Race_condition
https://0xax.gitbooks.io/linux-insides/content/Timers/index.html


process	which	holds	this	lock	will	release	it.	In	this	case	all	related	operations	must	be
atomic	to	prevent	race	conditions	state.	The		spinlock		is	represented	by	the		spinlock_t	
type	in	the	Linux	kernel.	If	we	will	look	at	the	Linux	kernel	code,	we	will	see	that	this	type	is
widely	used.	The		spinlock_t		is	defined	as:

typedef	struct	spinlock	{

								union	{

														struct	raw_spinlock	rlock;

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

#	define	LOCK_PADSIZE	(offsetof(struct	raw_spinlock,	dep_map))

																struct	{

																								u8	__padding[LOCK_PADSIZE];

																								struct	lockdep_map	dep_map;

																};

#endif

								};

}	spinlock_t;

and	located	in	the	include/linux/spinlock_types.h	header	file.	We	may	see	that	its
implementation	depends	on	the	state	of	the		CONFIG_DEBUG_LOCK_ALLOC		kernel	configuration
option.	We	will	skip	this	now,	because	all	debugging	related	stuff	will	be	in	the	end	of	this
part.	So,	if	the		CONFIG_DEBUG_LOCK_ALLOC		kernel	configuration	option	is	disabled,	the
	spinlock_t		contains	union	with	one	field	which	is	-		raw_spinlock	:

typedef	struct	spinlock	{

								union	{

														struct	raw_spinlock	rlock;

								};

}	spinlock_t;

The		raw_spinlock		structure	defined	in	the	same	header	file	and	represents	implementation
of		normal		spinlock.	Let's	look	how	the		raw_spinlock		structure	is	defined:

typedef	struct	raw_spinlock	{

								arch_spinlock_t	raw_lock;

#ifdef	CONFIG_GENERIC_LOCKBREAK

								unsigned	int	break_lock;

#endif

}	raw_spinlock_t;

where	the		arch_spinlock_t		represents	architecture-specific		spinlock		implementation	and
the		break_lock		field	which	holds	value	-		1		in	a	case	when	one	processor	starts	to	wait
while	the	lock	is	held	on	another	processor	on	SMP	systems.	This	allows	prevent	long	time

Introduction	to	spinlocks

516

https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Race_condition
http://lxr.free-electrons.com/ident?i=spinlock_t
https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Union_type#C.2FC.2B.2B
https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Symmetric_multiprocessing


locking.	As	consider	the	x86_64	architecture	in	this	books,	so	the		arch_spinlock_t		is
defined	in	the	arch/x86/include/asm/spinlock_types.h	header	file	and	looks:

#ifdef	CONFIG_QUEUED_SPINLOCKS

#include	<asm-generic/qspinlock_types.h>

#else

typedef	struct	arch_spinlock	{

								union	{

																__ticketpair_t	head_tail;

																struct	__raw_tickets	{

																								__ticket_t	head,	tail;

																}	tickets;

								};

}	arch_spinlock_t;

As	we	may	see,	the	definition	of	the		arch_spinlock		structure	depends	on	the	value	of	the
	CONFIG_QUEUED_SPINLOCKS		kernel	configuration	option.	This	configuration	option	the	Linux
kernel	supports		spinlocks		with	queue.	This	special	type	of		spinlocks		which	instead	of
	acquired		and		released		atomic	values	used		atomic		operation	on	a		queue	.	If	the
	CONFIG_QUEUED_SPINLOCKS		kernel	configuration	option	is	enabled,	the		arch_spinlock_t		will
be	represented	by	the	following	structure:

typedef	struct	qspinlock	{

				atomic_t				val;

}	arch_spinlock_t;

from	the	include/asm-generic/qspinlock_types.h	header	file.

We	will	not	stop	on	this	structures	for	now	and	before	we	will	consider	both		arch_spinlock	
and	the		qspinlock	,	let's	look	at	the	operations	on	a	spinlock.	The	Linux	kernel	provides
following	main	operations	on	a		spinlock	:

	spin_lock_init		-	produces	initialization	of	the	given		spinlock	;
	spin_lock		-	acquires	given		spinlock	;
	spin_lock_bh		-	disables	software	interrupts	and	acquire	given		spinlock	.
	spin_lock_irqsave		and		spin_lock_irq		-	disable	interrupts	on	local	processor	and
preserve/not	preserve	previous	interrupt	state	in	the		flags	;
	spin_unlock		-	releases	given		spinlock	;
	spin_unlock_bh		-	releases	given		spinlock		and	enables	software	interrupts;
	spin_is_locked		-	returns	the	state	of	the	given		spinlock	;
and	etc.

Introduction	to	spinlocks

517

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/master/arch/x86/include/asm/spinlock_types.h
https://en.wikipedia.org/wiki/Linearizability
https://github.com/torvalds/linux/master/include/asm-generic/qspinlock_types.h
https://en.wikipedia.org/wiki/Interrupt


Let's	look	on	the	implementation	of	the		spin_lock_init		macro.	As	I	already	wrote,	this	and
other	macro	are	defined	in	the	include/linux/spinlock.h	header	file	and	the		spin_lock_init	
macro	looks:

#define	spin_lock_init(_lock)								\

do	{																																												\

				spinlock_check(_lock);																								\

				raw_spin_lock_init(&(_lock)->rlock);								\

}	while	(0)

As	we	may	see,	the		spin_lock_init		macro	takes	a		spinlock		and	executes	two	operations:
check	the	given		spinlock		and	execute	the		raw_spin_lock_init	.	The	implementation	of	the
	spinlock_check		is	pretty	easy,	this	function	just	returns	the		raw_spinlock_t		of	the	given
	spinlock		to	be	sure	that	we	got	exactly		normal		raw	spinlock:

static	__always_inline	raw_spinlock_t	*spinlock_check(spinlock_t	*lock)

{

				return	&lock->rlock;

}

The		raw_spin_lock_init		macro:

#	define	raw_spin_lock_init(lock)								\

do	{																																																		\

				*(lock)	=	__RAW_SPIN_LOCK_UNLOCKED(lock);									\

}	while	(0)																																											\

assigns	the	value	of	the		__RAW_SPIN_LOCK_UNLOCKED		with	the	given		spinlock		to	the	given
	raw_spinlock_t	.	As	we	may	understand	from	the	name	of	the		__RAW_SPIN_LOCK_UNLOCKED	
macro,	this	macro	does	initialization	of	the	given		spinlock		and	set	it	to		released		state.
This	macro	defined	in	the	include/linux/spinlock_types.h	header	file	and	expands	to	the
following	macros:

#define	__RAW_SPIN_LOCK_UNLOCKED(lockname)						\

									(raw_spinlock_t)	__RAW_SPIN_LOCK_INITIALIZER(lockname)

#define	__RAW_SPIN_LOCK_INITIALIZER(lockname)			\

									{																																																						\

													.raw_lock	=	__ARCH_SPIN_LOCK_UNLOCKED,													\

													SPIN_DEBUG_INIT(lockname)																										\

													SPIN_DEP_MAP_INIT(lockname)																								\

									}

Introduction	to	spinlocks

518

https://github.com/torvalds/linux/master/include/linux/spinlock.h
https://github.com/torvalds/linux/master/include/linux/spinlock_types.h


As	I	already	wrote	above,	we	will	not	consider	stuff	which	is	related	to	debugging	of
synchronization	primitives.	In	this	case	we	will	not	consider	the		SPIN_DEBUG_INIT		and	the
	SPIN_DEP_MAP_INIT		macros.	So	the		__RAW_SPINLOCK_UNLOCKED		macro	will	be	expanded	to	the:

*(&(_lock)->rlock)	=	__ARCH_SPIN_LOCK_UNLOCKED;

where	the		__ARCH_SPIN_LOCK_UNLOCKED		is:

#define	__ARCH_SPIN_LOCK_UNLOCKED							{	{	0	}	}

and:

#define	__ARCH_SPIN_LOCK_UNLOCKED							{	ATOMIC_INIT(0)	}

for	the	x86_64	architecture.	if	the		CONFIG_QUEUED_SPINLOCKS		kernel	configuration	option	is
enabled.	So,	after	the	expansion	of	the		spin_lock_init		macro,	a	given		spinlock		will	be
initialized	and	its	state	will	be	-		unlocked	.

From	this	moment	we	know	how	to	initialize	a		spinlock	,	now	let's	consider	API	which	Linux
kernel	provides	for	manipulations	of		spinlocks	.	The	first	is:

static	__always_inline	void	spin_lock(spinlock_t	*lock)

{

				raw_spin_lock(&lock->rlock);

}

function	which	allows	us	to		acquire		a	spinlock.	The		raw_spin_lock		macro	is	defined	in	the
same	header	file	and	expands	to	the	call	of	the		_raw_spin_lock		function:

#define	raw_spin_lock(lock)				_raw_spin_lock(lock)

As	we	may	see	in	the	include/linux/spinlock.h	header	file,	definition	of	the		_raw_spin_lock	
macro	depends	on	the		CONFIG_SMP		kernel	configuration	parameter:

#if	defined(CONFIG_SMP)	||	defined(CONFIG_DEBUG_SPINLOCK)

#	include	<linux/spinlock_api_smp.h>

#else

#	include	<linux/spinlock_api_up.h>

#endif

So,	if	the	SMP	is	enabled	in	the	Linux	kernel,	the		_raw_spin_lock		macro	is	defined	in	the
arch/x86/include/asm/spinlock.h	header	file	and	looks	like:

Introduction	to	spinlocks

519

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h


#define	_raw_spin_lock(lock)	__raw_spin_lock(lock)

The		__raw_spin_lock		function	looks:

static	inline	void	__raw_spin_lock(raw_spinlock_t	*lock)

{

								preempt_disable();

								spin_acquire(&lock->dep_map,	0,	0,	_RET_IP_);

								LOCK_CONTENDED(lock,	do_raw_spin_trylock,	do_raw_spin_lock);

}

As	you	may	see,	first	of	all	we	disable	preemption	by	the	call	of	the		preempt_disable		macro
from	the	include/linux/preempt.h	(more	about	this	you	may	read	in	the	ninth	part	of	the	Linux
kernel	initialization	process	chapter).	When	we	will	unlock	the	given		spinlock	,	preemption
will	be	enabled	again:

static	inline	void	__raw_spin_unlock(raw_spinlock_t	*lock)

{

								...

								...

								...

								preempt_enable();

}

We	need	to	do	this	while	a	process	is	spinning	on	a	lock,	other	processes	must	be
prevented	to	preempt	the	process	which	acquired	a	lock.	The		spin_acquire		macro	which
through	a	chain	of	other	macros	expands	to	the	call	of	the:

#define	spin_acquire(l,	s,	t,	i)																lock_acquire_exclusive(l,	s,	t,	NULL,	

i)

#define	lock_acquire_exclusive(l,	s,	t,	n,	i)											lock_acquire(l,	s,	t,	0,	1,	n,

	i)

	lock_acquire		function:

Introduction	to	spinlocks

520

https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://github.com/torvalds/linux/blob/master/include/linux/preempt.h
https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-9.html


void	lock_acquire(struct	lockdep_map	*lock,	unsigned	int	subclass,

																		int	trylock,	int	read,	int	check,

																		struct	lockdep_map	*nest_lock,	unsigned	long	ip)

{

									unsigned	long	flags;

									if	(unlikely(current->lockdep_recursion))

																return;

									raw_local_irq_save(flags);

									check_flags(flags);

									current->lockdep_recursion	=	1;

									trace_lock_acquire(lock,	subclass,	trylock,	read,	check,	nest_lock,	ip);

									__lock_acquire(lock,	subclass,	trylock,	read,	check,

																								irqs_disabled_flags(flags),	nest_lock,	ip,	0,	0);

									current->lockdep_recursion	=	0;

									raw_local_irq_restore(flags);

}

As	I	wrote	above,	we	will	not	consider	stuff	here	which	is	related	to	debugging	or	tracing.
The	main	point	of	the		lock_acquire		function	is	to	disable	hardware	interrupts	by	the	call	of
the		raw_local_irq_save		macro,	because	the	given	spinlock	might	be	acquired	with	enabled
hardware	interrupts.	In	this	way	the	process	will	not	be	preempted.	Note	that	in	the	end	of
the		lock_acquire		function	we	will	enable	hardware	interrupts	again	with	the	help	of	the
	raw_local_irq_restore		macro.	As	you	already	may	guess,	the	main	work	will	be	in	the
	__lock_acquire		function	which	is	defined	in	the	kernel/locking/lockdep.c	source	code	file.

The		__lock_acquire		function	looks	big.	We	will	try	to	understand	what	does	this	function	do,
but	not	in	this	part.	Actually	this	function	mostly	related	to	the	Linux	kernel	lock	validator	and
it	is	not	topic	of	this	part.	If	we	will	return	to	the	definition	of	the		__raw_spin_lock		function,
we	will	see	that	it	contains	the	following	definition	in	the	end:

LOCK_CONTENDED(lock,	do_raw_spin_trylock,	do_raw_spin_lock);

The		LOCK_CONTENDED		macro	is	defined	in	the	include/linux/lockdep.h	header	file	and	just	calls
the	given	function	with	the	given		spinlock	:

#define	LOCK_CONTENDED(_lock,	try,	lock)	\

									lock(_lock)

In	our	case,	the		lock		is		do_raw_spin_lock		function	from	the	include/linux/spinlock.h	header
file	and	the		_lock		is	the	given		raw_spinlock_t	:

Introduction	to	spinlocks

521

https://github.com/torvalds/linux/blob/master/kernel/locking/lockdep.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/lockdep.h
https://github.com/torvalds/linux/blob/master/include/linux/spnlock.h


static	inline	void	do_raw_spin_lock(raw_spinlock_t	*lock)	__acquires(lock)

{

								__acquire(lock);

									arch_spin_lock(&lock->raw_lock);

}

The		__acquire		here	is	just	sparse	related	macro	and	we	are	not	interesting	in	it	in	this
moment.	Location	of	the	definition	of	the		arch_spin_lock		function	depends	on	two	things:
the	first	is	architecture	of	system	and	the	second	do	we	use		queued	spinlocks		or	not.	In	our
case	we	consider	only		x86_64		architecture,	so	the	definition	of	the		arch_spin_lock		is
represented	as	the	macro	from	the	include/asm-generic/qspinlock.h	header	file:

#define	arch_spin_lock(l)															queued_spin_lock(l)

if	we	are	using		queued	spinlocks	.	Or	in	other	case,	the		arch_spin_lock		function	is	defined
in	the	arch/x86/include/asm/spinlock.h	header	file.	Now	we	will	consider	only		normal
spinlock		and	information	related	to		queued	spinlocks		we	will	see	later.	Let's	look	again	on
the	definition	of	the		arch_spinlock		structure,	to	understand	implementation	of	the
	arch_spin_lock		function:

typedef	struct	arch_spinlock	{

									union	{

																__ticketpair_t	head_tail;

																struct	__raw_tickets	{

																								__ticket_t	head,	tail;

																}	tickets;

								};

}	arch_spinlock_t;

This	variant	of		spinlock		is	called	-		ticket	spinlock	.	As	we	may	see,	it	consists	from	two
parts.	When	lock	is	acquired,	it	increments	a		tail		by	one	every	time	when	a	process	wants
to	hold	a		spinlock	.	If	the		tail		is	not	equal	to		head	,	the	process	will	be	locked,	until
values	of	these	variables	will	not	be	equal.	Let's	look	on	the	implementation	of	the
	arch_spin_lock		function:

Introduction	to	spinlocks

522

https://en.wikipedia.org/wiki/Sparse
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlocks.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h


static	__always_inline	void	arch_spin_lock(arch_spinlock_t	*lock)

{

								register	struct	__raw_tickets	inc	=	{	.tail	=	TICKET_LOCK_INC	};

								inc	=	xadd(&lock->tickets,	inc);

								if	(likely(inc.head	==	inc.tail))

																goto	out;

								for	(;;)	{

																	unsigned	count	=	SPIN_THRESHOLD;

																	do	{

																							inc.head	=	READ_ONCE(lock->tickets.head);

																							if	(__tickets_equal(inc.head,	inc.tail))

																																goto	clear_slowpath;

																								cpu_relax();

																	}	while	(--count);

																	__ticket_lock_spinning(lock,	inc.tail);

									}

clear_slowpath:

								__ticket_check_and_clear_slowpath(lock,	inc.head);

out:

								barrier();

}

At	the	beginning	of	the		arch_spin_lock		function	we	can	initialization	of	the		__raw_tickets	
structure	with		tail		-		1	:

#define	__TICKET_LOCK_INC							1

In	the	next	line	we	execute	xadd	operation	on	the		inc		and		lock->tickets	.	After	this
operation	the		inc		will	store	value	of	the		tickets		of	the	given		lock		and	the		tickets.tail	
will	be	increased	on		inc		or		1	.	The		tail		value	was	increased	on		1		which	means	that
one	process	started	to	try	to	hold	a	lock.	In	the	next	step	we	do	the	check	that	checks	that
	head		and		tail		have	the	same	value.	If	these	values	are	equal,	this	means	that	nobody
holds	lock	and	we	go	to	the		out		label.	In	the	end	of	the		arch_spin_lock		function	we	may
see	the		barrier		macro	which	represents		barrier	instruction		which	guarantees	that
compiler	will	not	change	order	of	operations	that	access	memory	(more	about	memory
barriers	you	can	read	in	the	kernel	documentation).

If	one	process	held	a	lock	and	a	second	process	started	to	execute	the		arch_spin_lock	
function,	the		head		will	not	be		equal		to		tail	,	because	the		tail		will	be	greater	than
	head		on		1	.	In	this	way,	process	will	occur	in	the	loop.	There	will	be	comparison	between
	head		and	the		tail		values	at	each	loop	iteration.	If	these	values	are	not	equal,	the
	cpu_relax		will	be	called	which	is	just	NOP	instruction:

Introduction	to	spinlocks

523

http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://en.wikipedia.org/wiki/NOP


#define	cpu_relax()					asm	volatile("rep;	nop")

and	the	next	iteration	of	the	loop	will	be	started.	If	these	values	will	be	equal,	this	means	that
the	process	which	held	this	lock,	released	this	lock	and	the	next	process	may	acquire	the
lock.

The		spin_unlock		operation	goes	through	the	all	macros/function	as		spin_lock	,	of	course
with		unlock		prefix.	In	the	end	the		arch_spin_unlock		function	will	be	called.	If	we	will	look	at
the	implementation	of	the		arch_spin_lock		function,	we	will	see	that	it	increases		head		of	the
	lock	tickets		list:

__add(&lock->tickets.head,	TICKET_LOCK_INC,	UNLOCK_LOCK_PREFIX);

In	a	combination	of	the		spin_lock		and		spin_unlock	,	we	get	kind	of	queue	where		head	
contains	an	index	number	which	maps	currently	executed	process	which	holds	a	lock	and
the		tail		which	contains	an	index	number	which	maps	last	process	which	tried	to	hold	the
lock:

					+-------+							+-------+

					|							|							|							|

head	|			7			|	-	-	-	|			7			|	tail

					|							|							|							|

					+-------+							+-------+

																									|

																					+-------+

																					|							|

																					|			8			|

																					|							|

																					+-------+

																									|

																					+-------+

																					|							|

																					|			9			|

																					|							|

																					+-------+

That's	all	for	now.	We	didn't	cover		spinlock		API	in	full	in	this	part,	but	I	think	that	the	main
idea	behind	this	concept	must	be	clear	now.

Conclusion

Introduction	to	spinlocks

524



This	concludes	the	first	part	covering	synchronization	primitives	in	the	Linux	kernel.	In	this
part,	we	met	first	synchronization	primitive		spinlock		provided	by	the	Linux	kernel.	In	the
next	part	we	will	continue	to	dive	into	this	interesting	theme	and	will	see	other
	synchronization		related	stuff.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Concurrent	computing
Synchronization
Clocksource	framework
Mutex
Race	condition
Atomic	operations
SMP
x86_64
Interrupts
Preemption
Linux	kernel	lock	validator
Sparse
xadd	instruction
NOP
Memory	barriers
Previous	chapter

Introduction	to	spinlocks

525

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-2.html
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Sparse
http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://en.wikipedia.org/wiki/NOP
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://0xax.gitbooks.io/linux-insides/content/Timers/index.html


Synchronization	primitives	in	the	Linux
kernel.	Part	2.

Queued	Spinlocks
This	is	the	second	part	of	the	chapter	which	describes	synchronization	primitives	in	the	Linux
kernel	and	in	the	first	part	of	this	chapter	we	met	the	first	-	spinlock.	We	will	continue	to	learn
this	synchronization	primitive	in	this	part.	If	you	have	read	the	previous	part,	you	may
remember	that	besides	normal	spinlocks,	the	Linux	kernel	provides	special	type	of
	spinlocks		-		queued	spinlocks	.	In	this	part	we	will	try	to	understand	what	does	this	concept
represent.

We	saw	API	of		spinlock		in	the	previous	part:

	spin_lock_init		-	produces	initialization	of	the	given		spinlock	;
	spin_lock		-	acquires	given		spinlock	;
	spin_lock_bh		-	disables	software	interrupts	and	acquire	given		spinlock	.
	spin_lock_irqsave		and		spin_lock_irq		-	disable	interrupts	on	local	processor	and
preserve/not	preserve	previous	interrupt	state	in	the		flags	;
	spin_unlock		-	releases	given		spinlock	;
	spin_unlock_bh		-	releases	given		spinlock		and	enables	software	interrupts;
	spin_is_locked		-	returns	the	state	of	the	given		spinlock	;
and	etc.

And	we	know	that	all	of	these	macro	which	are	defined	in	the	include/linux/spinlock.h	header
file	will	be	expanded	to	the	call	of	the	functions	with		arch_spin_.*		prefix	from	the
arch/x86/include/asm/spinlock.h	for	the	x86_64	architecture.	If	we	will	look	at	this	header	fill
with	attention,	we	will	that	these	functions	(	arch_spin_is_locked	,		arch_spin_lock	,
	arch_spin_unlock		and	etc)	defined	only	if	the		CONFIG_QUEUED_SPINLOCKS		kernel	configuration
option	is	disabled:

Queued	spinlocks

526

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-1.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Application_programming_interface
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-1.html
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h
https://en.wikipedia.org/wiki/X86-64


#ifdef	CONFIG_QUEUED_SPINLOCKS

#include	<asm/qspinlock.h>

#else

static	__always_inline	void	arch_spin_lock(arch_spinlock_t	*lock)

{

				...

				...

				...

}

...

...

...

#endif

This	means	that	the	arch/x86/include/asm/qspinlock.h	header	file	provides	own
implementation	of	these	functions.	Actually	they	are	macros	and	they	are	located	in	other
header	file.	This	header	file	is	-	include/asm-generic/qspinlock.h.	If	we	will	look	into	this
header	file,	we	will	find	definition	of	these	macros:

#define	arch_spin_is_locked(l)										queued_spin_is_locked(l)

#define	arch_spin_is_contended(l)							queued_spin_is_contended(l)

#define	arch_spin_value_unlocked(l)					queued_spin_value_unlocked(l)

#define	arch_spin_lock(l)															queued_spin_lock(l)

#define	arch_spin_trylock(l)												queued_spin_trylock(l)

#define	arch_spin_unlock(l)													queued_spin_unlock(l)

#define	arch_spin_lock_flags(l,	f)						queued_spin_lock(l)

#define	arch_spin_unlock_wait(l)								queued_spin_unlock_wait(l)

Before	we	will	consider	how	queued	spinlocks	and	their	API	are	implemented,	we	take	a
look	on	theoretical	part	at	first.

Introduction	to	queued	spinlocks
Queued	spinlocks	is	a	locking	mechanism	in	the	Linux	kernel	which	is	replacement	for	the
standard		spinlocks	.	At	least	this	is	true	for	the	x86_64	architecture.	If	we	will	look	at	the
following	kernel	configuration	file	-	kernel/Kconfig.locks,	we	will	see	following	configuration
entries:

config	ARCH_USE_QUEUED_SPINLOCKS

				bool

config	QUEUED_SPINLOCKS

				def_bool	y	if	ARCH_USE_QUEUED_SPINLOCKS

				depends	on	SMP

Queued	spinlocks

527

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/qspinlock.h
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h#L126
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/kernel/Kconfig.locks


This	means	that	the		CONFIG_QUEUED_SPINLOCKS		kernel	configuration	option	will	be	enabled	by
default	if	the		ARCH_USE_QUEUED_SPINLOCKS		is	enabled.	We	may	see	that	the
	ARCH_USE_QUEUED_SPINLOCKS		is	enabled	by	default	in	the		x86_64		specific	kernel	configuration
file	-	arch/x86/Kconfig:

config	X86

				...

				...

				...

				select	ARCH_USE_QUEUED_SPINLOCKS

				...

				...

				...

Before	we	will	start	to	consider	what	is	it	queued	spinlock	concept,	let's	look	on	other	types
of		spinlocks	.	For	the	start	let's	consider	how		normal		spinlocks	is	implemented.	Usually,
implementation	of		normal		spinlock	is	based	on	the	test	and	set	instruction.	Principle	of	work
of	this	instruction	is	pretty	simple.	This	instruction	writes	a	value	to	the	memory	location	and
returns	old	value	from	this	memory	location.	Both	of	these	operations	are	in	atomic	context
i.e.	this	instruction	is	non-interruptible.	So	if	the	first	thread	started	to	execute	this	instruction,
second	thread	will	wait	until	the	first	processor	will	not	finish.	Basic	lock	can	be	built	on	top	of
this	mechanism.	Schematically	it	may	look	like	this:

int	lock(lock)

{

				while	(test_and_set(lock)	==	1)

								;

				return	0;

}

int	unlock(lock)

{

				lock=0;

				return	lock;

}

The	first	thread	will	execute	the		test_and_set		which	will	set	the		lock		to		1	.	When	the
second	thread	will	call	the		lock		function,	it	will	spin	in	the		while		loop,	until	the	first	thread
will	not	call	the		unlock		function	and	the		lock		will	be	equal	to		0	.	This	implementation	is
not	very	good	for	performance,	because	it	has	at	least	two	problems.	The	first	problem	is
that	this	implementation	may	be	unfair	and	the	thread	from	one	processor	may	have	long
waiting	time,	even	if	it	called	the		lock		before	other	threads	which	are	waiting	for	free	lock
too.	The	second	problem	is	that	all	threads	which	want	to	acquire	a	lock,	must	to	execute

Queued	spinlocks

528

https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig
https://en.wikipedia.org/wiki/Test-and-set


many		atomic		operations	like		test_and_set		on	a	variable	which	is	in	shared	memory.	This
leads	to	the	cache	invalidation	as	the	cache	of	the	processor	will	store		lock=1	,	but	the
value	of	the		lock		in	memory	may	be		1		after	a	thread	will	release	this	lock.

In	the	previous	part	we	saw	the	second	type	of	spinlock	implementation	-		ticket	spinlock	.
This	approach	solves	the	first	problem	and	may	guarantee	order	of	threads	which	want	to
acquire	a	lock,	but	still	has	a	second	problem.

The	topic	of	this	part	is		queued	spinlocks	.	This	approach	may	help	to	solve	both	of	these
problems.	The		queued	spinlocks		allows	to	each	processor	to	use	its	own	memory	location
to	spin.	The	basic	principle	of	a	queue-based	spinlock	can	best	be	understood	by	studying	a
classic	queue-based	spinlock	implementation	called	the	MCS	lock.	Before	we	will	look	at
implementation	of	the		queued	spinlocks		in	the	Linux	kernel,	we	will	try	to	understand	what
is	it		MCS		lock.

The	basic	idea	of	the		MCS		lock	is	in	that	as	I	already	wrote	in	the	previous	paragraph,	a
thread	spins	on	a	local	variable	and	each	processor	in	the	system	has	its	own	copy	of	these
variable.	In	other	words	this	concept	is	built	on	top	of	the	per-cpu	variables	concept	in	the
Linux	kernel.

When	the	first	thread	wants	to	acquire	a	lock,	it	registers	itself	in	the		queue		or	in	other
words	it	will	be	added	to	the	special		queue		and	will	acquire	lock,	because	it	is	free	for	now.
When	the	second	thread	will	want	to	acquire	the	same	lock	before	the	first	thread	will
release	it,	this	thread	adds	its	own	copy	of	the	lock	variable	into	this		queue	.	In	this	case	the
first	thread	will	contain	a		next		field	which	will	point	to	the	second	thread.	From	this
moment,	the	second	thread	will	wait	until	the	first	thread	will	release	its	lock	and	notify		next	
thread	about	this	event.	The	first	thread	will	be	deleted	from	the		queue		and	the	second
thread	will	be	owner	of	a	lock.

Schematically	we	can	represent	it	like:

Empty	queue:

+---------+

|									|

|		Queue		|

|									|

+---------+

First	thread	tries	to	acquire	a	lock:

Queued	spinlocks

529

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-1.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html


+---------+					+----------------------------+

|									|					|																												|

|		Queue		|---->|	First	thread	acquired	lock	|

|									|					|																												|

+---------+					+----------------------------+

Second	thread	tries	to	acquire	a	lock:

+---------+					+----------------------------------------+					+----------------------

---+

|									|					|																																								|					|																						

			|

|		Queue		|---->|		Second	thread	waits	for	first	thread		|<----|	First	thread	holds	lo

ck	|

|									|					|																																								|					|																						

			|

+---------+					+----------------------------------------+					+----------------------

---+

Or	the	pseudocode:

Queued	spinlocks

530



void	lock(...)

{

				lock.next	=	NULL;

				ancestor	=	put_lock_to_queue_and_return_ancestor(queue,	lock);

				//	if	we	have	ancestor,	the	lock	already	acquired	and	we

				//	need	to	wait	until	it	will	be	released

				if	(ancestor)

				{

								lock.locked	=	1;

								ancestor.next	=	lock;

								while	(lock.is_locked	==	true)

												;

				}

				//	in	other	way	we	are	owner	of	the	lock	and	may	exit

}

void	unlock(...)

{

				//	do	we	need	to	notify	somebody	or	we	are	alonw	in	the

				//	queue?

				if	(lock.next	!=	NULL)	{

								//	the	while	loop	from	the	lock()	function	will	be

								//	finished

								lock.next.is_locked	=	false;

								//	delete	ourself	from	the	queue	and	exit

								...

								...

								...

								return;

				}

				//	So,	we	have	no	next	threads	in	the	queue	to	notify	about

				//	lock	releasing	event.	Let's	just	put	`0`	to	the	lock,	will

				//	delete	ourself	from	the	queue	and	exit.

}

The	idea	is	simple,	but	the	implementation	of	the		queued	spinlocks		is	must	complex	than
this	pseudocode.	As	I	already	wrote	above,	the		queued	spinlock		mechanism	is	planned	to
be	replacement	for		ticket	spinlocks		in	the	Linux	kernel.	But	as	you	may	remember,	the
usual		spinlock		fit	into		32-bit		word.	But	the		MCS		based	lock	does	not	fit	to	this	size.	As
you	may	know		spinlock_t		type	is	widely	used	in	the	Linux	kernel.	In	this	case	would	have
to	rewrite	a	significant	part	of	the	Linux	kernel,	but	this	is	unacceptable.	Beside	this,	some
kernel	structures	which	contains	a	spinlock	for	protection	can't	grow.	But	anyway,
implementation	of	the		queued	spinlocks		in	the	Linux	kernel	based	on	this	concept	with
some	modifications	which	allows	to	fit	it	into		32		bits.

Queued	spinlocks

531

https://en.wikipedia.org/wiki/Word_%28computer_architecture%29
http://lxr.free-electrons.com/ident?i=spinlock_t


That's	all	about	theory	of	the		queued	spinlocks	,	now	let's	consider	how	this	mechanism	is
implemented	in	the	Linux	kernel.	Implementation	of	the		queued	spinlocks		looks	more
complex	and	tangled	than	implementation	of		ticket	spinlocks	,	but	the	study	with	attention
will	lead	to	success.

API	of	queued	spinlocks
Now	we	know	a	little	about		queued	spinlocks		from	the	theoretical	side,	time	to	see	the
implementation	of	this	mechanism	in	the	Linux	kernel.	As	we	saw	above,	the	include/asm-
generic/qspinlock.h	header	files	provides	a	set	of	macro	which	are	represent	API	for	a
spinlock	acquiring,	releasing	and	etc:

#define	arch_spin_is_locked(l)										queued_spin_is_locked(l)

#define	arch_spin_is_contended(l)							queued_spin_is_contended(l)

#define	arch_spin_value_unlocked(l)					queued_spin_value_unlocked(l)

#define	arch_spin_lock(l)															queued_spin_lock(l)

#define	arch_spin_trylock(l)												queued_spin_trylock(l)

#define	arch_spin_unlock(l)													queued_spin_unlock(l)

#define	arch_spin_lock_flags(l,	f)						queued_spin_lock(l)

#define	arch_spin_unlock_wait(l)								queued_spin_unlock_wait(l)

All	of	these	macros	expand	to	the	call	of	functions	from	the	same	header	file.	Additionally,
we	saw	the		qspinlock		structure	from	the	include/asm-generic/qspinlock_types.h	header	file
which	represents	a	queued	spinlock	in	the	Linux	kernel:

typedef	struct	qspinlock	{

				atomic_t				val;

}	arch_spinlock_t;

As	we	may	see,	the		qspinlock		structure	contains	only	one	field	-		val	.	This	field
represents	the	state	of	a	given		spinlock	.	This		4		bytes	field	consists	from	following	four
parts:

	0-7		-	locked	byte;
	8		-	pending	bit;
	16-17		-	two	bit	index	which	represents	entry	of	the		per-cpu		array	of	the		MCS		lock	(will
see	it	soon);
	18-31		-	contains	number	of	processor	which	indicates	tail	of	the	queue.

and	the		9-15		bytes	are	not	used.

As	we	already	know,	each	processor	in	the	system	has	own	copy	of	the	lock.	The	lock	is
represented	by	the	following	structure:

Queued	spinlocks

532

https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h#L126
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock_types.h


struct	mcs_spinlock	{

							struct	mcs_spinlock	*next;

							int	locked;

							int	count;

};

from	the	kernel/locking/mcs_spinlock.h	header	file.	The	first	field	represents	a	pointer	to	the
next	thread	in	the		queue	.	The	second	field	represents	the	state	of	the	current	thread	in	the
	queue	,	where		1		is		lock		already	acquired	and		0		in	other	way.	And	the	last	field	of	the
	mcs_spinlock		structure	represents	nested	locks.	To	understand	what	is	it	nested	lock,
imagine	situation	when	a	thread	acquired	lock,	but	was	interrupted	by	the	hardware	interrupt
and	an	interrupt	handler	tries	to	take	a	lock	too.	For	this	case,	each	processor	has	not	just
copy	of	the		mcs_spinlock		structure	but	array	of	these	structures:

static	DEFINE_PER_CPU_ALIGNED(struct	mcs_spinlock,	mcs_nodes[4]);

This	array	allows	to	make	four	attempts	of	a	lock	acquisition	for	the	four	events	in	following
contexts:

normal	task	context;
hardware	interrupt	context;
software	interrupt	context;
non-maskable	interrupt	context.

Now	let's	return	to	the		qspinlock		structure	and	the		API		of	the		queued	spinlocks	.	Before
we	will	move	to	consider		API		of		queued	spinlocks	,	notice	the		val		field	of	the		qspinlock	
structure	has	type	-		atomic_t		which	represents	atomic	variable	or	one	operation	at	a	time
variable.	So,	all	operations	with	this	field	will	be	atomic.	For	example	let's	look	at	the	reading
value	of	the		val		API:

static	__always_inline	int	queued_spin_is_locked(struct	qspinlock	*lock)

{

				return	atomic_read(&lock->val);

}

Ok,	now	we	know	data	structures	which	represents	queued	spinlock	in	the	Linux	kernel	and
now	time	is	to	look	at	the	implementation	of	the		main		function	from	the		queued	spinlocks	
API.

#define	arch_spin_lock(l)															queued_spin_lock(l)

Queued	spinlocks

533

https://github.com/torvalds/linux/blob/master/kernel/locking/mcs_spinlock.h
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Application_programming_interface


Yes,	this	function	is	-		queued_spin_lock	.	As	we	may	understand	from	the	function's	name,	it
allows	to	acquire	lock	by	the	thread.	This	function	is	defined	in	the	include/asm-
generic/qspinlock_types.h	header	file	and	its	implementation	looks:

static	__always_inline	void	queued_spin_lock(struct	qspinlock	*lock)

{

								u32	val;

								val	=	atomic_cmpxchg_acquire(&lock->val,	0,	_Q_LOCKED_VAL);

								if	(likely(val	==	0))

																	return;

								queued_spin_lock_slowpath(lock,	val);

}

Looks	pretty	easy,	except	the		queued_spin_lock_slowpath		function.	We	may	see	that	it	takes
only	one	parameter.	In	our	case	this	parameter	will	represent		queued	spinlock		which	will	be
locked.	Let's	consider	the	situation	that		queue		with	locks	is	empty	for	now	and	the	first
thread	wanted	to	acquire	lock.	As	we	may	see	the		queued_spin_lock		function	starts	from	the
call	of	the		atomic_cmpxchg_acquire		macro.	As	you	may	guess	from	the	name	of	this	macro,	it
executes	atomic	CMPXCHG	instruction	which	compares	value	of	the	second	parameter
(zero	in	our	case)	with	the	value	of	the	first	parameter	(current	state	of	the	given	spinlock)
and	if	they	are	identical,	it	stores	value	of	the		_Q_LOCKED_VAL		in	the	memory	location	which
is	pointed	by	the		&lock->val		and	return	the	initial	value	from	this	memory	location.

The		atomic_cmpxchg_acquire		macro	is	defined	in	the	include/linux/atomic.h	header	file	and
expands	to	the	call	of	the		atomic_cmpxchg		function:

#define		atomic_cmpxchg_acquire									atomic_cmpxchg

which	is	architecture	specific.	We	consider	x86_64	architecture,	so	in	our	case	this	header
file	will	be	arch/x86/include/asm/atomic.h	and	the	implementation	of	the		atomic_cmpxchg	
function	is	just	returns	the	result	of	the		cmpxchg		macro:

static	__always_inline	int	atomic_cmpxchg(atomic_t	*v,	int	old,	int	new)

{

								return	cmpxchg(&v->counter,	old,	new);

}

This	macro	is	defined	in	the	arch/x86/include/asm/cmpxchg.h	header	file	and	looks:

Queued	spinlocks

534

https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock_types.h
http://x86.renejeschke.de/html/file_module_x86_id_41.html
https://github.com/torvalds/linux/blob/master/include/linux/atomic.h
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/atomic.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/cmpxchg.h


#define	cmpxchg(ptr,	old,	new)	\

				__cmpxchg(ptr,	old,	new,	sizeof(*(ptr)))

#define	__cmpxchg(ptr,	old,	new,	size)	\

				__raw_cmpxchg((ptr),	(old),	(new),	(size),	LOCK_PREFIX)

As	we	may	see,	the		cmpxchg		macro	expands	to	the		__cpmxchg		macro	with	the	almost	the
same	set	of	parameters.	New	additional	parameter	is	the	size	of	the	atomic	value.	The
	__cmpxchg		macro	adds		LOCK_PREFIX		and	expands	to	the		__raw_cmpxchg		macro	where
	LOCK_PREFIX		just	LOCK	instruction.	After	all,	the		__raw_cmpxchg		does	all	job	for	us:

#define	__raw_cmpxchg(ptr,	old,	new,	size,	lock)	\

({

				...

				...

				...

				volatile	u32	*__ptr	=	(volatile	u32	*)(ptr);												\

				asm	volatile(lock	"cmpxchgl	%2,%1"																						\

																	:	"=a"	(__ret),	"+m"	(*__ptr)														\

																	:	"r"	(__new),	""	(__old)																		\

																	:	"memory");																															\

				...

				...

				...

})

After	the		atomic_cmpxchg_acquire		macro	will	be	executed,	it	returns	the	previous	value	of	the
memory	location.	Now	only	one	thread	tried	to	acquire	a	lock,	so	the		val		will	be	zero	and
we	will	return	from	the		queued_spin_lock		function:

val	=	atomic_cmpxchg_acquire(&lock->val,	0,	_Q_LOCKED_VAL);

if	(likely(val	==	0))

				return;

From	this	moment,	our	first	thread	will	hold	a	lock.	Notice	that	this	behavior	differs	from	the
behavior	which	was	described	in	the		MCS		algorithm.	The	thread	acquired	lock,	but	we	didn't
add	it	to	the		queue	.	As	I	already	wrote	the	implementation	of		queued	spinlocks		concept	is
based	on	the		MCS		algorithm	in	the	Linux	kernel,	but	in	the	same	time	it	has	some	difference
like	this	for	optimization	purpose.

So	the	first	thread	have	acquired	lock	and	now	let's	consider	that	the	second	thread	tried	to
acquire	the	same	lock.	The	second	thread	will	start	from	the	same		queued_spin_lock	
function,	but	the		lock->val		will	contain		1		or		_Q_LOCKED_VAL	,	because	first	thread	already

Queued	spinlocks

535

http://x86.renejeschke.de/html/file_module_x86_id_159.html


holds	lock.	So,	in	this	case	the		queued_spin_lock_slowpath		function	will	be	called.	The
	queued_spin_lock_slowpath		function	is	defined	in	the	kernel/locking/qspinlock.c	source	code
file	and	starts	from	the	following	checks:

void	queued_spin_lock_slowpath(struct	qspinlock	*lock,	u32	val)

{

				if	(pv_enabled())

								goto	queue;

				if	(virt_spin_lock(lock))

								return;

				...

				...

				...

}

which	check	the	state	of	the		pvqspinlock	.	The		pvqspinlock		is		queued	spinlock		in
paravirtualized	environment.	As	this	chapter	is	related	only	to	synchronization	primitives	in
the	Linux	kernel,	we	skip	these	and	other	parts	which	are	not	directly	related	to	the	topic	of
this	chapter.	After	these	checks	we	compare	our	value	which	represents	lock	with	the	value
of	the		_Q_PENDING_VAL		macro	and	do	nothing	while	this	is	true:

if	(val	==	_Q_PENDING_VAL)	{

				while	((val	=	atomic_read(&lock->val))	==	_Q_PENDING_VAL)

								cpu_relax();

}

where		cpu_relax		is	just	NOP	instruction.	Above,	we	saw	that	the	lock	contains	-		pending	
bit.	This	bit	represents	thread	which	wanted	to	acquire	lock,	but	it	is	already	acquired	by	the
other	thread	and	in	the	same	time		queue		is	empty.	In	this	case,	the		pending		bit	will	be	set
and	the		queue		will	not	be	touched.	This	is	done	for	optimization,	because	there	are	no	need
in	unnecessary	latency	which	will	be	caused	by	the	cache	invalidation	in	a	touching	of	own
	mcs_spinlock		array.

At	the	next	step	we	enter	into	the	following	loop:

Queued	spinlocks

536

https://github.com/torvalds/linux/blob/master/kernel/locking/qspinlock.c
https://en.wikipedia.org/wiki/Paravirtualization
https://en.wikipedia.org/wiki/NOP


for	(;;)	{

				if	(val	&	~_Q_LOCKED_MASK)

								goto	queue;

				new	=	_Q_LOCKED_VAL;

				if	(val	==	new)

								new	|=	_Q_PENDING_VAL;

				old	=	atomic_cmpxchg_acquire(&lock->val,	val,	new);

				if	(old	==	val)

								break;

				val	=	old;

}

The	first		if		clause	here	checks	that	state	of	the	lock	(	val	)	is	in	locked	or	pending	state.
This	means	that	first	thread	already	acquired	lock,	second	thread	tried	to	acquire	lock	too,
but	now	it	is	in	pending	state.	In	this	case	we	need	to	start	to	build	queue.	We	will	consider
this	situation	little	later.	In	our	case	we	are	first	thread	holds	lock	and	the	second	thread	tries
to	do	it	too.	After	this	check	we	create	new	lock	in	a	locked	state	and	compare	it	with	the
state	of	the	previous	lock.	As	you	remember,	the		val		contains	state	of	the		&lock->val	
which	after	the	second	thread	will	call	the		atomic_cmpxchg_acquire		macro	will	be	equal	to
	1	.	Both		new		and		val		values	are	equal	so	we	set	pending	bit	in	the	lock	of	the	second
thread.	After	this	we	need	to	check	value	of	the		&lock->val		again,	because	the	first	thread
may	release	lock	before	this	moment.	If	the	first	thread	did	not	released	lock	yet,	the	value	of
the		old		will	be	equal	to	the	value	of	the		val		(because		atomic_cmpxchg_acquire		will	return
the	value	from	the	memory	location	which	is	pointed	by	the		lock->val		and	now	it	is		1	)
and	we	will	exit	from	the	loop.	As	we	exited	from	this	loop,	we	are	waiting	for	the	first	thread
until	it	will	release	lock,	clear	pending	bit,	acquire	lock	and	return:

smp_cond_acquire(!(atomic_read(&lock->val)	&	_Q_LOCKED_MASK));

clear_pending_set_locked(lock);

return;

Notice	that	we	did	not	touch		queue		yet.	We	no	need	in	it,	because	for	two	threads	it	just
leads	to	unnecessary	latency	for	memory	access.	In	other	case,	the	first	thread	may	release
it	lock	before	this	moment.	In	this	case	the		lock->val		will	contain		_Q_LOCKED_VAL	|
_Q_PENDING_VAL		and	we	will	start	to	build		queue	.	We	start	to	build		queue		by	the	getting	the
local	copy	of	the		mcs_nodes		array	of	the	processor	which	executes	thread:

node	=	this_cpu_ptr(&mcs_nodes[0]);

idx	=	node->count++;

tail	=	encode_tail(smp_processor_id(),	idx);

Queued	spinlocks

537



Additionally	we	calculate		tail		which	will	indicate	the	tail	of	the		queue		and		index		which
represents	an	entry	of	the		mcs_nodes		array.	After	this	we	set	the		node		to	point	to	the
correct	of	the		mcs_nodes		array,	set		locked		to	zero	because	this	thread	didn't	acquire	lock
yet	and		next		to		NULL		because	we	don't	know	anything	about	other		queue		entries:

node	+=	idx;

node->locked	=	0;

node->next	=	NULL;

We	already	touch		per-cpu		copy	of	the	queue	for	the	processor	which	executes	current
thread	which	wants	to	acquire	lock,	this	means	that	owner	of	the	lock	may	released	it	before
this	moment.	So	we	may	try	to	acquire	lock	again	by	the	call	of	the		queued_spin_trylock	
function.

if	(queued_spin_trylock(lock))

								goto	release;

The		queued_spin_trylock		function	is	defined	in	the	include/asm-generic/qspinlock.h	header
file	and	just	does	the	same		queued_spin_lock		function	that	does:

static	__always_inline	int	queued_spin_trylock(struct	qspinlock	*lock)

{

				if	(!atomic_read(&lock->val)	&&

							(atomic_cmpxchg_acquire(&lock->val,	0,	_Q_LOCKED_VAL)	==	0))

								return	1;

				return	0;

}

If	the	lock	was	successfully	acquired	we	jump	to	the		release		label	to	release	a	node	of	the
	queue	:

release:

				this_cpu_dec(mcs_nodes[0].count);

because	we	no	need	in	it	anymore	as	lock	is	acquired.	If	the		queued_spin_trylock		was
unsuccessful,	we	update	tail	of	the	queue:

old	=	xchg_tail(lock,	tail);

and	retrieve	previous	tail.	The	next	step	is	to	check	that		queue		is	not	empty.	In	this	case	we
need	to	link	previous	entry	with	the	new:

Queued	spinlocks

538

https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h


if	(old	&	_Q_TAIL_MASK)	{

				prev	=	decode_tail(old);

				WRITE_ONCE(prev->next,	node);

				arch_mcs_spin_lock_contended(&node->locked);

}

After	queue	entries	linked,	we	start	to	wait	until	reaching	the	head	of	queue.	As	we	As	we
reached	this,	we	need	to	do	a	check	for	new	node	which	might	be	added	during	this	wait:

next	=	READ_ONCE(node->next);

if	(next)

				prefetchw(next);

If	the	new	node	was	added,	we	prefetch	cache	line	from	memory	pointed	by	the	next	queue
entry	with	the	PREFETCHW	instruction.	We	preload	this	pointer	now	for	optimization
purpose.	We	just	became	a	head	of	queue	and	this	means	that	there	is	upcoming		MCS	
unlock	operation	and	the	next	entry	will	be	touched.

Yes,	from	this	moment	we	are	in	the	head	of	the		queue	.	But	before	we	are	able	to	acquire	a
lock,	we	need	to	wait	at	least	two	events:	current	owner	of	a	lock	will	release	it	and	the
second	thread	with		pending		bit	will	acquire	a	lock	too:

smp_cond_acquire(!((val	=	atomic_read(&lock->val))	&	_Q_LOCKED_PENDING_MASK));

After	both	threads	will	release	a	lock,	the	head	of	the		queue		will	hold	a	lock.	In	the	end	we
just	need	to	update	the	tail	of	the		queue		and	remove	current	head	from	it.

That's	all.

Conclusion
This	is	the	end	of	the	second	part	of	the	synchronization	primitives	chapter	in	the	Linux
kernel.	In	the	previous	part	we	already	met	the	first	synchronization	primitive		spinlock	
provided	by	the	Linux	kernel	which	is	implemented	as		ticket	spinlock	.	In	this	part	we	saw
another	implementation	of	the		spinlock		mechanism	-		queued	spinlock	.	In	the	next	part	we
will	continue	to	dive	into	synchronization	primitives	in	the	Linux	kernel.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Queued	spinlocks

539

http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-1.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new


Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
spinlock
interrupt
interrupt	handler
API
Test	and	Set
MCS
per-cpu	variables
atomic	instruction
CMPXCHG	instruction
LOCK	instruction
NOP	instruction
PREFETCHW	instruction
x86_64
Previous	part

Queued	spinlocks

540

https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Test-and-set
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://en.wikipedia.org/wiki/NOP
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/wiki/X86-64
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-1.html


Synchronization	primitives	in	the	Linux
kernel.	Part	3.

Semaphores
This	is	the	third	part	of	the	chapter	which	describes	synchronization	primitives	in	the	Linux
kernel	and	in	the	previous	part	we	saw	special	type	of	spinlocks	-		queued	spinlocks	.	The
previous	part	was	the	last	part	which	describes		spinlocks		related	stuff.	So	we	need	to	go
ahead.

The	next	synchronization	primitive	after		spinlock		which	we	will	see	in	this	part	is
semaphore.	We	will	start	from	theoretical	side	and	will	learn	what	is	it		semaphore		and	only
after	this,	we	will	see	how	it	is	implemented	in	the	Linux	kernel	as	we	did	in	the	previous
part.

So,	let's	start.

Introduction	to	the	semaphores	in	the	Linux
kernel
So,	what	is	it		semaphore	?	As	you	may	guess	-		semaphore		is	yet	another	mechanism	for
support	of	thread	or	process	synchronization.	The	Linux	kernel	already	provides
implementation	of	one	synchronization	mechanism	-		spinlocks	,	why	do	we	need	in	yet
another	one?	To	answer	on	this	question	we	need	to	know	details	of	both	of	these
mechanisms.	We	already	familiar	with	the		spinlocks	,	so	let's	start	from	this	mechanism.

The	main	idea	behind		spinlock		concept	is	a	lock	which	will	be	acquired	for	a	very	short
time.	We	can't	sleep	when	a	lock	acquired	by	a	process	or	thread,	because	other	processes
wait	us.	Context	switch	is	not	not	allowed	because	preemption	is	disabled	to	avoid
deadlocks.

In	this	way,	semaphores	is	a	good	solution	for	locks	which	may	be	acquired	for	a	long	time.
In	other	way	this	mechanism	is	not	optimal	for	locks	that	acquired	for	a	short	time.	To
understand	this,	we	need	to	know	what	is		semaphore	.

As	usual	synchronization	primitive,	a		semaphore		is	based	on	a	variable.	This	variable	may
be	incremented	or	decremented	and	it's	state	will	represent	ability	to	acquire	lock.	Notice
that	value	of	the	variable	is	not	limited	to		0		and		1	.	There	are	two	types	of		semaphores	:

Semaphores

541

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://en.wikipedia.org/wiki/Spinlock
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-2.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29


	binary	semaphore	;
	normal	semaphore	.

In	the	first	case,	value	of		semaphore		may	be	only		1		or		0	.	In	the	second	case	value	of
	semaphore		any	non-negative	number.	If	the	value	of		semaphore		is	greater	than		1		it	is
called	as		counting	semaphore		and	it	allows	to	acquire	a	lock	to	more	than		1		process.	This
allows	us	to	keep	records	of	available	resources,	when		spinlock		allows	to	hold	a	lock	only
on	one	task.	Besides	all	of	this,	one	more	important	thing	that		semaphore		allows	to	sleep.
Moreover	when	processes	waits	for	a	lock	which	is	acquired	by	other	process,	the	scheduler
may	switch	on	another	process.

Semaphore	API
So,	we	know	a	little	about		semaphores		from	theoretical	side,	let's	look	on	its	implementation
in	the	Linux	kernel.	All		semaphore		API	is	located	in	the	include/linux/semaphore.h	header
file.

We	may	see	that	the		semaphore		mechanism	is	represented	by	the	following	structure:

struct	semaphore	{

				raw_spinlock_t								lock;

				unsigned	int								count;

				struct	list_head				wait_list;

};

in	the	Linux	kernel.	The		semaphore		structure	consists	of	three	fields:

	lock		-		spinlock		for	a		semaphore		data	protection;
	count		-	amount	available	resources;
	wait_list		-	list	of	processes	which	are	waiting	to	acquire	a	lock.

Before	we	will	consider	an	API	of	the		semaphore		mechanism	in	the	Linux	kernel,	we	need	to
know	how	to	initialize	a		semaphore	.	Actually	the	Linux	kernel	provides	two	approaches	to
execute	initialization	of	the	given		semaphore		structure.	These	methods	allows	to	initialize	a
	semaphore		in	a:

	statically	;
	dynamically	.

ways.	Let's	look	at	the	first	approach.	We	are	able	to	initialize	a		semaphore		statically	with	the
	DEFINE_SEMAPHORE		macro:

Semaphores

542

https://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h
https://en.wikipedia.org/wiki/Application_programming_interface


#define	DEFINE_SEMAPHORE(name)		\

									struct	semaphore	name	=	__SEMAPHORE_INITIALIZER(name,	1)

as	we	may	see,	the		DEFINE_SEMAPHORE		macro	provides	ability	to	initialize	only		binary	
semaphore.	The		DEFINE_SEMAPHORE		macro	expands	to	the	definition	of	the		semaphore	
structure	which	is	initialized	with	the		__SEMAPHORE_INITIALIZER		macro.	Let's	look	at	the
implementation	of	this	macro:

#define	__SEMAPHORE_INITIALIZER(name,	n)														\

{																																																																							\

								.lock											=	__RAW_SPIN_LOCK_UNLOCKED((name).lock),								\

								.count										=	n,																																												\

								.wait_list						=	LIST_HEAD_INIT((name).wait_list),													\

}

The		__SEMAPHORE_INITIALIZER		macro	takes	the	name	of	the	future		semaphore		structure	and
does	initialization	of	the	fields	of	this	structure.	First	of	all	we	initialize	a		spinlock		of	the
given		semaphore		with	the		__RAW_SPIN_LOCK_UNLOCKED		macro.	As	you	may	remember	from	the
previous	parts,	the		__RAW_SPIN_LOCK_UNLOCKED		is	defined	in	the	include/linux/spinlock_types.h
header	file	and	expands	to	the		__ARCH_SPIN_LOCK_UNLOCKED		macro	which	just	expands	to
zero	or	unlocked	state:

#define	__ARCH_SPIN_LOCK_UNLOCKED							{	{	0	}	}

The	last	two	fields	of	the		semaphore		structure		count		and		wait_list		are	initialized	with	the
given	value	which	represents	count	of	available	resources	and	empty	list.

The	second	way	to	initialize	a		semaphore		structure	is	to	pass	the		semaphore		and	number	of
available	resources	to	the		sema_init		function	which	is	defined	in	the
include/linux/semaphore.h	header	file:

static	inline	void	sema_init(struct	semaphore	*sem,	int	val)

{

							static	struct	lock_class_key	__key;

							*sem	=	(struct	semaphore)	__SEMAPHORE_INITIALIZER(*sem,	val);

							lockdep_init_map(&sem->lock.dep_map,	"semaphore->lock",	&__key,	0);

}

Let's	consider	implementation	of	this	function.	It	looks	pretty	easy	and	actually	it	does	almost
the	same.	Thus	function	executes	initialization	of	the	given		semaphore		with	the
	__SEMAPHORE_INITIALIZER		macro	which	we	just	saw.	As	I	already	wrote	in	the	previous	parts
of	this	chapter,	we	will	skip	the	stuff	which	is	related	to	the	lock	validator	of	the	Linux	kernel.

Semaphores

543

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-1.html
https://github.com/torvalds/linux/blob/master/include/linux/spinlock_types.h
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html
https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt


So,	from	now	we	are	able	to	initialize	a		semaphore		let's	look	at	how	to	lock	and	unlock.	The
Linux	kernel	provides	following	API	to	manipulate		semaphores	:

void	down(struct	semaphore	*sem);

void	up(struct	semaphore	*sem);

int		down_interruptible(struct	semaphore	*sem);

int		down_killable(struct	semaphore	*sem);

int		down_trylock(struct	semaphore	*sem);

int		down_timeout(struct	semaphore	*sem,	long	jiffies);

The	first	two	functions:		down		and		up		are	for	acquiring	and	releasing	of	the	given
	semaphore	.	The		down_interruptible		function	tries	to	acquire	a		semaphore	.	If	this	try	was
successful,	the		count		field	of	the	given		semaphore		will	be	decremented	and	lock	will	be
acquired,	in	other	way	the	task	will	be	switched	to	the	blocked	state	or	in	other	words	the
	TASK_INTERRUPTIBLE		flag	will	be	set.	This		TASK_INTERRUPTIBLE		flag	means	that	the	process
may	returned	to	ruined	state	by	signal.

The		down_killable		function	does	the	same	as	the		down_interruptible		function,	but	set	the
	TASK_KILLABLE		flag	for	the	current	process.	This	means	that	the	waiting	process	may	be
interrupted	by	the	kill	signal.

The		down_trylock		function	is	similar	on	the		spin_trylock		function.	This	function	tries	to
acquire	a	lock	and	exit	if	this	operation	was	unsuccessful.	In	this	case	the	process	which
wants	to	acquire	a	lock,	will	not	wait.	The	last		down_timeout		function	tries	to	acquire	a	lock.
It	will	be	interrupted	in	a	waiting	state	when	the	given	timeout	will	be	expired.	Additionally,
you	may	notice	that	the	timeout	is	in	jiffies

We	just	saw	definitions	of	the		semaphore		API.	We	will	start	from	the		down		function.	This
function	is	defined	in	the	kernel/locking/semaphore.c	source	code	file.	Let's	look	on	the
implementation	function:

void	down(struct	semaphore	*sem)

{

								unsigned	long	flags;

								raw_spin_lock_irqsave(&sem->lock,	flags);

								if	(likely(sem->count	>	0))

																sem->count--;

								else

																__down(sem);

								raw_spin_unlock_irqrestore(&sem->lock,	flags);

}

EXPORT_SYMBOL(down);

Semaphores

544

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Unix_signal
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c


We	may	see	the	definition	of	the		flags		variable	at	the	beginning	of	the		down		function.	This
variable	will	be	passed	to	the		raw_spin_lock_irqsave		and		raw_spin_lock_irqrestore		macros
which	are	defined	in	the	include/linux/spinlock.h	header	file	and	protect	a	counter	of	the
given		semaphore		here.	Actually	both	of	these	macro	do	the	same	that		spin_lock		and
	spin_unlock		macros,	but	additionally	they	save/restore	current	value	of	interrupt	flags	and
disables	interrupts.

As	you	already	may	guess,	the	main	work	is	done	between	the		raw_spin_lock_irqsave		and
	raw_spin_unlock_irqrestore		macros	in	the		down		function.	We	compare	the	value	of	the
	semaphore		counter	with	zero	and	if	it	is	bigger	than	zero,	we	may	decrement	this	counter.
This	means	that	we	already	acquired	the	lock.	In	other	way	counter	is	zero.	This	means	that
all	available	resources	already	finished	and	we	need	to	wait	to	acquire	this	lock.	As	we	may
see,	the		__down		function	will	be	called	in	this	case.

The		__down		function	is	defined	in	the	same	source	code	file	and	its	implementation	looks:

static	noinline	void	__sched	__down(struct	semaphore	*sem)

{

								__down_common(sem,	TASK_UNINTERRUPTIBLE,	MAX_SCHEDULE_TIMEOUT);

}

The		__down		function	just	calls	the		__down_common		function	with	three	parameters:

	semaphore	;
	flag		-	for	the	task;
	timeout		-	maximum	timeout	to	wait		semaphore	.

Before	we	will	consider	implementation	of	the		__down_common		function,	notice	that
implementation	of	the		down_trylock	,		down_timeout		and		down_killable		functions	based	on
the		__down_common		too:

static	noinline	int	__sched	__down_interruptible(struct	semaphore	*sem)

{

								return	__down_common(sem,	TASK_INTERRUPTIBLE,	MAX_SCHEDULE_TIMEOUT);

}

The		__down_killable	:

static	noinline	int	__sched	__down_killable(struct	semaphore	*sem)

{

								return	__down_common(sem,	TASK_KILLABLE,	MAX_SCHEDULE_TIMEOUT);

}

And	the		__down_timeout	:

Semaphores

545

https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c


static	noinline	int	__sched	__down_timeout(struct	semaphore	*sem,	long	timeout)

{

								return	__down_common(sem,	TASK_UNINTERRUPTIBLE,	timeout);

}

Now	let's	look	at	the	implementation	of	the		__down_common		function.	This	function	is	defined
in	the	kernel/locking/semaphore.c	source	code	file	too	and	starts	from	the	definition	of	the
two	following	local	variables:

struct	task_struct	*task	=	current;

struct	semaphore_waiter	waiter;

The	first	represents	current	task	for	the	local	processor	which	wants	to	acquire	a	lock.	The
	current		is	a	macro	which	is	defined	in	the	arch/x86/include/asm/current.h	header	file:

#define	current	get_current()

Where	the		get_current		function	returns	value	of	the		current_task		per-cpu	variable:

DECLARE_PER_CPU(struct	task_struct	*,	current_task);

static	__always_inline	struct	task_struct	*get_current(void)

{

								return	this_cpu_read_stable(current_task);

}

The	second	variable	is		waiter		represents	an	entry	of	a		semaphore.wait_list		list:

struct	semaphore_waiter	{

								struct	list_head	list;

								struct	task_struct	*task;

								bool	up;

};

Next	we	add	current	task	to	the		wait_list		and	fill		waiter		fields	after	definition	of	these
variables:

list_add_tail(&waiter.list,	&sem->wait_list);

waiter.task	=	task;

waiter.up	=	false;

In	the	next	step	we	join	into	the	following	infinite	loop:

Semaphores

546

https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/current.h
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html


for	(;;)	{

								if	(signal_pending_state(state,	task))

												goto	interrupted;

								if	(unlikely(timeout	<=	0))

												goto	timed_out;

								__set_task_state(task,	state);

								raw_spin_unlock_irq(&sem->lock);

								timeout	=	schedule_timeout(timeout);

								raw_spin_lock_irq(&sem->lock);

								if	(waiter.up)

												return	0;

}

In	the	previous	piece	of	code	we	set		waiter.up		to		false	.	So,	a	task	will	spin	in	this	loop
while		up		will	not	be	set	to		true	.	This	loop	starts	from	the	check	that	the	current	task	is	in
the		pending		state	or	in	other	words	flags	of	this	task	contains		TASK_INTERRUPTIBLE		or
	TASK_WAKEKILL		flag.	As	I	already	wrote	above	a	task	may	be	interrupted	by	signal	during
wait	of	ability	to	acquire	a	lock.	The		signal_pending_state		function	is	defined	in	the
include/linux/sched.h	source	code	file	and	looks:

static	inline	int	signal_pending_state(long	state,	struct	task_struct	*p)

{

									if	(!(state	&	(TASK_INTERRUPTIBLE	|	TASK_WAKEKILL)))

																	return	0;

									if	(!signal_pending(p))

																	return	0;

									return	(state	&	TASK_INTERRUPTIBLE)	||	__fatal_signal_pending(p);

}

We	check	that	the		state		bitmask	contains		TASK_INTERRUPTIBLE		or		TASK_WAKEKILL		bits	and
if	the	bitmask	does	not	contain	this	bit	we	exit.	At	the	next	step	we	check	that	the	given	task
has	a	pending	signal	and	exit	if	there	is	no.	In	the	end	we	just	check		TASK_INTERRUPTIBLE		bit
in	the		state		bitmask	again	or	the	SIGKILL	signal.	So,	if	our	task	has	a	pending	signal,	we
will	jump	at	the		interrupted		label:

interrupted:

				list_del(&waiter.list);

				return	-EINTR;

Semaphores

547

https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/master/include/linux/sched.h
https://en.wikipedia.org/wiki/Mask_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal#SIGKILL


where	we	delete	task	from	the	list	of	lock	waiters	and	return	the		-EINTR		error	code.	If	a	task
has	no	pending	signal,	we	check	the	given	timeout	and	if	it	is	less	or	equal	zero:

if	(unlikely(timeout	<=	0))

				goto	timed_out;

we	jump	at	the		timed_out		label:

timed_out:

				list_del(&waiter.list);

				return	-ETIME;

Where	we	do	almost	the	same	that	we	did	in	the		interrupted		label.	We	delete	task	from	the
list	of	lock	waiters,	but	return	the		-ETIME		error	code.	If	a	task	has	no	pending	signal	and	the
given	timeout	is	not	expired	yet,	the	given		state		will	be	set	in	the	given	task:

__set_task_state(task,	state);

and	call	the		schedule_timeout		function:

raw_spin_unlock_irq(&sem->lock);

timeout	=	schedule_timeout(timeout);

raw_spin_lock_irq(&sem->lock);

which	is	defined	in	the	kernel/time/timer.c	source	code	file.	The		schedule_timeout		function
makes	the	current	task	sleep	until	the	given	timeout.

That	is	all	about	the		__down_common		function.	A	task	which	wants	to	acquire	a	lock	which	is
already	acquired	by	another	task	will	be	spun	in	the	infinite	loop	while	it	will	not	be
interrupted	by	a	signal,	the	given	timeout	will	not	be	expired	or	the	task	which	holds	a	lock
will	not	release	it.	Now	let's	look	at	the	implementation	of	the		up		function.

The		up		function	is	defined	in	the	same	source	code	file	as		down		function.	As	we	already
know,	the	main	purpose	of	this	function	is	to	release	a	lock.	This	function	looks:

Semaphores

548

https://en.wikipedia.org/wiki/Errno.h
https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c


void	up(struct	semaphore	*sem)

{

								unsigned	long	flags;

								raw_spin_lock_irqsave(&sem->lock,	flags);

								if	(likely(list_empty(&sem->wait_list)))

																sem->count++;

								else

																__up(sem);

								raw_spin_unlock_irqrestore(&sem->lock,	flags);

}

EXPORT_SYMBOL(up);

It	looks	almost	the	same	as	the		down		function.	There	are	only	two	differences	here.	First	of
all	we	increment	a	counter	of	a		semaphore		if	the	list	of	waiters	is	empty.	In	other	way	we	call
the		__up		function	from	the	same	source	code	file.	If	the	list	of	waiters	is	not	empty	we	need
to	allow	the	first	task	from	the	list	to	acquire	a	lock:

static	noinline	void	__sched	__up(struct	semaphore	*sem)

{

								struct	semaphore_waiter	*waiter	=	list_first_entry(&sem->wait_list,

																																																struct	semaphore_waiter,	list);

								list_del(&waiter->list);

								waiter->up	=	true;

								wake_up_process(waiter->task);

}

Here	we	takes	the	first	task	from	the	list	of	waiters,	delete	it	from	the	list,	set	its		waiter-up	
to	true.	From	this	point	the	infinite	loop	from	the		__down_common		function	will	be	stopped.	The
	wake_up_process		function	will	be	called	in	the	end	of	the		__up		function.	As	you	remember
we	called	the		schedule_timeout		function	in	the	infinite	loop	from	the		__down_common		this
function.	The		schedule_timeout		function	makes	the	current	task	sleep	until	the	given
timeout	will	not	be	expired.	So,	as	our	process	may	sleep	right	now,	we	need	to	wake	it	up.
That's	why	we	call	the		wake_up_process		function	from	the	kernel/sched/core.c	source	code
file.

That's	all.

Conclusion
This	is	the	end	of	the	third	part	of	the	synchronization	primitives	chapter	in	the	Linux	kernel.
In	the	two	previous	parts	we	already	met	the	first	synchronization	primitive		spinlock	
provided	by	the	Linux	kernel	which	is	implemented	as		ticket	spinlock		and	used	for	a	very

Semaphores

549

https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29


short	time	locks.	In	this	part	we	saw	yet	another	synchronization	primitive	-	semaphore
which	is	used	for	long	time	locks	as	it	leads	to	context	switch.	In	the	next	part	we	will
continue	to	dive	into	synchronization	primitives	in	the	Linux	kernel	and	will	see	next
synchronization	primitive	-	mutex.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
spinlocks
synchronization	primitive
semaphore
context	switch
preemption
deadlocks
scheduler
Doubly	linked	list	in	the	Linux	kernel
jiffies
interrupts
per-cpu
bitmask
SIGKILL
errno
API
mutex
Previous	part

Semaphores

550

https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Mutual_exclusion
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html
https://0xax.gitbooks.io/linux-insides/content/Timers/timers-1.html
https://en.wikipedia.org/wiki/Interrupt
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Mask_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal#SIGKILL
https://en.wikipedia.org/wiki/Errno.h
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Mutual_exclusion
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-2.html


Synchronization	primitives	in	the	Linux
kernel.	Part	4.

Introduction
This	is	the	fourth	part	of	the	chapter	which	describes	synchronization	primitives	in	the	Linux
kernel	and	in	the	previous	parts	we	finished	to	consider	different	types	spinlocks	and
semaphore	synchronization	primitives.	We	will	continue	to	learn	synchronization	primitives	in
this	part	and	consider	yet	another	one	which	is	called	-	mutex	which	is	stands	for		stands	for
MUTual	EXclusion	.

As	in	all	previous	parts	of	this	book,	we	will	try	to	consider	this	synchronization	primitive	from
the	theoretical	side	and	only	than	we	will	consider	API	provided	by	the	Linux	kernel	to
manipulate	with		mutexes	.

So,	let's	start.

Concept	of		mutex	
We	already	familiar	with	the	semaphore	synchronization	primitive	from	the	previous	part.	It
represented	by	the:

struct	semaphore	{

				raw_spinlock_t								lock;

				unsigned	int								count;

				struct	list_head				wait_list;

};

structure	which	holds	information	about	state	of	a	lock	and	list	of	a	lock	waiters.	Depends	on
the	value	of	the		count		field,	a		semaphore		can	provide	access	to	a	resource	of	more	than
one	wishing	of	this	resource.	The	mutex	concept	is	very	similar	to	a	semaphore	concept.	But
it	has	some	differences.	The	main	difference	between		semaphore		and		mutex	
synchronization	primitive	is	that		mutex		has	more	strict	semantic.	Unlike	a		semaphore	,	only
one	process	may	hold		mutex		at	one	time	and	only	the		owner		of	a		mutex		may	release	or
unlock	it.	Additional	difference	in	implementation	of		lock		API.	The		semaphore	
synchronization	primitive	forces	rescheduling	of	processes	which	are	in	waiters	list.	The
implementation	of		mutex		lock		API		allows	to	avoid	this	situation	and	as	a	result	expensive
context	switches.

Mutex

551

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://0xax.gitbooks.io/linux-insides/content
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Context_switch


The		mutex		synchronization	primitive	represented	by	the	following:

struct	mutex	{

								atomic_t																count;

								spinlock_t														wait_lock;

								struct	list_head								wait_list;

#if	defined(CONFIG_DEBUG_MUTEXES)	||	defined(CONFIG_MUTEX_SPIN_ON_OWNER)

								struct	task_struct						*owner;

#endif

#ifdef	CONFIG_MUTEX_SPIN_ON_OWNER

								struct	optimistic_spin_queue	osq;

#endif

#ifdef	CONFIG_DEBUG_MUTEXES

								void																				*magic;

#endif

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

								struct	lockdep_map						dep_map;

#endif

};

structure	in	the	Linux	kernel.	This	structure	is	defined	in	the	include/linux/mutex.h	header	file
and	contains	similar	to	the		semaphore		structure	set	of	fields.	The	first	field	of	the		mutex	
structure	is	-		count	.	Value	of	this	field	represents	state	of	a		mutex	.	In	a	case	when	the
value	of	the		count		field	is		1	,	a		mutex		is	in		unlocked		state.	When	the	value	of	the		count	
field	is		zero	,	a		mutex		is	in	the		locked		state.	Additionally	value	of	the		count		field	may	be
	negative	.	In	this	case	a		mutex		is	in	the		locked		state	and	has	possible	waiters.

The	next	two	fields	of	the		mutex		structure	-		wait_lock		and		wait_list		are	spinlock	for	the
protection	of	a		wait	queue		and	list	of	waiters	which	represents	this		wait	queue		for	a	certain
lock.	As	you	may	notice,	the	similarity	of	the		mutex		and		semaphore		structures	ends.
Remaining	fields	of	the		mutex		structure,	as	we	may	see	depends	on	different	configuration
options	of	the	Linux	kernel.

The	first	field	-		owner		represents	process	which	acquired	a	lock.	As	we	may	see,	existence
of	this	field	in	the		mutex		structure	depends	on	the		CONFIG_DEBUG_MUTEXES		or
	CONFIG_MUTEX_SPIN_ON_OWNER		kernel	configuration	options.	Main	point	of	this	field	and	the
next		osq		fields	is	support	of		optimistic	spinning		which	we	will	see	later.	The	last	two
fields	-		magic		and		dep_map		are	used	only	in	debugging	mode.	The		magic		field	is	to	storing
a		mutex		related	information	for	debugging	and	the	second	field	-		lockdep_map		is	for	lock
validator	of	the	Linux	kernel.

Now,	after	we	have	considered	the		mutex		structure,	we	may	consider	how	this
synchronization	primitive	works	in	the	Linux	kernel.	As	you	may	guess,	a	process	which
wants	to	acquire	a	lock,	must	to	decrease	value	of	the		mutex->count		if	possible.	And	if	a

Mutex

552

https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Debugging
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt


process	wants	to	release	a	lock,	it	must	to	increase	the	same	value.	That's	true.	But	as	you
may	also	guess,	it	is	not	so	simple	in	the	Linux	kernel.

Actually,	when	a	process	try	to	acquire	a		mutex	,	there	three	possible	paths:

	fastpath	;
	midpath	;
	slowpath	.

which	may	be	taken,	depending	on	the	current	state	of	the		mutex	.	The	first	path	or
	fastpath		is	the	fastest	as	you	may	understand	from	its	name.	Everything	is	easy	in	this
case.	Nobody	acquired	a		mutex	,	so	the	value	of	the		count		field	of	the		mutex		structure
may	be	directly	decremented.	In	a	case	of	unlocking	of	a		mutex	,	the	algorithm	is	the	same.
A	process	just	increments	the	value	of	the		count		field	of	the		mutex		structure.	Of	course,	all
of	these	operations	must	be	atomic.

Yes,	this	looks	pretty	easy.	But	what	happens	if	a	process	wants	to	acquire	a		mutex		which
is	already	acquired	by	other	process?	In	this	case,	the	control	will	be	transferred	to	the
second	path	-		midpath	.	The		midpath		or		optimistic	spinning		tries	to	spin	with	already
familiar	for	us	MCS	lock	while	the	lock	owner	is	running.	This	path	will	be	executed	only	if
there	are	no	other	processes	ready	to	run	that	have	higher	priority.	This	path	is	called
	optimistic		because	the	waiting	task	will	not	be	sleep	and	rescheduled.	This	allows	to	avoid
expensive	context	switch.

In	the	last	case,	when	the		fastpath		and		midpath		may	not	be	executed,	the	last	path	-
	slowpath		will	be	executed.	This	path	acts	like	a	semaphore	lock.	If	the	lock	is	unable	to	be
acquired	by	a	process,	this	process	will	be	added	to		wait	queue		which	is	represented	by
the	following:

struct	mutex_waiter	{

								struct	list_head								list;

								struct	task_struct						*task;

#ifdef	CONFIG_DEBUG_MUTEXES

								void																				*magic;

#endif

};

structure	from	the	include/linux/mutex.h	header	file	and	will	be	sleep.	Before	we	will	consider
API	which	is	provided	by	the	Linux	kernel	for	manipulation	with		mutexes	,	let's	consider	the
	mutex_waiter		structure.	If	you	have	read	the	previous	part	of	this	chapter,	you	may	notice
that	the		mutex_waiter		structure	is	similar	to	the		semaphore_waiter		structure	from	the
kernel/locking/semaphore.c	source	code	file:

Mutex

553

https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Spinlock
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Application_programming_interface
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c


struct	semaphore_waiter	{

								struct	list_head	list;

								struct	task_struct	*task;

								bool	up;

};

It	also	contains		list		and		task		fields	which	are	represent	entry	of	the	mutex	wait	queue.
The	one	difference	here	that	the		mutex_waiter		does	not	contains		up		field,	but	contains	the
	magic		field	which	depends	on	the		CONFIG_DEBUG_MUTEXES		kernel	configuration	option	and
used	to	store	a		mutex		related	information	for	debugging	purpose.

Now	we	know	what	is	it		mutex		and	how	it	is	represented	the	Linux	kernel.	In	this	case,	we
may	go	ahead	and	start	to	look	at	the	API	which	the	Linux	kernel	provides	for	manipulation
of		mutexes	.

Mutex	API
Ok,	in	the	previous	paragraph	we	knew	what	is	it		mutex		synchronization	primitive	and	saw
the		mutex		structure	which	represents		mutex		in	the	Linux	kernel.	Now	it's	time	to	consider
API	for	manipulation	of	mutexes.	Description	of	the		mutex		API	is	located	in	the
include/linux/mutex.h	header	file.	As	always,	before	we	will	consider	how	to	acquire	and
release	a		mutex	,	we	need	to	know	how	to	initialize	it.

There	are	two	approaches	to	initialize	a		mutex	.	The	first	is	to	do	it	statically.	For	this
purpose	the	Linux	kernel	provides	following:

#define	DEFINE_MUTEX(mutexname)	\

								struct	mutex	mutexname	=	__MUTEX_INITIALIZER(mutexname)

macro.	Let's	consider	implementation	of	this	macro.	As	we	may	see,	the		DEFINE_MUTEX	
macro	takes	name	for	the		mutex		and	expands	to	the	definition	of	the	new		mutex		structure.
Additionally	new		mutex		structure	get	initialized	with	the		__MUTEX_INITIALIZER		macro.	Let's
look	at	the	implementation	of	the		__MUTEX_INITIALIZER	:

#define	__MUTEX_INITIALIZER(lockname)									\

{																																																													\

							.count	=	ATOMIC_INIT(1),																															\

							.wait_lock	=	__SPIN_LOCK_UNLOCKED(lockname.wait_lock),	\

							.wait_list	=	LIST_HEAD_INIT(lockname.wait_list)								\

}

Mutex

554

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h


This	macro	is	defined	in	the	same	header	file	and	as	we	may	understand	it	initializes	fields
of	the		mutex		structure	the	initial	values.	The		count		field	get	initialized	with	the		1		which
represents		unlocked		state	of	a	mutex.	The		wait_lock		spinlock	get	initialized	to	the
unlocked	state	and	the	last	field		wait_list		to	empty	doubly	linked	list.

The	second	approach	allows	us	to	initialize	a		mutex		dynamically.	To	do	this	we	need	to	call
the		__mutex_init		function	from	the	kernel/locking/mutex.c	source	code	file.	Actually,	the
	__mutex_init		function	rarely	called	directly.	Instead	of	the		__mutex_init	,	the:

#	define	mutex_init(mutex)																\

do	{																																																				\

								static	struct	lock_class_key	__key;													\

																																																								\

								__mutex_init((mutex),	#mutex,	&__key);										\

}	while	(0)

macro	is	used.	We	may	see	that	the		mutex_init		macro	just	defines	the		lock_class_key	
and	call	the		__mutex_init		function.	Let's	look	at	the	implementation	of	this	function:

void

__mutex_init(struct	mutex	*lock,	const	char	*name,	struct	lock_class_key	*key)

{

								atomic_set(&lock->count,	1);

								spin_lock_init(&lock->wait_lock);

								INIT_LIST_HEAD(&lock->wait_list);

								mutex_clear_owner(lock);

#ifdef	CONFIG_MUTEX_SPIN_ON_OWNER

								osq_lock_init(&lock->osq);

#endif

								debug_mutex_init(lock,	name,	key);

}

As	we	may	see	the		__mutex_init		function	takes	three	arguments:

	lock		-	a	mutex	itself;
	name		-	name	of	mutex	for	debugging	purpose;
	key		-	key	for	lock	validator.

At	the	beginning	of	the		__mutex_init		function,	we	may	see	initialization	of	the		mutex		state.
We	set	it	to		unlocked		state	with	the		atomic_set		function	which	atomically	set	the	give
variable	to	the	given	value.	After	this	we	may	see	initialization	of	the		spinlock		to	the
unlocked	state	which	will	protect		wait	queue		of	the		mutex		and	initialization	of	the		wait
queue		of	the		mutex	.	After	this	we	clear	owner	of	the		lock		and	initialize	optimistic	queue	by
the	call	of	the		osq_lock_init		function	from	the	include/linux/osq_lock.h	header	file.	This
function	just	sets	the	tail	of	the	optimistic	queue	to	the	unlocked	state:

Mutex

555

https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Spinlock
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/osq_lock.h


static	inline	bool	osq_is_locked(struct	optimistic_spin_queue	*lock)

{

								return	atomic_read(&lock->tail)	!=	OSQ_UNLOCKED_VAL;

}

In	the	end	of	the		__mutex_init		function	we	may	see	the	call	of	the		debug_mutex_init	
function,	but	as	I	already	wrote	in	previous	parts	of	this	chapter,	we	will	not	consider
debugging	related	stuff	in	this	chapter.

After	the		mutex		structure	is	initialized,	we	may	go	ahead	and	will	look	at	the		lock		and
	unlock		API	of		mutex		synchronization	primitive.	Implementation	of		mutex_lock		and
	mutex_unlock		functions	located	in	the	kernel/locking/mutex.c	source	code	file.	First	of	all
let's	start	from	the	implementation	of	the		mutex_lock	.	It	looks:

void	__sched	mutex_lock(struct	mutex	*lock)

{

								might_sleep();

								__mutex_fastpath_lock(&lock->count,	__mutex_lock_slowpath);

								mutex_set_owner(lock);

}

We	may	see	the	call	of	the		might_sleep		macro	from	the	include/linux/kernel.h	header	file	at
the	beginning	of	the		mutex_lock		function.	Implementation	of	this	macro	depends	on	the
	CONFIG_DEBUG_ATOMIC_SLEEP		kernel	configuration	option	and	if	this	option	is	enabled,	this
macro	just	prints	a	stack	trace	if	it	was	executed	in	atomic	context.	This	macro	is	helper	for
debugging	purposes.	In	other	way	this	macro	does	nothing.

After	the		might_sleep		macro,	we	may	see	the	call	of	the		__mutex_fastpath_lock		function.
This	function	is	architecture-specific	and	as	we	consider	x86_64	architecture	in	this	book,
the	implementation	of	the		__mutex_fastpath_lock		is	located	in	the
arch/x86/include/asm/mutex_64.h	header	file.	As	we	may	understand	from	the	name	of	the
	__mutex_fastpath_lock		function,	this	function	will	try	to	acquire	lock	in	a	fast	path	or	in	other
words	this	function	will	try	to	decrement	the	value	of	the		count		of	the	given	mutex.

Implementation	of	the		__mutex_fastpath_lock		function	consists	from	two	parts.	The	first	part
is	inline	assembly	statement.	Let's	look	at	it:

asm_volatile_goto(LOCK_PREFIX	"			decl	%0\n"

																														"			jns	%l[exit]\n"

																														:	:	"m"	(v->counter)

																														:	"memory",	"cc"

																														:	exit);

Mutex

556

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c
https://github.com/torvalds/linux/blob/master/include/linux/kernel.h
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h
https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html


First	of	all,	let's	pay	attention	to	the		asm_volatile_goto	.	This	macro	is	defined	in	the
include/linux/compiler-gcc.h	header	file	and	just	expands	to	the	two	inline	assembly
statements:

#define	asm_volatile_goto(x...)	do	{	asm	goto(x);	asm	("");	}	while	(0)

The	first	assembly	statement	contains		goto		specificator	and	the	second	empty	inline
assembly	statement	is	barrier.	Now	let's	return	to	the	our	inline	assembly	statement.	As	we
may	see	it	starts	from	the	definition	of	the		LOCK_PREFIX		macro	which	just	expands	to	the
lock	instruction:

#define	LOCK_PREFIX	LOCK_PREFIX_HERE	"\n\tlock;	"

As	we	already	know	from	the	previous	parts,	this	instruction	allows	to	execute	prefixed
instruction	atomically.	So,	at	the	first	step	in	the	our	assembly	statement	we	try	decrement
value	of	the	given		mutex->counter	.	At	the	next	step	the	jns	instruction	will	execute	jump	at
the		exit		label	if	the	value	of	the	decremented		mutex->counter		is	not	negative.	The		exit	
label	is	the	second	part	of	the		__mutex_fastpath_lock		function	and	it	just	points	to	the	exit
from	this	function:

exit:

								return;

For	this	moment	he	implementation	of	the		__mutex_fastpath_lock		function	looks	pretty	easy.
But	the	value	of	the		mutex->counter		may	be	negative	after	increment.	In	this	case	the:

fail_fn(v);

will	be	called	after	our	inline	assembly	statement.	The		fail_fn		is	the	second	parameter	of
the		__mutex_fastpath_lock		function	and	represents	pointer	to	function	which	represents
	midpath/slowpath		paths	to	acquire	the	given	lock.	In	our	case	the		fail_fn		is	the
	__mutex_lock_slowpath		function.	Before	we	will	look	at	the	implementation	of	the
	__mutex_lock_slowpath		function,	let's	finish	with	the	implementation	of	the		mutex_lock	
function.	In	the	simplest	way,	the	lock	will	be	acquired	successfully	by	a	process	and	the
	__mutex_fastpath_lock		will	be	finished.	In	this	case,	we	just	call	the

mutex_set_owner(lock);

in	the	end	of	the		mutex_lock	.	The		mutex_set_owner		function	is	defined	in	the
kernel/locking/mutex.h	header	file	and	just	sets	owner	of	a	lock	to	the	current	process:

Mutex

557

https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://en.wikipedia.org/wiki/Memory_barrier
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://en.wikipedia.org/wiki/Linearizability
http://unixwiz.net/techtips/x86-jumps.html
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h


static	inline	void	mutex_set_owner(struct	mutex	*lock)

{

								lock->owner	=	current;

}

In	other	way,	let's	consider	situation	when	a	process	which	wants	to	acquire	a	lock	is	unable
to	do	it,	because	another	process	already	acquired	the	same	lock.	We	already	know	that	the
	__mutex_lock_slowpath		function	will	be	called	in	this	case.	Let's	consider	implementation	of
this	function.	This	function	is	defined	in	the	kernel/locking/mutex.c	source	code	file	and	starts
from	the	obtaining	of	the	proper	mutex	by	the	mutex	state	given	from	the
	__mutex_fastpath_lock		with	the		container_of		macro:

__visible	void	__sched

__mutex_lock_slowpath(atomic_t	*lock_count)

{

								struct	mutex	*lock	=	container_of(lock_count,	struct	mutex,	count);

								__mutex_lock_common(lock,	TASK_UNINTERRUPTIBLE,	0,

																												NULL,	_RET_IP_,	NULL,	0);

}

and	call	the		__mutex_lock_common		function	with	the	obtained		mutex	.	The
	__mutex_lock_common		function	starts	from	preemtion	disabling	until	rescheduling:

preempt_disable();

After	this	comes	the	stage	of	optimistic	spinning.	As	we	already	know	this	stage	depends	on
the		CONFIG_MUTEX_SPIN_ON_OWNER		kernel	configuration	option.	If	this	option	is	disabled,	we
skip	this	stage	and	move	at	the	last	path	-		slowpath		of	a		mutex		acquisition:

if	(mutex_optimistic_spin(lock,	ww_ctx,	use_ww_ctx))	{

								preempt_enable();

								return	0;

}

First	of	all	the		mutex_optimistic_spin		function	check	that	we	don't	need	to	reschedule	or	in
other	words	there	are	no	other	tasks	ready	to	run	that	have	higher	priority.	If	this	check	was
successful	we	need	to	update		MCS		lock	wait	queue	with	the	current	spin.	In	this	way	only
one	spinner	can	complete	for	the	mutex	at	one	time:

osq_lock(&lock->osq)

Mutex

558

https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c
https://en.wikipedia.org/wiki/Preemption_%28computing%29


At	the	next	step	we	start	to	spin	in	the	next	loop:

while	(true)	{

				owner	=	READ_ONCE(lock->owner);

				if	(owner	&&	!mutex_spin_on_owner(lock,	owner))

								break;

				if	(mutex_try_to_acquire(lock))	{

								lock_acquired(&lock->dep_map,	ip);

								mutex_set_owner(lock);

								osq_unlock(&lock->osq);

								return	true;

				}

}

and	try	to	acquire	a	lock.	First	of	all	we	try	to	take	current	owner	and	if	the	owner	exists	(it
may	not	exists	in	a	case	when	a	process	already	released	a	mutex)	and	we	wait	for	it	in	the
	mutex_spin_on_owner		function	before	the	owner	will	release	a	lock.	If	new	task	with	higher
priority	have	appeared	during	wait	of	the	lock	owner,	we	break	the	loop	and	go	to	sleep.	In
other	case,	the	process	already	may	release	a	lock,	so	we	try	to	acquire	a	lock	with	the
	mutex_try_to_acquired	.	If	this	operation	finished	successfully,	we	set	new	owner	for	the
given	mutex,	removes	ourself	from	the		MCS		wait	queue	and	exit	from	the
	mutex_optimistic_spin		function.	At	this	state	a	lock	will	be	acquired	by	a	process	and	we
enable	preemtion	and	exit	from	the		__mutex_lock_common		function:

if	(mutex_optimistic_spin(lock,	ww_ctx,	use_ww_ctx))	{

				preempt_enable();

				return	0;

}

That's	all	for	this	case.

In	other	case	all	may	not	be	so	successful.	For	example	new	task	may	occur	during	we
spinning	in	the	loop	from	the		mutex_optimistic_spin		or	even	we	may	not	get	to	this	loop
from	the		mutex_optimistic_spin		in	a	case	when	there	were	task(s)	with	higher	priority
before	this	loop.	Or	finally	the		CONFIG_MUTEX_SPIN_ON_OWNER		kernel	configuration	option
disabled.	In	this	case	the		mutex_optimistic_spin		will	do	nothing:

Mutex

559

https://en.wikipedia.org/wiki/Preemption_%28computing%29


#ifndef	CONFIG_MUTEX_SPIN_ON_OWNER

static	bool	mutex_optimistic_spin(struct	mutex	*lock,

																																		struct	ww_acquire_ctx	*ww_ctx,	const	bool	use_ww_ctx)

{

				return	false;

}

#endif

In	all	of	these	cases,	the		__mutex_lock_common		function	will	acct	like	a		semaphore	.	We	try	to
acquire	a	lock	again	because	the	owner	of	a	lock	might	already	release	a	lock	before	this
time:

if	(!mutex_is_locked(lock)	&&

			(atomic_xchg_acquire(&lock->count,	0)	==	1))

						goto	skip_wait;

In	a	failure	case	the	process	which	wants	to	acquire	a	lock	will	be	added	to	the	waiters	list

list_add_tail(&waiter.list,	&lock->wait_list);

waiter.task	=	task;

In	a	successful	case	we	update	the	owner	of	a	lock,	enable	preemption	and	exit	from	the
	__mutex_lock_common		function:

skip_wait:

								mutex_set_owner(lock);

								preempt_enable();

								return	0;

In	this	case	a	lock	will	be	acquired.	If	can't	acquire	a	lock	for	now,	we	enter	into	the	following
loop:

Mutex

560



for	(;;)	{

				if	(atomic_read(&lock->count)	>=	0	&&	(atomic_xchg_acquire(&lock->count,	-1)	==	1)

)

								break;

				if	(unlikely(signal_pending_state(state,	task)))	{

								ret	=	-EINTR;

								goto	err;

				}	

				__set_task_state(task,	state);

					schedule_preempt_disabled();

}

where	try	to	acquire	a	lock	again	and	exit	if	this	operation	was	successful.	Yes,	we	try	to
acquire	a	lock	again	right	after	unsuccessful	try	before	the	loop.	We	need	to	do	it	to	make
sure	that	we	get	a	wakeup	once	a	lock	will	be	unlocked.	Besides	this,	it	allows	us	to	acquire
a	lock	after	sleep.	In	other	case	we	check	the	current	process	for	pending	signals	and	exit	if
the	process	was	interrupted	by	a		signal		during	wait	for	a	lock	acquisition.	In	the	end	of
loop	we	didn't	acquire	a	lock,	so	we	set	the	task	state	for		TASK_UNINTERRUPTIBLE		and	go	to
sleep	with	call	of	the		schedule_preempt_disabled		function.

That's	all.	We	have	considered	all	three	possible	paths	through	which	a	process	may	pass
when	it	will	wan	to	acquire	a	lock.	Now	let's	consider	how		mutex_unlock		is	implemented.
When	the		mutex_unlock		will	be	called	by	a	process	which	wants	to	release	a	lock,	the
	__mutex_fastpath_unlock		will	be	called	from	the	arch/x86/include/asm/mutex_64.h	header
file:

void	__sched	mutex_unlock(struct	mutex	*lock)

{

				__mutex_fastpath_unlock(&lock->count,	__mutex_unlock_slowpath);

}

Implementation	of	the		__mutex_fastpath_unlock		function	is	very	similar	to	the
implementation	of	the		__mutex_fastpath_lock		function:

Mutex

561

https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h


static	inline	void	__mutex_fastpath_unlock(atomic_t	*v,

																																											void	(*fail_fn)(atomic_t	*))

{

							asm_volatile_goto(LOCK_PREFIX	"			incl	%0\n"

																									"			jg	%l[exit]\n"

																									:	:	"m"	(v->counter)

																									:	"memory",	"cc"

																									:	exit);

							fail_fn(v);

exit:

							return;

}

Actually,	there	is	only	one	difference.	We	increment	value	if	the		mutex->count	.	So	it	will
represent		unlocked		state	after	this	operation.	As		mutex		released,	but	we	have	something
in	the		wait	queue		we	need	to	update	it.	In	this	case	the		fail_fn		function	will	be	called
which	is		__mutex_unlock_slowpath	.	The		__mutex_unlock_slowpath		function	just	gets	the
correct		mutex		instance	by	the	given		mutex->count		and	calls	the
	__mutex_unlock_common_slowpath		function:

__mutex_unlock_slowpath(atomic_t	*lock_count)

{

						struct	mutex	*lock	=	container_of(lock_count,	struct	mutex,	count);

						__mutex_unlock_common_slowpath(lock,	1);

}

In	the		__mutex_unlock_common_slowpath		function	we	will	get	the	first	entry	from	the	wait	queue
if	the	wait	queue	is	not	empty	and	wakeup	related	process:

if	(!list_empty(&lock->wait_list))	{

				struct	mutex_waiter	*waiter	=

											list_entry(lock->wait_list.next,	struct	mutex_waiter,	list);	

																wake_up_process(waiter->task);

}

After	this,	a	mutex	will	be	released	by	previous	process	and	will	be	acquired	by	another
process	from	a	wait	queue.

That's	all.	We	have	considered	main		API		for	manipulation	with		mutexes	:		mutex_lock		and
	mutex_unlock	.	Besides	this	the	Linux	kernel	provides	following	API:

	mutex_lock_interruptible	;
	mutex_lock_killable	;
	mutex_trylock	.

Mutex

562



and	corresponding	versions	of		unlock		prefixed	functions.	This	part	will	not	describe	this
	API	,	because	it	is	similar	to	corresponding		API		of		semaphores	.	More	about	it	you	may
read	in	the	previous	part.

That's	all.

Conclusion
This	is	the	end	of	the	fourth	part	of	the	synchronization	primitives	chapter	in	the	Linux	kernel.
In	this	part	we	met	with	new	synchronization	primitive	which	is	called	-		mutex	.	From	the
theoretical	side,	this	synchronization	primitive	very	similar	on	a	semaphore.	Actually,		mutex	
represents	binary	semaphore.	But	its	implementation	differs	from	the	implementation	of
	semaphore		in	the	Linux	kernel.	In	the	next	part	we	will	continue	to	dive	into	synchronization
primitives	in	the	Linux	kernel.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links
Mutex
Spinlock
Semaphore
Synchronization	primitives
API
Locking	mechanism
Context	switches
lock	validator
Atomic
MCS	lock
Doubly	linked	list
x86_64
Inline	assembly
Memory	barrier
Lock	instruction
JNS	instruction
preemtion

Mutex

563

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Context_switch
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Linearizability
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html
https://en.wikipedia.org/wiki/X86-64
https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html
https://en.wikipedia.org/wiki/Memory_barrier
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://unixwiz.net/techtips/x86-jumps.html
https://en.wikipedia.org/wiki/Preemption_%28computing%29


Unix	signals
Previous	part

Mutex

564

https://en.wikipedia.org/wiki/Unix_signal
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-3.html


Synchronization	primitives	in	the	Linux
kernel.	Part	5.

Introduction
This	is	the	fifth	part	of	the	chapter	which	describes	synchronization	primitives	in	the	Linux
kernel	and	in	the	previous	parts	we	finished	to	consider	different	types	spinlocks,	semaphore
and	mutex	synchronization	primitives.	In	We	will	continue	to	learn	synchronization	primitives
in	this	part	and	start	to	consider	special	type	of	synchronization	primitives	-	readers–writer
lock.

The	first	synchronization	primitive	of	this	type	will	be	already	familiar	for	us	-	semaphore.	As
in	all	previous	parts	of	this	book,	before	we	will	consider	implementation	of	the
	reader/writer	semaphores		in	the	Linux	kernel,	we	will	start	from	the	theoretical	side	and	will
try	to	understand	what	is	the	difference	between		reader/writer	semaphores		and		normal
semaphores	.

So,	let's	start.

Reader/Writer	semaphore
Actually	there	are	two	types	of	operations	may	be	performed	on	the	data.	We	may	read	data
and	make	changes	in	data.	Two	fundamental	operations	-		read		and		write	.	Usually	(but
not	always),		read		operation	is	performed	more	often	than		write		operation.	In	this	case,	it
would	be	logical	to	we	may	lock	data	in	such	way,	that	some	processes	may	read	locked
data	in	one	time,	on	condition	that	no	one	will	not	change	the	data.	The	readers/writer	lock
allows	us	to	get	this	lock.

When	a	process	which	wants	to	write	something	into	data,	all	other		writer		and		reader	
processes	will	be	blocked	until	the	process	which	acquired	a	lock,	will	not	release	it.	When	a
process	reads	data,	other	processes	which	want	to	read	the	same	data	too,	will	not	be
locked	and	will	be	able	to	do	this.	As	you	may	guess,	implementation	of	the		reader/writer
semaphore		is	based	on	the	implementation	of	the		normal	semaphore	.	We	already	familiar	with
the	semaphore	synchronization	primitive	from	the	third	part	of	this	chapter.	From	the
theoretical	side	everything	looks	pretty	simple.	Let's	look	how		reader/writer	semaphore		is
represented	in	the	Linux	kernel.

The		semaphore		is	represented	by	the:

Reader/Writer	semaphores

565

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://0xax.gitbooks.io/linux-insides/content
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29


struct	semaphore	{

				raw_spinlock_t								lock;

				unsigned	int								count;

				struct	list_head				wait_list;

};

structure.	If	you	will	look	in	the	include/linux/rwsem.h	header	file,	you	will	find	definition	of	the
	rw_semaphore		structure	which	represents		reader/writer	semaphore		in	the	Linux	kernel.	Let's
look	at	the	definition	of	this	structure:

#ifdef	CONFIG_RWSEM_GENERIC_SPINLOCK

#include	<linux/rwsem-spinlock.h>

#else

struct	rw_semaphore	{

								long	count;

								struct	list_head	wait_list;

								raw_spinlock_t	wait_lock;

#ifdef	CONFIG_RWSEM_SPIN_ON_OWNER

								struct	optimistic_spin_queue	osq;

								struct	task_struct	*owner;

#endif

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

								struct	lockdep_map						dep_map;

#endif

};

Before	we	will	consider	fields	of	the		rw_semaphore		structure,	we	may	notice,	that	declaration
of	the		rw_semaphore		structure	depends	on	the		CONFIG_RWSEM_GENERIC_SPINLOCK		kernel
configuration	option.	This	option	is	disabled	for	the	x86_64	architecture	by	default.	We	can
be	sure	in	this	by	looking	at	the	corresponding	kernel	configuration	file.	In	our	case,	this
configuration	file	is	-	arch/x86/um/Kconfig:

config	RWSEM_XCHGADD_ALGORITHM

				def_bool	64BIT

config	RWSEM_GENERIC_SPINLOCK

				def_bool	!RWSEM_XCHGADD_ALGORITHM

So,	as	this	book	describes	only	x86_64	related	stuff,	we	will	skip	the	case	when	the
	CONFIG_RWSEM_GENERIC_SPINLOCK		kernel	configuration	is	enabled	and	consider	definition	of	the
	rw_semaphore		structure	only	from	the	include/linux/rwsem.h	header	file.

If	we	will	take	a	look	at	the	definition	of	the		rw_semaphore		structure,	we	will	notice	that	first
three	fields	are	the	same	that	in	the		semaphore		structure.	It	contains		count		field	which
represents	amount	of	available	resources,	the		wait_list		field	which	represents	doubly

Reader/Writer	semaphores

566

https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/um/Kconfig
https://0xax.gitbooks.io/linux-insides/content
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html


linked	list	of	processes	which	are	waiting	to	acquire	a	lock	and		wait_lock		spinlock	for
protection	of	this	list.	Notice	that		rw_semaphore.count		field	is		long		type	unlike	the	same
field	in	the		semaphore		structure.

The		count		field	of	a		rw_semaphore		structure	may	have	following	values:

	0x0000000000000000		-		reader/writer	semaphore		is	in	unlocked	state	and	no	one	is
waiting	for	a	lock;
	0x000000000000000X		-		X		readers	are	active	or	attempting	to	acquire	a	lock	and	no
writer	waiting;
	0xffffffff0000000X		-	may	represent	different	cases.	The	first	is	-		X		readers	are	active
or	attempting	to	acquire	a	lock	with	waiters	for	the	lock.	The	second	is	-	one	writer
attempting	a	lock,	no	waiters	for	the	lock.	And	the	last	-	one	writer	is	active	and	no
waiters	for	the	lock;
	0xffffffff00000001		-	may	represented	two	different	cases.	The	first	is	-	one	reader	is
active	or	attempting	to	acquire	a	lock	and	exist	waiters	for	the	lock.	The	second	case	is
one	writer	is	active	or	attempting	to	acquire	a	lock	and	no	waiters	for	the	lock;
	0xffffffff00000000		-	represents	situation	when	there	are	readers	or	writers	are
queued,	but	no	one	is	active	or	is	in	the	process	of	acquire	of	a	lock;
	0xfffffffe00000001		-	a	writer	is	active	or	attempting	to	acquire	a	lock	and	waiters	are	in
queue.

So,	besides	the		count		field,	all	of	these	fields	are	similar	to	fields	of	the		semaphore	
structure.	Last	three	fields	depend	on	the	two	configuration	options	of	the	Linux	kernel:	the
	CONFIG_RWSEM_SPIN_ON_OWNER		and		CONFIG_DEBUG_LOCK_ALLOC	.	The	first	two	fields	may	be
familiar	us	by	declaration	of	the	mutex	structure	from	the	previous	part.	The	first		osq		field
represents	MCS	lock	spinner	for		optimistic	spinning		and	the	second	represents	process
which	is	current	owner	of	a	lock.

The	last	field	of	the		rw_semaphore		structure	is	-		dep_map		-	debugging	related,	and	as	I
already	wrote	in	previous	parts,	we	will	skip	debugging	related	stuff	in	this	chapter.

That's	all.	Now	we	know	a	little	about	what	is	it		reader/writer	lock		in	general	and
	reader/writer	semaphore		in	particular.	Additionally	we	saw	how	a		reader/writer	semaphore	
is	represented	in	the	Linux	kernel.	In	this	case,	we	may	go	ahead	and	start	to	look	at	the	API
which	the	Linux	kernel	provides	for	manipulation	of		reader/writer	semaphores	.

Reader/Writer	semaphore	API
So,	we	know	a	little	about		reader/writer	semaphores		from	theoretical	side,	let's	look	on	its
implementation	in	the	Linux	kernel.	All		reader/writer	semaphores		related	API	is	located	in
the	include/linux/rwsem.h	header	file.

Reader/Writer	semaphores

567

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Mutual_exclusion
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h


As	always	Before	we	will	consider	an	API	of	the		reader/writer	semaphore		mechanism	in	the
Linux	kernel,	we	need	to	know	how	to	initialize	the		rw_semaphore		structure.	As	we	already
saw	in	previous	parts	of	this	chapter,	all	synchronization	primitives	may	be	initialized	in	two
ways:

	statically	;
	dynamically	.

And		reader/writer	semaphore		is	not	an	exception.	First	of	all,	let's	take	a	look	at	the	first
approach.	We	may	initialize		rw_semaphore		structure	with	the	help	of	the		DECLARE_RWSEM	
macro	in	compile	time.	This	macro	is	defined	in	the	include/linux/rwsem.h	header	file	and
looks:

#define	DECLARE_RWSEM(name)	\

								struct	rw_semaphore	name	=	__RWSEM_INITIALIZER(name)

As	we	may	see,	the		DECLARE_RWSEM		macro	just	expands	to	the	definition	of	the
	rw_semaphore		structure	with	the	given	name.	Additionally	new		rw_semaphore		structure	is
initialized	with	the	value	of	the		__RWSEM_INITIALIZER		macro:

#define	__RWSEM_INITIALIZER(name)														\

{																																																														\

								.count	=	RWSEM_UNLOCKED_VALUE,																									\

								.wait_list	=	LIST_HEAD_INIT((name).wait_list),									\

								.wait_lock	=	__RAW_SPIN_LOCK_UNLOCKED(name.wait_lock)		\

									__RWSEM_OPT_INIT(name)																																\

									__RWSEM_DEP_MAP_INIT(name)

}

and	expands	to	the	initialization	of	fields	of		rw_semaphore		structure.	First	of	all	we	initialize
	count		field	of	the		rw_semaphore		structure	to	the		unlocked		state	with
	RWSEM_UNLOCKED_VALUE		macro	from	the	arch/x86/include/asm/rwsem.h	architecture	specific
header	file:

#define	RWSEM_UNLOCKED_VALUE												0x00000000L

After	this	we	initialize	list	of	a	lock	waiters	with	the	empty	linked	list	and	spinlock	for
protection	of	this	list	with	the		unlocked		state	too.	The		__RWSEM_OPT_INIT		macro	depends	on
the	state	of	the		CONFIG_RWSEM_SPIN_ON_OWNER		kernel	configuration	option	and	if	this	option	is
enabled	it	expands	to	the	initialization	of	the		osq		and		owner		fields	of	the		rw_semaphore	
structure.	As	we	already	saw	above,	the		CONFIG_RWSEM_SPIN_ON_OWNER		kernel	configuration
option	is	enabled	by	default	for	x86_64	architecture,	so	let's	take	a	look	at	the	definition	of
the		__RWSEM_OPT_INIT		macro:

Reader/Writer	semaphores

568

https://en.wikipedia.org/wiki/Application_programming_interface
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/X86-64


#ifdef	CONFIG_RWSEM_SPIN_ON_OWNER

				#define	__RWSEM_OPT_INIT(lockname)	,	.osq	=	OSQ_LOCK_UNLOCKED,	.owner	=	NULL

#else

				#define	__RWSEM_OPT_INIT(lockname)

#endif

As	we	may	see,	the		__RWSEM_OPT_INIT		macro	initializes	the	MCS	lock	lock	with		unlocked	
state	and	initial		owner		of	a	lock	with		NULL	.	From	this	moment,	a		rw_semaphore		structure
will	be	initialized	in	a	compile	time	and	may	be	used	for	data	protection.

The	second	way	to	initialize	a		rw_semaphore		structure	is		dynamically		or	use	the
	init_rwsem		macro	from	the	include/linux/rwsem.h	header	file.	This	macro	declares	an
instance	of	the		lock_class_key		which	is	related	to	the	lock	validator	of	the	Linux	kernel	and
to	the	call	of	the		__init_rwsem		function	with	the	given		reader/writer	semaphore	:

#define	init_rwsem(sem)																									\

do	{																																																												\

								static	struct	lock_class_key	__key;																					\

																																																																\

								__init_rwsem((sem),	#sem,	&__key);																						\

}	while	(0)

If	you	will	start	definition	of	the		__init_rwsem		function,	you	will	notice	that	there	are	couple
of	source	code	files	which	contain	it.	As	you	may	guess,	sometimes	we	need	to	initialize
additional	fields	of	the		rw_semaphore		structure,	like	the		osq		and		owner	.	But	sometimes
not.	All	of	this	depends	on	some	kernel	configuration	options.	If	we	will	look	at	the
kernel/locking/Makefile	makefile,	we	will	see	following	lines:

obj-$(CONFIG_RWSEM_GENERIC_SPINLOCK)	+=	rwsem-spinlock.o

obj-$(CONFIG_RWSEM_XCHGADD_ALGORITHM)	+=	rwsem-xadd.o

As	we	already	know,	the	Linux	kernel	for		x86_64		architecture	has	enabled
	CONFIG_RWSEM_XCHGADD_ALGORITHM		kernel	configuration	option	by	default:

config	RWSEM_XCHGADD_ALGORITHM

				def_bool	64BIT

in	the	arch/x86/um/Kconfig	kernel	configuration	file.	In	this	case,	implementation	of	the
	__init_rwsem		function	will	be	located	in	the	kernel/locking/rwsem-xadd.c	source	code	file
for	us.	Let's	take	a	look	at	this	function:

Reader/Writer	semaphores

569

http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/kernel/locking/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/um/Kconfig
https://github.com/torvalds/linux/blob/master/locking/rwsem-xadd.c


void	__init_rwsem(struct	rw_semaphore	*sem,	const	char	*name,

																				struct	lock_class_key	*key)

{

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

								debug_check_no_locks_freed((void	*)sem,	sizeof(*sem));

								lockdep_init_map(&sem->dep_map,	name,	key,	0);

#endif

								sem->count	=	RWSEM_UNLOCKED_VALUE;

								raw_spin_lock_init(&sem->wait_lock);

								INIT_LIST_HEAD(&sem->wait_list);

#ifdef	CONFIG_RWSEM_SPIN_ON_OWNER

								sem->owner	=	NULL;

								osq_lock_init(&sem->osq);

#endif

}

We	may	see	here	almost	the	same	as	in		__RWSEM_INITIALIZER		macro	with	difference	that	all
of	this	will	be	executed	in	runtime.

So,	from	now	we	are	able	to	initialize	a		reader/writer	semaphore		let's	look	at	the		lock		and
	unlock		API.	The	Linux	kernel	provides	following	primary	API	to	manipulate		reader/writer
semaphores	:

	void	down_read(struct	rw_semaphore	*sem)		-	lock	for	reading;
	int	down_read_trylock(struct	rw_semaphore	*sem)		-	try	lock	for	reading;
	void	down_write(struct	rw_semaphore	*sem)		-	lock	for	writing;
	int	down_write_trylock(struct	rw_semaphore	*sem)		-	try	lock	for	writing;
	void	up_read(struct	rw_semaphore	*sem)		-	release	a	read	lock;
	void	up_write(struct	rw_semaphore	*sem)		-	release	a	write	lock;

Let's	start	as	always	from	the	locking.	First	of	all	let's	consider	implementation	of	the
	down_write		function	which	executes	a	try	of	acquiring	of	a	lock	for		write	.	This	function	is
kernel/locking/rwsem.c	source	code	file	and	starts	from	the	call	of	the	macro	from	the
include/linux/kernel.h	header	file:

void	__sched	down_write(struct	rw_semaphore	*sem)

{

								might_sleep();

								rwsem_acquire(&sem->dep_map,	0,	0,	_RET_IP_);

								LOCK_CONTENDED(sem,	__down_write_trylock,	__down_write);

								rwsem_set_owner(sem);

}

Reader/Writer	semaphores

570

https://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/rwsem.c
https://github.com/torvalds/linux/blob/master/include/linux/kernel.h


We	already	met	the		might_sleep		macro	in	the	previous	part.	In	short	words,	Implementation
of	the		might_sleep		macro	depends	on	the		CONFIG_DEBUG_ATOMIC_SLEEP		kernel	configuration
option	and	if	this	option	is	enabled,	this	macro	just	prints	a	stack	trace	if	it	was	executed	in
atomic	context.	As	this	macro	is	mostly	for	debugging	purpose	we	will	skip	it	and	will	go
ahead.	Additionally	we	will	skip	the	next	macro	from	the		down_read		function	-
	rwsem_acquire		which	is	related	to	the	lock	validator	of	the	Linux	kernel,	because	this	is	topic
of	other	part.

The	only	two	things	that	remained	in	the		down_write		function	is	the	call	of	the
	LOCK_CONTENDED		macro	which	is	defined	in	the	include/linux/lockdep.h	header	file	and	setting
of	owner	of	a	lock	with	the		rwsem_set_owner		function	which	sets	owner	to	currently	running
process:

static	inline	void	rwsem_set_owner(struct	rw_semaphore	*sem)

{

								sem->owner	=	current;

}

As	you	already	may	guess,	the		LOCK_CONTENDED		macro	does	all	job	for	us.	Let's	look	at	the
implementation	of	the		LOCK_CONTENDED		macro:

#define	LOCK_CONTENDED(_lock,	try,	lock)	\

								lock(_lock)

As	we	may	see	it	just	calls	the	`lock`	function	which	is	third	parameter	of	the	`LOCK_

CONTENDED`	macro	with	the	given	`rw_semaphore`.	In	our	case	the	third	parameter	of	the

	`LOCK_CONTENDED`	macro	is	the	`__down_write`	function	which	is	architecture	specific	

function	and	located	in	the	[arch/x86/include/asm/rwsem.h](https://github.com/torvalds

/linux/blob/master/arch/x86/include/asm/rwsem.h)	header	file.	Let's	look	at	the	implem

entation	of	the	`__down_write`	function:

```C

static	inline	void	__down_write(struct	rw_semaphore	*sem)

{

								__down_write_nested(sem,	0);

}

which	just	executes	a	call	of	the		__down_write_nested		function	from	the	same	source	code
file.	Let's	take	a	look	at	the	implementation	of	the		__down_write_nested		function:

Reader/Writer	semaphores

571

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
https://en.wikipedia.org/wiki/Linearizability
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/lockdep.h

static	inline	void	__down_write_nested(struct	rw_semaphore	*sem,	int	subclass)

{

								long	tmp;

								asm	volatile("#	beginning	down_write\n\t"

																					LOCK_PREFIX	"		xadd						%1,(%2)\n\t"

																					"		test	"	__ASM_SEL(%w1,%k1)	","	__ASM_SEL(%w1,%k1)	"\n\t"

																					"		jz								1f\n"

																					"		call	call_rwsem_down_write_failed\n"

																					"1:\n"

																					"#	ending	down_write"

																					:	"+m"	(sem->count),	"=d"	(tmp)

																					:	"a"	(sem),	"1"	(RWSEM_ACTIVE_WRITE_BIAS)

																					:	"memory",	"cc");

}

As	for	other	synchronization	primitives	which	we	saw	in	this	chapter,	usually		lock/unlock	
functions	consists	only	from	an	inline	assembly	statement.	As	we	may	see,	in	our	case	the
same	for		__down_write_nested		function.	Let's	try	to	understand	what	does	this	function	do.
The	first	line	of	our	assembly	statement	is	just	a	comment,	let's	skip	it.	The	second	like
contains		LOCK_PREFIX		which	will	be	expanded	to	the	LOCK	instruction	as	we	already	know.
The	next	xadd	instruction	executes		add		and		exchange		operations.	In	other	words,		xadd	
instruction	adds	value	of	the		RWSEM_ACTIVE_WRITE_BIAS	:

#define	RWSEM_ACTIVE_WRITE_BIAS									(RWSEM_WAITING_BIAS	+	RWSEM_ACTIVE_BIAS)

#define	RWSEM_WAITING_BIAS														(-RWSEM_ACTIVE_MASK-1)

#define	RWSEM_ACTIVE_BIAS															0x00000001L

or		0xffffffff00000001		to	the		count		of	the	given		reader/writer	semaphore		and	returns
previous	value	of	it.	After	this	we	check	the	active	mask	in	the		rw_semaphore->count	.	If	it	was
zero	before,	this	means	that	there	were	no-one	writer	before,	so	we	acquired	a	lock.	In	other
way	we	call	the		call_rwsem_down_write_failed		function	from	the	arch/x86/lib/rwsem.S
assembly	file.	The	the		call_rwsem_down_write_failed		function	just	calls	the
	rwsem_down_write_failed		function	from	the	kernel/locking/rwsem-xadd.c	source	code	file
anticipatorily	save	general	purpose	registers:

Reader/Writer	semaphores

572

https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://github.com/torvalds/linux/blob/master/arch/x86/lib/rwsem.S
https://github.com/torvalds/linux/blob/master/locking/rwsem-xadd.c

ENTRY(call_rwsem_down_write_failed)

				FRAME_BEGIN

				save_common_regs

				movq	%rax,%rdi

				call	rwsem_down_write_failed

				restore_common_regs

				FRAME_END

				ret

				ENDPROC(call_rwsem_down_write_failed)

The		rwsem_down_write_failed		function	starts	from	the	atomic	update	of	the		count		value:

	__visible

struct	rw_semaphore	__sched	*rwsem_down_write_failed(struct	rw_semaphore	*sem)

{

				count	=	rwsem_atomic_update(-RWSEM_ACTIVE_WRITE_BIAS,	sem);

				...

				...

				...

}

with	the		-RWSEM_ACTIVE_WRITE_BIAS		value.	The		rwsem_atomic_update		function	is	defined	in
the	arch/x86/include/asm/rwsem.h	header	file	and	implement	exchange	and	add	logic:

static	inline	long	rwsem_atomic_update(long	delta,	struct	rw_semaphore	*sem)

{

								return	delta	+	xadd(&sem->count,	delta);

}

This	function	atomically	adds	the	given	delta	to	the		count		and	returns	old	value	of	the
count.	After	this	it	just	returns	sum	of	the	given		delta		and	old	value	of	the		count		field.	In
our	case	we	undo	write	bias	from	the		count		as	we	didn't	acquire	a	lock.	After	this	step	we
try	to	do		optimistic	spinning		by	the	call	of	the		rwsem_optimistic_spin		function:

if	(rwsem_optimistic_spin(sem))

						return	sem;

We	will	skip	implementation	of	the		rwsem_optimistic_spin		function,	as	it	is	similar	on	the
	mutex_optimistic_spin		function	which	we	saw	in	the	previous	part.	In	short	words	we	check
existence	other	tasks	ready	to	run	that	have	higher	priority	in	the		rwsem_optimistic_spin	
function.	If	there	are	such	tasks,	the	process	will	be	added	to	the	MCS		waitqueue		and	start
to	spin	in	the	loop	until	a	lock	will	be	able	to	be	acquired.	If		optimistic	spinning		is	disabled,
a	process	will	be	added	to	the	and	marked	as	waiting	for	write:

Reader/Writer	semaphores

573

https://en.wikipedia.org/wiki/Linearizability
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf

waiter.task	=	current;

waiter.type	=	RWSEM_WAITING_FOR_WRITE;

if	(list_empty(&sem->wait_list))

				waiting	=	false;

list_add_tail(&waiter.list,	&sem->wait_list);

waiters	list	and	start	to	wait	until	it	will	successfully	acquire	the	lock.	After	we	have	added	a
process	to	the	waiters	list	which	was	empty	before	this	moment,	we	update	the	value	of	the
	rw_semaphore->count		with	the		RWSEM_WAITING_BIAS	:

count	=	rwsem_atomic_update(RWSEM_WAITING_BIAS,	sem);

with	this	we	mark		rw_semaphore->counter		that	it	is	already	locked	and	exists/waits	one
	writer		which	wants	to	acquire	the	lock.	In	other	way	we	try	to	wake		reader		processes
from	the		wait	queue		that	were	queued	before	this		writer		process	and	there	are	no	active
readers.	In	the	end	of	the		rwsem_down_write_failed		a		writer		process	will	go	to	sleep	which
didn't	acquire	a	lock	in	the	following	loop:

while	(true)	{

				if	(rwsem_try_write_lock(count,	sem))

								break;

				raw_spin_unlock_irq(&sem->wait_lock);

				do	{

								schedule();

								set_current_state(TASK_UNINTERRUPTIBLE);

				}	while	((count	=	sem->count)	&	RWSEM_ACTIVE_MASK);

				raw_spin_lock_irq(&sem->wait_lock);

}

I	will	skip	explanation	of	this	loop	as	we	already	met	similar	functional	in	the	previous	part.

That's	all.	From	this	moment,	our		writer		process	will	acquire	or	not	acquire	a	lock	depends
on	the	value	of	the		rw_semaphore->count		field.	Now	if	we	will	look	at	the	implementation	of
the		down_read		function	which	executes	a	try	of	acquiring	of	a	lock.	We	will	see	similar
actions	which	we	saw	in	the		down_write		function.	This	function	calls	different	debugging
and	lock	validator	related	functions/macros:

Reader/Writer	semaphores

574

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html

void	__sched	down_read(struct	rw_semaphore	*sem)

{

								might_sleep();

								rwsem_acquire_read(&sem->dep_map,	0,	0,	_RET_IP_);

								LOCK_CONTENDED(sem,	__down_read_trylock,	__down_read);

}

and	does	all	job	in	the		__down_read		function.	The		__down_read		consists	of	inline	assembly
statement:

static	inline	void	__down_read(struct	rw_semaphore	*sem)

{

									asm	volatile("#	beginning	down_read\n\t"

																					LOCK_PREFIX	_ASM_INC	"(%1)\n\t"

																					"		jns								1f\n"

																					"		call	call_rwsem_down_read_failed\n"

																					"1:\n\t"

																					"#	ending	down_read\n\t"

																					:	"+m"	(sem->count)

																					:	"a"	(sem)

																					:	"memory",	"cc");

}

which	increments	value	of	the	given		rw_semaphore->count		and	call	the
	call_rwsem_down_read_failed		if	this	value	is	negative.	In	other	way	we	jump	at	the	label		1:	
and	exit.	After	this		read		lock	will	be	successfully	acquired.	Notice	that	we	check	a	sign	of
the		count		value	as	it	may	be	negative,	because	as	you	may	remember	most	significant
word	of	the		rw_semaphore->count		contains	negated	number	of	active	writers.

Let's	consider	case	when	a	process	wants	to	acquire	a	lock	for		read		operation,	but	it	is
already	locked.	In	this	case	the		call_rwsem_down_read_failed		function	from	the
arch/x86/lib/rwsem.S	assembly	file	will	be	called.	If	you	will	look	at	the	implementation	of	this
function,	you	will	notice	that	it	does	the	same	that		call_rwsem_down_read_failed		function
does.	Except	it	calls	the		rwsem_down_read_failed		function	instead	of
	rwsem_dow_write_failed	.	Now	let's	consider	implementation	of	the		rwsem_down_read_failed	
function.	It	starts	from	the	adding	a	process	to	the		wait	queue		and	updating	of	value	of	the
	rw_semaphore->counter	:

Reader/Writer	semaphores

575

https://en.wikipedia.org/wiki/Word_%28computer_architecture%29
https://github.com/torvalds/linux/blob/master/arch/x86/lib/rwsem.S

long	adjustment	=	-RWSEM_ACTIVE_READ_BIAS;

waiter.task	=	tsk;

waiter.type	=	RWSEM_WAITING_FOR_READ;

if	(list_empty(&sem->wait_list))

				adjustment	+=	RWSEM_WAITING_BIAS;

list_add_tail(&waiter.list,	&sem->wait_list);

count	=	rwsem_atomic_update(adjustment,	sem);

Notice	that	if	the		wait	queue		was	empty	before	we	clear	the		rw_semaphore->counter		and
undo		read		bias	in	other	way.	At	the	next	step	we	check	that	there	are	no	active	locks	and
we	are	first	in	the		wait	queue		we	need	to	join	currently	active		reader		processes.	In	other
way	we	go	to	sleep	until	a	lock	will	not	be	able	to	acquired.

That's	all.	Now	we	know	how		reader		and		writer		processes	will	behave	in	different	cases
during	a	lock	acquisition.	Now	let's	take	a	short	look	at		unlock		operations.	The		up_read	
and		up_write		functions	allows	us	to	unlock	a		reader		or		writer		lock.	First	of	all	let's	take
a	look	at	the	implementation	of	the		up_write		function	which	is	defined	in	the
kernel/locking/rwsem.c	source	code	file:

void	up_write(struct	rw_semaphore	*sem)

{

								rwsem_release(&sem->dep_map,	1,	_RET_IP_);

								rwsem_clear_owner(sem);

								__up_write(sem);

}

First	of	all	it	calls	the		rwsem_release		macro	which	is	related	to	the	lock	validator	of	the	Linux
kernel,	so	we	will	skip	it	now.	And	at	the	next	line	the		rwsem_clear_owner		function	which	as
you	may	understand	from	the	name	of	this	function,	just	clears	the		owner		field	of	the	given
	rw_semaphore	:

static	inline	void	rwsem_clear_owner(struct	rw_semaphore	*sem)

{

				sem->owner	=	NULL;

}

The		__up_write		function	does	all	job	of	unlocking	of	the	lock.	The		_up_write		is
architecture-specific	function,	so	for	our	case	it	will	be	located	in	the
arch/x86/include/asm/rwsem.h	source	code	file.	If	we	will	take	a	look	at	the	implementation

Reader/Writer	semaphores

576

https://github.com/torvalds/linux/blob/master/kernel/locking/rwsem.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h

of	this	function,	we	will	see	that	it	does	almost	the	same	that		__down_write		function,	but
conversely.	Instead	of	adding	of	the		RWSEM_ACTIVE_WRITE_BIAS		to	the		count	,	we	subtract	the
same	value	and	check	the		sign		of	the	previous	value.

If	the	previous	value	of	the		rw_semaphore->count		is	not	negative,	a	writer	process	released	a
lock	and	now	it	may	be	acquired	by	someone	else.	In	other	case,	the		rw_semaphore->count	
will	contain	negative	values.	This	means	that	there	is	at	least	one		writer		in	a	wait	queue.
In	this	case	the		call_rwsem_wake		function	will	be	called.	This	function	acts	like	similar
functions	which	we	already	saw	above.	It	store	general	purpose	registers	at	the	stack	for
preserving	and	call	the		rwsem_wake		function.

First	of	all	the		rwsem_wake		function	checks	if	a	spinner	is	present.	In	this	case	it	will	just
acquire	a	lock	which	is	just	released	by	lock	owner.	In	other	case	there	must	be	someone	in
the		wait	queue		and	we	need	to	wake	or	writer	process	if	it	exists	at	the	top	of	the		wait
queue		or	all		reader		processes.	The		up_read		function	which	release	a		reader		lock	acts	in
similar	way	like		up_write	,	but	with	a	little	difference.	Instead	of	subtracting	of
	RWSEM_ACTIVE_WRITE_BIAS		from	the		rw_semaphore->count	,	it	subtracts		1		from	it,	because
less	significant	word	of	the		count		contains	number	active	locks.	After	this	it	checks		sign	
of	the		count		and	calls	the		rwsem_wake		like		__up_write		if	the		count		is	negative	or	in	other
way	lock	will	be	successfully	released.

That's	all.	We	have	considered	API	for	manipulation	with		reader/writer	semaphore	:
	up_read/up_write		and		down_read/down_write	.	We	saw	that	the	Linux	kernel	provides
additional	API,	besides	this	functions,	like	the		,		and	etc.	But	I	will	not	consider
implementation	of	these	function	in	this	part	because	it	must	be	similar	on	that	we	have	seen
in	this	part	of	except	few	subtleties.

Conclusion
This	is	the	end	of	the	fifth	part	of	the	synchronization	primitives	chapter	in	the	Linux	kernel.
In	this	part	we	met	with	special	type	of		semaphore		-		readers/writer		semaphore	which
provides	access	to	data	for	multiply	process	to	read	or	for	one	process	to	writer.	In	the	next
part	we	will	continue	to	dive	into	synchronization	primitives	in	the	Linux	kernel.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides.

Links

Reader/Writer	semaphores

577

https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides

Synchronization	primitives
Readers/Writer	lock
Spinlocks
Semaphore
Mutex
x86_64	architecture
Doubly	linked	list
MCS	lock
API
Linux	kernel	lock	validator
Atomic	operations
Inline	assembly
XADD	instruction
LOCK	instruction
Previous	part

Reader/Writer	semaphores

578

https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/X86-64
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Application_programming_interface
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Linearizability
https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html
http://x86.renejeschke.de/html/file_module_x86_id_327.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html

Linux	kernel	memory	management
This	chapter	describes	memory	management	in	the	linux	kernel.	You	will	see	here	a	couple
of	posts	which	describe	different	parts	of	the	linux	memory	management	framework:

Memblock	-	describes	early		memblock		allocator.
Fix-Mapped	Addresses	and	ioremap	-	describes		fix-mapped		addresses	and	early
	ioremap	.
kmemcheck	-	third	part	describes		kmemcheck		tool.

Memory	management

579

https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-1.md
https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md
https://github.com/0xAX/linux-insides/blob/master/mm/mm-3.md

Linux	kernel	memory	management	Part	1.

Introduction
Memory	management	is	one	of	the	most	complex	(and	I	think	that	it	is	the	most	complex)
part	of	the	operating	system	kernel.	In	the	last	preparations	before	the	kernel	entry	point	part
we	stopped	right	before	call	of	the		start_kernel		function.	This	function	initializes	all	the
kernel	features	(including	architecture-dependent	features)	before	the	kernel	runs	the	first
	init		process.	You	may	remember	as	we	built	early	page	tables,	identity	page	tables	and
fixmap	page	tables	in	the	boot	time.	No	complicated	memory	management	is	working	yet.
When	the		start_kernel		function	is	called	we	will	see	the	transition	to	more	complex	data
structures	and	techniques	for	memory	management.	For	a	good	understanding	of	the
initialization	process	in	the	linux	kernel	we	need	to	have	a	clear	understanding	of	these
techniques.	This	chapter	will	provide	an	overview	of	the	different	parts	of	the	linux	kernel
memory	management	framework	and	its	API,	starting	from	the		memblock	.

Memblock
Memblock	is	one	of	the	methods	of	managing	memory	regions	during	the	early	bootstrap
period	while	the	usual	kernel	memory	allocators	are	not	up	and	running	yet.	Previously	it
was	called		Logical	Memory	Block	,	but	with	the	patch	by	Yinghai	Lu,	it	was	renamed	to	the
	memblock	.	As	Linux	kernel	for		x86_64		architecture	uses	this	method.	We	already	met
	memblock		in	the	Last	preparations	before	the	kernel	entry	point	part.	And	now	it's	time	to	get
acquainted	with	it	closer.	We	will	see	how	it	is	implemented.

We	will	start	to	learn		memblock		from	the	data	structures.	Definitions	of	the	all	data	structures
can	be	found	in	the	include/linux/memblock.h	header	file.

The	first	structure	has	the	same	name	as	this	part	and	it	is:

struct	memblock	{

									bool	bottom_up;

									phys_addr_t	current_limit;

									struct	memblock_type	memory;			-->	array	of	memblock_region

									struct	memblock_type	reserved;	-->	array	of	memblock_region

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

									struct	memblock_type	physmem;

#endif

};

Memblock

580

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-3.html
https://lkml.org/lkml/2010/7/13/68
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-3.html
https://github.com/torvalds/linux/blob/master/include/linux/memblock.h

This	structure	contains	five	fields.	First	is		bottom_up		which	allows	allocating	memory	in
bottom-up	mode	when	it	is		true	.	Next	field	is		current_limit	.	This	field	describes	the	limit
size	of	the	memory	block.	The	next	three	fields	describe	the	type	of	the	memory	block.	It	can
be:	reserved,	memory	and	physical	memory	if	the		CONFIG_HAVE_MEMBLOCK_PHYS_MAP	
configuration	option	is	enabled.	Now	we	see	yet	another	data	structure	-		memblock_type	.
Let's	look	at	its	definition:

struct	memblock_type	{

				unsigned	long	cnt;

				unsigned	long	max;

				phys_addr_t	total_size;

				struct	memblock_region	*regions;

};

This	structure	provides	information	about	memory	type.	It	contains	fields	which	describe	the
number	of	memory	regions	which	are	inside	the	current	memory	block,	the	size	of	all
memory	regions,	the	size	of	the	allocated	array	of	the	memory	regions	and	pointer	to	the
array	of	the		memblock_region		structures.		memblock_region		is	a	structure	which	describes	a
memory	region.	Its	definition	is:

struct	memblock_region	{

								phys_addr_t	base;

								phys_addr_t	size;

								unsigned	long	flags;

#ifdef	CONFIG_HAVE_MEMBLOCK_NODE_MAP

								int	nid;

#endif

};

	memblock_region		provides	base	address	and	size	of	the	memory	region,	flags	which	can	be:

#define	MEMBLOCK_ALLOC_ANYWHERE				(~(phys_addr_t)0)

#define	MEMBLOCK_ALLOC_ACCESSIBLE				0

#define	MEMBLOCK_HOTPLUG				0x1

Also		memblock_region		provides	integer	field	-	numa	node	selector,	if	the
	CONFIG_HAVE_MEMBLOCK_NODE_MAP		configuration	option	is	enabled.

Schematically	we	can	imagine	it	as:

Memblock

581

http://en.wikipedia.org/wiki/Non-uniform_memory_access

+---------------------------+			+---------------------------+

|									memblock										|			|																											|

|		_______________________		|			|																											|

|	|								memory									|	|			|							Array	of	the								|

|	|						memblock_type				|-|-->|						membock_region							|

|	|_______________________|	|			|																											|

|																											|			+---------------------------+

|		_______________________		|			+---------------------------+

|	|							reserved								|	|			|																											|

|	|						memblock_type				|-|-->|							Array	of	the								|

|	|_______________________|	|			|						memblock_region						|

|																											|			|																											|

+---------------------------+			+---------------------------+

These	three	structures:		memblock	,		memblock_type		and		memblock_region		are	main	in	the
	Memblock	.	Now	we	know	about	it	and	can	look	at	Memblock	initialization	process.

Memblock	initialization
As	all	API	of	the		memblock		are	described	in	the	include/linux/memblock.h	header	file,	all
implementation	of	these	function	is	in	the	mm/memblock.c	source	code	file.	Let's	look	at	the
top	of	the	source	code	file	and	we	will	see	the	initialization	of	the		memblock		structure:

struct	memblock	memblock	__initdata_memblock	=	{

				.memory.regions								=	memblock_memory_init_regions,

				.memory.cnt												=	1,

				.memory.max												=	INIT_MEMBLOCK_REGIONS,

				.reserved.regions				=	memblock_reserved_init_regions,

				.reserved.cnt								=	1,

				.reserved.max								=	INIT_MEMBLOCK_REGIONS,

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

				.physmem.regions				=	memblock_physmem_init_regions,

				.physmem.cnt								=	1,

				.physmem.max								=	INIT_PHYSMEM_REGIONS,

#endif

				.bottom_up												=	false,

				.current_limit								=	MEMBLOCK_ALLOC_ANYWHERE,

};

Here	we	can	see	initialization	of	the		memblock		structure	which	has	the	same	name	as
structure	-		memblock	.	First	of	all	note	the		__initdata_memblock	.	Definition	of	this	macro
looks	like:

Memblock

582

https://github.com/torvalds/linux/blob/master/include/linux/memblock.h
https://github.com/torvalds/linux/blob/master/mm/memblock.c

#ifdef	CONFIG_ARCH_DISCARD_MEMBLOCK

				#define	__init_memblock	__meminit

				#define	__initdata_memblock	__meminitdata

#else

				#define	__init_memblock

				#define	__initdata_memblock

#endif

You	can	note	that	it	depends	on		CONFIG_ARCH_DISCARD_MEMBLOCK	.	If	this	configuration	option	is
enabled,	memblock	code	will	be	put	to	the		.init		section	and	it	will	be	released	after	the
kernel	is	booted	up.

Next	we	can	see	initialization	of	the		memblock_type	memory	,		memblock_type	reserved		and
	memblock_type	physmem		fields	of	the		memblock		structure.	Here	we	are	interested	only	in	the
	memblock_type.regions		initialization	process.	Note	that	every		memblock_type		field	initialized
by	the	arrays	of	the		memblock_region	:

static	struct	memblock_region	memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS]	__in

itdata_memblock;

static	struct	memblock_region	memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS]	__

initdata_memblock;

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

static	struct	memblock_region	memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]	__in

itdata_memblock;

#endif

Every	array	contains	128	memory	regions.	We	can	see	it	in	the		INIT_MEMBLOCK_REGIONS	
macro	definition:

#define	INIT_MEMBLOCK_REGIONS			128

Note	that	all	arrays	are	also	defined	with	the		__initdata_memblock		macro	which	we	already
saw	in	the		memblock		structure	initialization	(read	above	if	you've	forgotten).

The	last	two	fields	describe	that		bottom_up		allocation	is	disabled	and	the	limit	of	the	current
Memblock	is:

#define	MEMBLOCK_ALLOC_ANYWHERE	(~(phys_addr_t)0)

which	is		0xffffffffffffffff	.

On	this	step	the	initialization	of	the		memblock		structure	has	been	finished	and	we	can	look
on	the	Memblock	API.

Memblock

583

Memblock	API
Ok	we	have	finished	with	initialization	of	the		memblock		structure	and	now	we	can	look	on	the
Memblock	API	and	its	implementation.	As	I	said	above,	all	implementation	of	the		memblock	
is	presented	in	the	mm/memblock.c.	To	understand	how		memblock		works	and	how	it	is
implemented,	let's	look	at	its	usage	first.	There	are	a	couple	of	places	in	the	linux	kernel
where	memblock	is	used.	For	example	let's	take		memblock_x86_fill		function	from	the
arch/x86/kernel/e820.c.	This	function	goes	through	the	memory	map	provided	by	the	e820
and	adds	memory	regions	reserved	by	the	kernel	to	the		memblock		with	the		memblock_add	
function.	As	we	met		memblock_add		function	first,	let's	start	from	it.

This	function	takes	physical	base	address	and	size	of	the	memory	region	and	adds	it	to	the
	memblock	.		memblock_add		function	does	not	do	anything	special	in	its	body,	but	just	calls:

memblock_add_range(&memblock.memory,	base,	size,	MAX_NUMNODES,	0);

function.	We	pass	memory	block	type	-		memory	,	physical	base	address	and	size	of	the
memory	region,	maximum	number	of	nodes	which	is	1	if		CONFIG_NODES_SHIFT		is	not	set	in
the	configuration	file	or		1	<<	CONFIG_NODES_SHIFT		if	it	is	set,	and	flags.	The
	memblock_add_range		function	adds	new	memory	region	to	the	memory	block.	It	starts	by
checking	the	size	of	the	given	region	and	if	it	is	zero	it	just	returns.	After	this,
	memblock_add_range		checks	for	existence	of	the	memory	regions	in	the		memblock		structure
with	the	given		memblock_type	.	If	there	are	no	memory	regions,	we	just	fill	new
	memory_region		with	the	given	values	and	return	(we	already	saw	the	implementation	of	this
in	the	First	touch	of	the	linux	kernel	memory	manager	framework).	If		memblock_type		is	not
empty,	we	start	to	add	new	memory	region	to	the		memblock		with	the	given		memblock_type	.

First	of	all	we	get	the	end	of	the	memory	region	with	the:

phys_addr_t	end	=	base	+	memblock_cap_size(base,	&size);

	memblock_cap_size		adjusts		size		that		base	+	size		will	not	overflow.	Its	implementation	is
pretty	easy:

static	inline	phys_addr_t	memblock_cap_size(phys_addr_t	base,	phys_addr_t	*size)

{

				return	*size	=	min(*size,	(phys_addr_t)ULLONG_MAX	-	base);

}

	memblock_cap_size		returns	new	size	which	is	the	smallest	value	between	the	given	size	and
	ULLONG_MAX	-	base	.

Memblock

584

https://github.com/torvalds/linux/blob/master/mm/memblock.c
http://lxr.free-electrons.com/ident?i=memblock
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c#L1061
http://en.wikipedia.org/wiki/E820
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-3.html

After	that	we	have	the	end	address	of	the	new	memory	region,		memblock_add_range		checks
overlap	and	merge	conditions	with	already	added	memory	regions.	Insertion	of	the	new
memory	region	to	the		memblock		consists	of	two	steps:

Adding	of	non-overlapping	parts	of	the	new	memory	area	as	separate	regions;
Merging	of	all	neighboring	regions.

We	are	going	through	all	the	already	stored	memory	regions	and	checking	for	overlap	with
the	new	region:

				for	(i	=	0;	i	<	type->cnt;	i++)	{

								struct	memblock_region	*rgn	=	&type->regions[i];

								phys_addr_t	rbase	=	rgn->base;

								phys_addr_t	rend	=	rbase	+	rgn->size;

								if	(rbase	>=	end)

												break;

								if	(rend	<=	base)

												continue;

								...

								...

								...

				}

If	the	new	memory	region	does	not	overlap	regions	which	are	already	stored	in	the
	memblock	,	insert	this	region	into	the	memblock	with	and	this	is	first	step,	we	check	that	new
region	can	fit	into	the	memory	block	and	call		memblock_double_array		in	other	way:

while	(type->cnt	+	nr_new	>	type->max)

				if	(memblock_double_array(type,	obase,	size)	<	0)

								return	-ENOMEM;

				insert	=	true;

				goto	repeat;

	memblock_double_array		doubles	the	size	of	the	given	regions	array.	Then	we	set		insert		to
	true		and	go	to	the		repeat		label.	In	the	second	step,	starting	from	the		repeat		label	we	go
through	the	same	loop	and	insert	the	current	memory	region	into	the	memory	block	with	the
	memblock_insert_region		function:

				if	(base	<	end)	{

								nr_new++;

								if	(insert)

												memblock_insert_region(type,	i,	base,	end	-	base,

																											nid,	flags);

				}

Memblock

585

As	we	set		insert		to		true		in	the	first	step,	now		memblock_insert_region		will	be	called.
	memblock_insert_region		has	almost	the	same	implementation	that	we	saw	when	we	insert
new	region	to	the	empty		memblock_type		(see	above).	This	function	gets	the	last	memory
region:

struct	memblock_region	*rgn	=	&type->regions[idx];

and	copies	memory	area	with		memmove	:

memmove(rgn	+	1,	rgn,	(type->cnt	-	idx)	*	sizeof(*rgn));

After	this	fills		memblock_region		fields	of	the	new	memory	region	base,	size,	etc.	and
increases	size	of	the		memblock_type	.	In	the	end	of	the	execution,		memblock_add_range		calls
	memblock_merge_regions		which	merges	neighboring	compatible	regions	in	the	second	step.

In	the	second	case	the	new	memory	region	can	overlap	already	stored	regions.	For	example
we	already	have		region1		in	the		memblock	:

0																				0x1000

+-----------------------+

|																							|

|																							|

|								region1								|

|																							|

|																							|

+-----------------------+

And	now	we	want	to	add		region2		to	the		memblock		with	the	following	base	address	and
size:

0x100																	0x2000

+-----------------------+

|																							|

|																							|

|								region2								|

|																							|

|																							|

+-----------------------+

In	this	case	set	the	base	address	of	the	new	memory	region	as	the	end	address	of	the
overlapped	region	with:

base	=	min(rend,	end);

Memblock

586

So	it	will	be		0x1000		in	our	case.	And	insert	it	as	we	did	it	already	in	the	second	step	with:

if	(base	<	end)	{

				nr_new++;

				if	(insert)

								memblock_insert_region(type,	i,	base,	end	-	base,	nid,	flags);

}

In	this	case	we	insert		overlapping	portion		(we	insert	only	the	higher	portion,	because	the
lower	portion	is	already	in	the	overlapped	memory	region),	then	the	remaining	portion	and
merge	these	portions	with		memblock_merge_regions	.	As	I	said	above
	memblock_merge_regions		function	merges	neighboring	compatible	regions.	It	goes	through
the	all	memory	regions	from	the	given		memblock_type	,	takes	two	neighboring	memory
regions	-		type->regions[i]		and		type->regions[i	+	1]		and	checks	that	these	regions	have
the	same	flags,	belong	to	the	same	node	and	that	end	address	of	the	first	regions	is	not
equal	to	the	base	address	of	the	second	region:

while	(i	<	type->cnt	-	1)	{

				struct	memblock_region	*this	=	&type->regions[i];

				struct	memblock_region	*next	=	&type->regions[i	+	1];

				if	(this->base	+	this->size	!=	next->base	||

								memblock_get_region_node(this)	!=

								memblock_get_region_node(next)	||

								this->flags	!=	next->flags)	{

								BUG_ON(this->base	+	this->size	>	next->base);

								i++;

								continue;

				}

If	none	of	these	conditions	are	not	true,	we	update	the	size	of	the	first	region	with	the	size	of
the	next	region:

this->size	+=	next->size;

As	we	update	the	size	of	the	first	memory	region	with	the	size	of	the	next	memory	region,	we
move	all	memory	regions	which	are	after	the	(next)	memory	region	one	index	backward
with	the		memmove		function:

memmove(next,	next	+	1,	(type->cnt	-	(i	+	2))	*	sizeof(*next));

And	decrease	the	count	of	the	memory	regions	which	are	belongs	to	the		memblock_type	:

type->cnt--;

Memblock

587

After	this	we	will	get	two	memory	regions	merged	into	one:

0																																													0x2000

+--+

|																																																|

|																																																|

|																			region1																						|

|																																																|

|																																																|

+--+

That's	all.	This	is	the	whole	principle	of	the	work	of	the		memblock_add_range		function.

There	is	also		memblock_reserve		function	which	does	the	same	as		memblock_add	,	but	only
with	one	difference.	It	stores		memblock_type.reserved		in	the	memblock	instead	of
	memblock_type.memory	.

Of	course	this	is	not	the	full	API.	Memblock	provides	APIs	for	not	only	adding		memory		and
	reserved		memory	regions,	but	also:

memblock_remove	-	removes	memory	region	from	memblock;
memblock_find_in_range	-	finds	free	area	in	given	range;
memblock_free	-	releases	memory	region	in	memblock;
for_each_mem_range	-	iterates	through	memblock	areas.

and	many	more....

Getting	info	about	memory	regions
Memblock	also	provides	an	API	for	getting	information	about	allocated	memory	regions	in
the		memblock	.	It	is	split	in	two	parts:

get_allocated_memblock_memory_regions_info	-	getting	info	about	memory	regions;
get_allocated_memblock_reserved_regions_info	-	getting	info	about	reserved	regions.

Implementation	of	these	functions	is	easy.	Let's	look	at
	get_allocated_memblock_reserved_regions_info		for	example:

Memblock

588

phys_addr_t	__init_memblock	get_allocated_memblock_reserved_regions_info(

																				phys_addr_t	*addr)

{

				if	(memblock.reserved.regions	==	memblock_reserved_init_regions)

								return	0;

				*addr	=	__pa(memblock.reserved.regions);

				return	PAGE_ALIGN(sizeof(struct	memblock_region)	*

														memblock.reserved.max);

}

First	of	all	this	function	checks	that		memblock		contains	reserved	memory	regions.	If
	memblock		does	not	contain	reserved	memory	regions	we	just	return	zero.	Otherwise	we
write	the	physical	address	of	the	reserved	memory	regions	array	to	the	given	address	and
return	aligned	size	of	the	allocated	array.	Note	that	there	is		PAGE_ALIGN		macro	used	for
align.	Actually	it	depends	on	size	of	page:

#define	PAGE_ALIGN(addr)	ALIGN(addr,	PAGE_SIZE)

Implementation	of	the		get_allocated_memblock_memory_regions_info		function	is	the	same.	It
has	only	one	difference,		memblock_type.memory		used	instead	of		memblock_type.reserved	.

Memblock	debugging
There	are	many	calls	to		memblock_dbg		in	the	memblock	implementation.	If	you	pass	the
	memblock=debug		option	to	the	kernel	command	line,	this	function	will	be	called.	Actually
	memblock_dbg		is	just	a	macro	which	expands	to		printk	:

#define	memblock_dbg(fmt,	...)	\

									if	(memblock_debug)	printk(KERN_INFO	pr_fmt(fmt),	##__VA_ARGS__)

For	example	you	can	see	a	call	of	this	macro	in	the		memblock_reserve		function:

memblock_dbg("memblock_reserve:	[%#016llx-%#016llx]	flags	%#02lx	%pF\n",

													(unsigned	long	long)base,

													(unsigned	long	long)base	+	size	-	1,

													flags,	(void	*)_RET_IP_);

And	you	will	see	something	like	this:

Memblock

589

Memblock	has	also	support	in	debugfs.	If	you	run	kernel	not	in		X86		architecture	you	can
access:

/sys/kernel/debug/memblock/memory
/sys/kernel/debug/memblock/reserved
/sys/kernel/debug/memblock/physmem

for	getting	dump	of	the		memblock		contents.

Conclusion
This	is	the	end	of	the	first	part	about	linux	kernel	memory	management.	If	you	have
questions	or	suggestions,	ping	me	on	twitter	0xAX,	drop	me	an	email	or	just	create	an	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	a	PR	to	linux-insides.

Links
e820
numa
debugfs
First	touch	of	the	linux	kernel	memory	manager	framework

Memblock

590

http://en.wikipedia.org/wiki/Debugfs
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Debugfs
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-3.html

Linux	kernel	memory	management	Part	2.

Fix-Mapped	Addresses	and	ioremap
	Fix-Mapped		addresses	are	a	set	of	special	compile-time	addresses	whose	corresponding
physical	address	do	not	have	to	be	a	linear	address	minus		__START_KERNEL_map	.	Each	fix-
mapped	address	maps	one	page	frame	and	the	kernel	uses	them	as	pointers	that	never
change	their	address.	That	is	the	main	point	of	these	addresses.	As	the	comment	says:		to
have	a	constant	address	at	compile	time,	but	to	set	the	physical	address	only	in	the	boot

process	.	You	can	remember	that	in	the	earliest	part,	we	already	set	the		level2_fixmap_pgt	:

NEXT_PAGE(level2_fixmap_pgt)

				.fill				506,8,0

				.quad				level1_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

				.fill				5,8,0

NEXT_PAGE(level1_fixmap_pgt)

				.fill				512,8,0

As	you	can	see		level2_fixmap_pgt		is	right	after	the		level2_kernel_pgt		which	is	kernel
code+data+bss.	Every	fix-mapped	address	is	represented	by	an	integer	index	which	is
defined	in	the		fixed_addresses		enum	from	the	arch/x86/include/asm/fixmap.h.	For	example
it	contains	entries	for		VSYSCALL_PAGE		-	if	emulation	of	legacy	vsyscall	page	is	enabled,
	FIX_APIC_BASE		for	local	apic,	etc.	In	virtual	memory	fix-mapped	area	is	placed	in	the
modules	area:

							+-----------+-----------------+---------------+------------------+

							|											|																	|															|																		|

							|kernel	text|						kernel					|															|				vsyscalls					|

							|	mapping			|							text						|				Modules				|				fix-mapped				|

							|from	phys	0|							data						|															|				addresses					|

							|											|																	|															|																		|

							+-----------+-----------------+---------------+------------------+

__START_KERNEL_map			__START_KERNEL				MODULES_VADDR												0xffffffffffffffff

Base	virtual	address	and	size	of	the		fix-mapped		area	are	presented	by	the	two	following
macro:

#define	FIXADDR_SIZE				(__end_of_permanent_fixed_addresses	<<	PAGE_SHIFT)

#define	FIXADDR_START								(FIXADDR_TOP	-	FIXADDR_SIZE)

Fixmaps	and	ioremap

591

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/fixmap.h
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

Here		__end_of_permanent_fixed_addresses		is	an	element	of	the		fixed_addresses		enum	and
as	I	wrote	above:	Every	fix-mapped	address	is	represented	by	an	integer	index	which	is
defined	in	the		fixed_addresses	.		PAGE_SHIFT		determines	size	of	a	page.	For	example	size	of
the	one	page	we	can	get	with	the		1	<<	PAGE_SHIFT	.	In	our	case	we	need	to	get	the	size	of
the	fix-mapped	area,	but	not	only	of	one	page,	that's	why	we	are	using
	__end_of_permanent_fixed_addresses		for	getting	the	size	of	the	fix-mapped	area.	In	my	case
it's	a	little	more	than		536		kilobytes.	In	your	case	it	might	be	a	different	number,	because	the
size	depends	on	amount	of	the	fix-mapped	addresses	which	are	depends	on	your	kernel's
configuration.

The	second		FIXADDR_START		macro	just	subtracts	fix-mapped	area	size	from	the	last	address
of	the	fix-mapped	area	to	get	its	base	virtual	address.		FIXADDR_TOP		is	a	rounded	up	address
from	the	base	address	of	the	vsyscall	space:

#define	FIXADDR_TOP					(round_up(VSYSCALL_ADDR	+	PAGE_SIZE,	1<<PMD_SHIFT)	-	PAGE_SIZE)

The		fixed_addresses		enums	are	used	as	an	index	to	get	the	virtual	address	by	the
	fix_to_virt		function.	Implementation	of	this	function	is	easy:

static	__always_inline	unsigned	long	fix_to_virt(const	unsigned	int	idx)

{

								BUILD_BUG_ON(idx	>=	__end_of_fixed_addresses);

								return	__fix_to_virt(idx);

}

first	of	all	it	checks	that	the	index	given	for	the		fixed_addresses		enum	is	not	greater	or	equal
than		__end_of_fixed_addresses		with	the		BUILD_BUG_ON		macro	and	then	returns	the	result	of
the		__fix_to_virt		macro:

#define	__fix_to_virt(x)								(FIXADDR_TOP	-	((x)	<<	PAGE_SHIFT))

Here	we	shift	left	the	given		fix-mapped		address	index	on	the		PAGE_SHIFT		which	determines
size	of	a	page	as	I	wrote	above	and	subtract	it	from	the		FIXADDR_TOP		which	is	the	highest
address	of	the		fix-mapped		area.	There	is	an	inverse	function	for	getting		fix-mapped	
address	from	a	virtual	address:

Fixmaps	and	ioremap

592

https://lwn.net/Articles/446528/

static	inline	unsigned	long	virt_to_fix(const	unsigned	long	vaddr)

{

								BUG_ON(vaddr	>=	FIXADDR_TOP	||	vaddr	<	FIXADDR_START);

								return	__virt_to_fix(vaddr);

}

	virt_to_fix		takes	virtual	address,	checks	that	this	address	is	between		FIXADDR_START		and
	FIXADDR_TOP		and	calls		__virt_to_fix		macro	which	implemented	as:

#define	__virt_to_fix(x)								((FIXADDR_TOP	-	((x)&PAGE_MASK))	>>	PAGE_SHIFT)

A	PFN	is	simply	an	index	within	physical	memory	that	is	counted	in	page-sized	units.	PFN
for	a	physical	address	could	be	trivially	defined	as	(page_phys_addr	>>	PAGE_SHIFT);

	__virt_to_fix		clears	the	first	12	bits	in	the	given	address,	subtracts	it	from	the	last	address
the	of		fix-mapped		area	(FIXADDR_TOP)	and	shifts	the	result	right	on		PAGE_SHIFT		which	is
	12	.	Let	me	explain	how	it	works.	As	I	already	wrote	we	will	clear	the	first	12	bits	in	the
given	address	with		x	&	PAGE_MASK	.	As	we	subtract	this	from	the		FIXADDR_TOP	,	we	will	get
the	last	12	bits	of	the		FIXADDR_TOP		which	are	present.	We	know	that	the	first	12	bits	of	the
virtual	address	represent	the	offset	in	the	page	frame.	With	the	shifting	it	on		PAGE_SHIFT		we
will	get		Page	frame	number		which	is	just	all	bits	in	a	virtual	address	besides	the	first	12	offset
bits.		Fix-mapped		addresses	are	used	in	different	places	in	the	linux	kernel.		IDT		descriptor
stored	there,	Intel	Trusted	Execution	Technology	UUID	stored	in	the		fix-mapped		area
started	from		FIX_TBOOT_BASE		index,	Xen	bootmap	and	many	more...	We	already	saw	a	little
about		fix-mapped		addresses	in	the	fifth	part	about	linux	kernel	initialization.	We	use		fix-
mapped		area	in	the	early		ioremap		initialization.	Let's	look	on	it	and	try	to	understand	what	is
	ioremap	,	how	it	is	implemented	in	the	kernel	and	how	it	is	related	to	the		fix-mapped	
addresses.

ioremap
Linux	kernel	provides	many	different	primitives	to	manage	memory.	For	this	moment	we	will
touch		I/O	memory	.	Every	device	is	controlled	by	reading/writing	from/to	its	registers.	For
example	a	driver	can	turn	off/on	a	device	by	writing	to	its	registers	or	get	the	state	of	a
device	by	reading	from	its	registers.	Besides	registers,	many	devices	have	buffers	where	a
driver	can	write	something	or	read	from	there.	As	we	know	for	this	moment	there	are	two
ways	to	access	device's	registers	and	data	buffers:

through	the	I/O	ports;
mapping	of	the	all	registers	to	the	memory	address	space;

Fixmaps	and	ioremap

593

http://lxr.free-electrons.com/ident?i=fix_to_virt
http://en.wikipedia.org/wiki/Trusted_Execution_Technology
http://en.wikipedia.org/wiki/Xen
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html

In	the	first	case	every	control	register	of	a	device	has	a	number	of	input	and	output	port.	And
driver	of	a	device	can	read	from	a	port	and	write	to	it	with	two		in		and		out		instructions
which	we	already	saw.	If	you	want	to	know	about	currently	registered	port	regions,	you	can
know	they	by	accessing	of		/proc/ioports	:

$	cat	/proc/ioports

0000-0cf7	:	PCI	Bus	0000:00

		0000-001f	:	dma1

		0020-0021	:	pic1

		0040-0043	:	timer0

		0050-0053	:	timer1

		0060-0060	:	keyboard

		0064-0064	:	keyboard

		0070-0077	:	rtc0

		0080-008f	:	dma	page	reg

		00a0-00a1	:	pic2

		00c0-00df	:	dma2

		00f0-00ff	:	fpu

				00f0-00f0	:	PNP0C04:00

		03c0-03df	:	vesafb

		03f8-03ff	:	serial

		04d0-04d1	:	pnp	00:06

		0800-087f	:	pnp	00:01

		0a00-0a0f	:	pnp	00:04

		0a20-0a2f	:	pnp	00:04

		0a30-0a3f	:	pnp	00:04

0cf8-0cff	:	PCI	conf1

0d00-ffff	:	PCI	Bus	0000:00

...

...

...

	/proc/ioporst		provides	information	about	what	driver	used	address	of	a		I/O		ports	region.
All	of	these	memory	regions,	for	example		0000-0cf7	,	were	claimed	with	the
	request_region		function	from	the	include/linux/ioport.h.	Actually		request_region		is	a	macro
which	defied	as:

#define	request_region(start,n,name)			__request_region(&ioport_resource,	(start),	(n)

,	(name),	0)

As	we	can	see	it	takes	three	parameters:

	start		-	begin	of	region;
	n		-	length	of	region;
	name		-	name	of	requester.

Fixmaps	and	ioremap

594

https://github.com/torvalds/linux/blob/master/include/linux/ioport.h

	request_region		allocates		I/O		port	region.	Very	often		check_region		function	is	called
before	the		request_region		to	check	that	the	given	address	range	is	available	and
	release_region		to	release	memory	region.		request_region		returns	pointer	to	the		resource	
structure.		resource		structure	presents	abstraction	for	a	tree-like	subset	of	system
resources.	We	already	saw		resource		structure	in	the	firth	part	about	kernel	initialization
process	and	it	looks	as:

struct	resource	{

								resource_size_t	start;

								resource_size_t	end;

								const	char	*name;

								unsigned	long	flags;

								struct	resource	*parent,	*sibling,	*child;

};

and	contains	start	and	end	addresses	of	the	resource,	name,	etc.	Every		resource		structure
contains	pointers	to	the		parent	,		sibling		and		child		resources.	As	it	has	parent	and
childs,	it	means	that	every	subset	of	resources	has	root		resource		structure.	For	example,
for		I/O		ports	it	is		ioport_resource		structure:

struct	resource	ioport_resource	=	{

									.name			=	"PCI	IO",

									.start		=	0,

									.end				=	IO_SPACE_LIMIT,

								.flags		=	IORESOURCE_IO,

};

EXPORT_SYMBOL(ioport_resource);

Or	for		iomem	,	it	is		iomem_resource		structure:

struct	resource	iomem_resource	=	{

								.name			=	"PCI	mem",

								.start		=	0,

								.end				=	-1,

								.flags		=	IORESOURCE_MEM,

};

As	I	wrote	about		request_regions		is	used	for	registering	of	I/O	port	region	and	this	macro	is
used	in	many	places	in	the	kernel.	For	example	let's	look	at	drivers/char/rtc.c.	This	source
code	file	provides	Real	Time	Clock	interface	in	the	linux	kernel.	As	every	kernel	module,
	rtc		module	contains		module_init		definition:

module_init(rtc_init);

Fixmaps	and	ioremap

595

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html
http://lxr.free-electrons.com/ident?i=request_region
https://github.com/torvalds/linux/blob/master/char/rtc.c
http://en.wikipedia.org/wiki/Real-time_clock

where		rtc_init		is		rtc		initialization	function.	This	function	is	defined	in	the	same		rtc.c	
source	code	file.	In	the		rtc_init		function	we	can	see	a	couple	calls	of	the
	rtc_request_region		functions,	which	wrap		request_region		for	example:

r	=	rtc_request_region(RTC_IO_EXTENT);

where		rtc_request_region		calls:

r	=	request_region(RTC_PORT(0),	size,	"rtc");

Here		RTC_IO_EXTENT		is	a	size	of	memory	region	and	it	is		0x8	,		"rtc"		is	a	name	of	region
and		RTC_PORT		is:

#define	RTC_PORT(x)					(0x70	+	(x))

So	with	the		request_region(RTC_PORT(0),	size,	"rtc")		we	register	memory	region,	started	at
	0x70		and	with	size		0x8	.	Let's	look	on	the		/proc/ioports	:

~$	sudo	cat	/proc/ioports	|	grep	rtc

0070-0077	:	rtc0

So,	we	got	it!	Ok,	it	was	ports.	The	second	way	is	use	of		I/O		memory.	As	I	wrote	above	this
way	is	mapping	of	control	registers	and	memory	of	a	device	to	the	memory	address	space.
	I/O		memory	is	a	set	of	contiguous	addresses	which	are	provided	by	a	device	to	CPU
through	a	bus.	All	memory-mapped	I/O	addresses	are	not	used	by	the	kernel	directly.	There
is	a	special		ioremap		function	which	allows	us	to	covert	the	physical	address	on	a	bus	to	the
kernel	virtual	address	or	in	another	words		ioremap		maps	I/O	physical	memory	region	to
access	it	from	the	kernel.	The		ioremap		function	takes	two	parameters:

start	of	the	memory	region;
size	of	the	memory	region;

I/O	memory	mapping	API	provides	functions	for	checking,	requesting	and	release	of	a
memory	region	as	I/O	ports	API.	There	are	three	functions	for	it:

	request_mem_region	

	release_mem_region	

	check_mem_region	

Fixmaps	and	ioremap

596

~$	sudo	cat	/proc/iomem

...

...

...

be826000-be82cfff	:	ACPI	Non-volatile	Storage

be82d000-bf744fff	:	System	RAM

bf745000-bfff4fff	:	reserved

bfff5000-dc041fff	:	System	RAM

dc042000-dc0d2fff	:	reserved

dc0d3000-dc138fff	:	System	RAM

dc139000-dc27dfff	:	ACPI	Non-volatile	Storage

dc27e000-deffefff	:	reserved

defff000-deffffff	:	System	RAM

df000000-dfffffff	:	RAM	buffer

e0000000-feafffff	:	PCI	Bus	0000:00

		e0000000-efffffff	:	PCI	Bus	0000:01

				e0000000-efffffff	:	0000:01:00.0

		f7c00000-f7cfffff	:	PCI	Bus	0000:06

				f7c00000-f7c0ffff	:	0000:06:00.0

				f7c10000-f7c101ff	:	0000:06:00.0

						f7c10000-f7c101ff	:	ahci

		f7d00000-f7dfffff	:	PCI	Bus	0000:03

				f7d00000-f7d3ffff	:	0000:03:00.0

						f7d00000-f7d3ffff	:	alx

...

...

...

Part	of	these	addresses	is	from	the	call	of	the		e820_reserve_resources		function.	We	can	find
call	of	this	function	in	the	arch/x86/kernel/setup.c	and	the	function	itself	is	defined	in	the
arch/x86/kernel/e820.c.		e820_reserve_resources		goes	through	the	e820	map	and	inserts
memory	regions	to	the	root		iomem		resource	structure.	All		e820		memory	regions	which	will
be	inserted	to	the		iomem		resource	have	following	types:

static	inline	const	char	*e820_type_to_string(int	e820_type)

{

				switch	(e820_type)	{

				case	E820_RESERVED_KERN:

				case	E820_RAM:				return	"System	RAM";

				case	E820_ACPI:				return	"ACPI	Tables";

				case	E820_NVS:				return	"ACPI	Non-volatile	Storage";

				case	E820_UNUSABLE:				return	"Unusable	memory";

				default:				return	"reserved";

				}

}

and	we	can	see	them	in	the		/proc/iomem		(read	above).

Fixmaps	and	ioremap

597

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c
http://en.wikipedia.org/wiki/E820

Now	let's	try	to	understand	how		ioremap		works.	We	already	know	a	little	about		ioremap	,
we	saw	it	in	the	fifth	part	about	linux	kernel	initialization.	If	you	have	read	this	part,	you	can
remember	the	call	of	the		early_ioremap_init		function	from	the	arch/x86/mm/ioremap.c.
Initialization	of	the		ioremap		is	split	inn	two	parts:	there	is	the	early	part	which	we	can	use
before	the	normal		ioremap		is	available	and	the	normal		ioremap		which	is	available	after
	vmalloc		initialization	and	call	of	the		paging_init	.	We	do	not	know	anything	about
	vmalloc		for	now,	so	let's	consider	early	initialization	of	the		ioremap	.	First	of	all
	early_ioremap_init		checks	that		fixmap		is	aligned	on	page	middle	directory	boundary:

BUILD_BUG_ON((fix_to_virt(0)	+	PAGE_SIZE)	&	((1	<<	PMD_SHIFT)	-	1));

more	about		BUILD_BUG_ON		you	can	read	in	the	first	part	about	Linux	Kernel	initialization.	So
	BUILD_BUG_ON		macro	raises	compilation	error	if	the	given	expression	is	true.	In	the	next	step
after	this	check,	we	can	see	call	of	the		early_ioremap_setup		function	from	the
mm/early_ioremap.c.	This	function	presents	generic	initialization	of	the		ioremap	.
	early_ioremap_setup		function	fills	the		slot_virt		array	with	the	virtual	addresses	of	the
early	fixmaps.	All	early	fixmaps	are	after		__end_of_permanent_fixed_addresses		in	memory.
They	are	stats	from	the		FIX_BITMAP_BEGIN		(top)	and	ends	with		FIX_BITMAP_END		(down).
Actually	there	are		512		temporary	boot-time	mappings,	used	by	early		ioremap	:

#define	NR_FIX_BTMAPS								64

#define	FIX_BTMAPS_SLOTS				8

#define	TOTAL_FIX_BTMAPS				(NR_FIX_BTMAPS	*	FIX_BTMAPS_SLOTS)

and		early_ioremap_setup	:

void	__init	early_ioremap_setup(void)

{

								int	i;

								for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

																if	(WARN_ON(prev_map[i]))

																								break;

								for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

																slot_virt[i]	=	__fix_to_virt(FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*i);

}

the		slot_virt		and	other	arrays	are	defined	in	the	same	source	code	file:

static	void	__iomem	*prev_map[FIX_BTMAPS_SLOTS]	__initdata;

static	unsigned	long	prev_size[FIX_BTMAPS_SLOTS]	__initdata;

static	unsigned	long	slot_virt[FIX_BTMAPS_SLOTS]	__initdata;

Fixmaps	and	ioremap

598

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html
https://github.com/torvalds/linux/blob/master/arch/x86/mm/ioremap.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
https://github.com/torvalds/linux/blob/master/mm/early_ioremap.c

	slot_virt		contains	virtual	addresses	of	the		fix-mapped		areas,		prev_map		array	contains
addresses	of	the	early	ioremap	areas.	Note	that	I	wrote	above:		Actually	there	are	512
temporary	boot-time	mappings,	used	by	early	ioremap		and	you	can	see	that	all	arrays	defined
with	the		__initdata		attribute	which	means	that	this	memory	will	be	released	after	kernel
initialization	process.	After		early_ioremap_setup		finished	its	work,	we're	getting	page	middle
directory	where	early	ioremap	begins	with	the		early_ioremap_pmd		function	which	just	gets
the	base	address	of	the	page	global	directory	and	calculates	the	page	middle	directory	for
the	given	address:

static	inline	pmd_t	*	__init	early_ioremap_pmd(unsigned	long	addr)

{

				pgd_t	*base	=	__va(read_cr3());

				pgd_t	*pgd	=	&base[pgd_index(addr)];

				pud_t	*pud	=	pud_offset(pgd,	addr);

				pmd_t	*pmd	=	pmd_offset(pud,	addr);

				return	pmd;

}

After	this	we	fills		bm_pte		(early	ioremap	page	table	entries)	with	zeros	and	call	the
	pmd_populate_kernel		function:

pmd	=	early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));

memset(bm_pte,	0,	sizeof(bm_pte));

pmd_populate_kernel(&init_mm,	pmd,	bm_pte);

	pmd_populate_kernel		takes	three	parameters:

	init_mm		-	memory	descriptor	of	the		init		process	(you	can	read	about	it	in	the
previous	part);
	pmd		-	page	middle	directory	of	the	beginning	of	the		ioremap		fixmaps;
	bm_pte		-	early		ioremap		page	table	entries	array	which	defined	as:

static	pte_t	bm_pte[PAGE_SIZE/sizeof(pte_t)]	__page_aligned_bss;

The		pmd_popularte_kernel		function	defined	in	the	arch/x86/include/asm/pgalloc.h	and
populates	given	page	middle	directory	(pmd)	with	the	given	page	table	entries	(bm_pte):

static	inline	void	pmd_populate_kernel(struct	mm_struct	*mm,

																																							pmd_t	*pmd,	pte_t	*pte)

{

								paravirt_alloc_pte(mm,	__pa(pte)	>>	PAGE_SHIFT);

								set_pmd(pmd,	__pmd(__pa(pte)	|	_PAGE_TABLE));

}

Fixmaps	and	ioremap

599

http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgalloc.

where		set_pmd		is:

#define	set_pmd(pmdp,	pmd)														native_set_pmd(pmdp,	pmd)

and		native_set_pmd		is:

static	inline	void	native_set_pmd(pmd_t	*pmdp,	pmd_t	pmd)

{

								*pmdp	=	pmd;

}

That's	all.	Early		ioremap		is	ready	to	use.	There	are	a	couple	of	checks	in	the
	early_ioremap_init		function,	but	they	are	not	so	important,	anyway	initialization	of	the
	ioremap		is	finished.

Use	of	early	ioremap
As	early		ioremap		is	setup,	we	can	use	it.	It	provides	two	functions:

early_ioremap
early_iounmap

for	mapping/unmapping	of	IO	physical	address	to	virtual	address.	Both	functions	depends	on
	CONFIG_MMU		configuration	option.	Memory	management	unit	is	a	special	block	of	memory
management.	Main	purpose	of	this	block	is	translation	physical	addresses	to	virtual
addresses.	Technically	memory	management	unit	knows	about	high-level	page	table
address	(pgd)	from	the		cr3		control	register.	If		CONFIG_MMU		options	is	set	to		n	,
	early_ioremap		just	returns	the	given	physical	address	and		early_iounmap		does	not	nothing.
In	other	way,	if		CONFIG_MMU		option	is	set	to		y	,		early_ioremap		calls		__early_ioremap		which
takes	three	parameters:

	phys_addr		-	base	physical	address	of	the		I/O		memory	region	to	map	on	virtual
addresses;
	size		-	size	of	the		I/O		memory	region;
	prot		-	page	table	entry	bits.

First	of	all	in	the		__early_ioremap	,	we	goes	through	the	all	early	ioremap	fixmap	slots	and
check	first	free	are	in	the		prev_map		array	and	remember	it's	number	in	the		slot		variable
and	set	up	size	as	we	found	it:

Fixmaps	and	ioremap

600

http://en.wikipedia.org/wiki/Memory_management_unit

slot	=	-1;

for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)	{

				if	(!prev_map[i])	{

								slot	=	i;

								break;

				}

}

...

...

...

prev_size[slot]	=	size;

last_addr	=	phys_addr	+	size	-	1;

In	the	next	spte	we	can	see	the	following	code:

offset	=	phys_addr	&	~PAGE_MASK;

phys_addr	&=	PAGE_MASK;

size	=	PAGE_ALIGN(last_addr	+	1)	-	phys_addr;

Here	we	are	using		PAGE_MASK		for	clearing	all	bits	in	the		phys_addr		except	the	first	12	bits.
	PAGE_MASK		macro	is	defined	as:

#define	PAGE_MASK							(~(PAGE_SIZE-1))

We	know	that	size	of	a	page	is	4096	bytes	or		1000000000000		in	binary.		PAGE_SIZE	-	1		will
be		111111111111	,	but	with		~	,	we	will	get		000000000000	,	but	as	we	use		~PAGE_MASK		we	will
get		111111111111		again.	On	the	second	line	we	do	the	same	but	clear	the	first	12	bits	and
getting	page-aligned	size	of	the	area	on	the	third	line.	We	getting	aligned	area	and	now	we
need	to	get	the	number	of	pages	which	are	occupied	by	the	new		ioremap		area	and
calculate	the	fix-mapped	index	from		fixed_addresses		in	the	next	steps:

nrpages	=	size	>>	PAGE_SHIFT;

idx	=	FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*slot;

Now	we	can	fill		fix-mapped		area	with	the	given	physical	addresses.	Every	iteration	in	the
loop,	we	call		__early_set_fixmap		function	from	the	arch/x86/mm/ioremap.c,	increase	given
physical	address	on	page	size	which	is		4096		bytes	and	update		addresses		index	and
number	of	pages:

Fixmaps	and	ioremap

601

https://github.com/torvalds/linux/blob/master/arch/x86/mm/ioremap.c

while	(nrpages	>	0)	{

				__early_set_fixmap(idx,	phys_addr,	prot);

				phys_addr	+=	PAGE_SIZE;

				--idx;

				--nrpages;

}

The		__early_set_fixmap		function	gets	the	page	table	entry	(stored	in	the		bm_pte	,	see
above)	for	the	given	physical	address	with:

pte	=	early_ioremap_pte(addr);

In	the	next	step	of	the		early_ioremap_pte		we	check	the	given	page	flags	with	the
	pgprot_val		macro	and	calls		set_pte		or		pte_clear		depends	on	it:

if	(pgprot_val(flags))

								set_pte(pte,	pfn_pte(phys	>>	PAGE_SHIFT,	flags));

				else

								pte_clear(&init_mm,	addr,	pte);

As	you	can	see	above,	we	passed		FIXMAP_PAGE_IO		as	flags	to	the		__early_ioremap	.
	FIXMPA_PAGE_IO		expands	to	the:

(__PAGE_KERNEL_EXEC	|	_PAGE_NX)

flags,	so	we	call		set_pte		function	for	setting	page	table	entry	which	works	in	the	same
manner	as		set_pmd		but	for	PTEs	(read	above	about	it).	As	we	set	all		PTEs		in	the	loop,	we
can	see	the	call	of	the		__flush_tlb_one		function:

__flush_tlb_one(addr);

This	function	is	defined	in	the	arch/x86/include/asm/tlbflush.h	and	calls		__flush_tlb_single	
or		__flush_tlb		depends	on	value	of	the		cpu_has_invlpg	:

static	inline	void	__flush_tlb_one(unsigned	long	addr)

{

								if	(cpu_has_invlpg)

																__flush_tlb_single(addr);

								else

																__flush_tlb();

}

Fixmaps	and	ioremap

602

https://github.com/torvalds/linux/blob/master

	__flush_tlb_one		function	invalidates	given	address	in	the	TLB.	As	you	just	saw	we	updated
paging	structure,	but		TLB		is	not	informed	of	the	changes,	that's	why	we	need	to	do	it
manually.	There	are	two	ways	to	do	it.	First	is	update		cr3		control	register	and		__flush_tlb	
function	does	this:

native_write_cr3(native_read_cr3());

The	second	method	is	to	use		invlpg		instruction	to	invalidates		TLB		entry.	Let's	look	on
	__flush_tlb_one		implementation.	As	you	can	see	first	of	all	it	checks		cpu_has_invlpg		which
defined	as:

#if	defined(CONFIG_X86_INVLPG)	||	defined(CONFIG_X86_64)

#	define	cpu_has_invlpg									1

#else

#	define	cpu_has_invlpg									(boot_cpu_data.x86	>	3)

#endif

If	a	CPU	support		invlpg		instruction,	we	call	the		__flush_tlb_single		macro	which	expands
to	the	call	of	the		__native_flush_tlb_single	:

static	inline	void	__native_flush_tlb_single(unsigned	long	addr)

{

								asm	volatile("invlpg	(%0)"	::"r"	(addr)	:	"memory");

}

or	call		__flush_tlb		which	just	updates		cr3		register	as	we	saw	it	above.	After	this	step
execution	of	the		__early_set_fixmap		function	is	finished	and	we	can	back	to	the
	__early_ioremap		implementation.	As	we	have	set	fixmap	area	for	the	given	address,	we
need	to	save	the	base	virtual	address	of	the	I/O	Re-mapped	area	in	the		prev_map		with	the
	slot		index:

prev_map[slot]	=	(void	__iomem	*)(offset	+	slot_virt[slot]);

and	return	it.

The	second	function	is	-		early_iounmap		-	unmaps	an		I/O		memory	region.	This	function
takes	two	parameters:	base	address	and	size	of	a		I/O		region	and	generally	looks	very
similar	on		early_ioremap	.	It	also	goes	through	fixmap	slots	and	looks	for	slot	with	the	given
address.	After	this	it	gets	the	index	of	the	fixmap	slot	and	calls		__late_clear_fixmap		or
	__early_set_fixmap		depends	on		after_paging_init		value.	It	calls		__early_set_fixmap		with
on	difference	then	it	does		early_ioremap	:	it	passes		zero		as	physical	address.	And	in	the
end	it	sets	address	of	the	I/O	memory	region	to		NULL	:

Fixmaps	and	ioremap

603

http://en.wikipedia.org/wiki/Translation_lookaside_buffer

prev_map[slot]	=	NULL;

That's	all	about		fixmaps		and		ioremap	.	Of	course	this	part	does	not	cover	full	features	of
the		ioremap	,	it	was	only	early	ioremap,	but	there	is	also	normal	ioremap.	But	we	need	to
know	more	things	before	it.

So,	this	is	the	end!

Conclusion
This	is	the	end	of	the	second	part	about	linux	kernel	memory	management.	If	you	have
questions	or	suggestions,	ping	me	on	twitter	0xAX,	drop	me	an	email	or	just	create	an	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	a	PR	to	linux-insides.

Links
apic
vsyscall
Intel	Trusted	Execution	Technology
Xen
Real	Time	Clock
e820
Memory	management	unit
TLB
Paging
Linux	kernel	memory	management	Part	1.

Fixmaps	and	ioremap

604

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://lwn.net/Articles/446528/
http://en.wikipedia.org/wiki/Trusted_Execution_Technology
http://en.wikipedia.org/wiki/Xen
http://en.wikipedia.org/wiki/Real-time_clock
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html
http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html

Linux	kernel	memory	management	Part	3.

Introduction	to	the	kmemcheck	in	the	Linux
kernel
This	is	the	third	part	of	the	chapter	which	describes	memory	management	in	the	Linux	kernel
and	in	the	previous	part	of	this	chapter	we	met	two	memory	management	related	concepts:

	Fix-Mapped	Addresses	;
	ioremap	.

The	first	concept	represents	special	area	in	virtual	memory,	whose	corresponding	physical
mapping	is	calculated	in	compile-time.	The	second	concept	provides	ability	to	map
input/output	related	memory	to	virtual	memory.

For	example	if	you	will	look	at	the	output	of	the		/proc/iomem	:

$	sudo	cat	/proc/iomem

00000000-00000fff	:	reserved

00001000-0009d7ff	:	System	RAM

0009d800-0009ffff	:	reserved

000a0000-000bffff	:	PCI	Bus	0000:00

000c0000-000cffff	:	Video	ROM

000d0000-000d3fff	:	PCI	Bus	0000:00

000d4000-000d7fff	:	PCI	Bus	0000:00

000d8000-000dbfff	:	PCI	Bus	0000:00

000dc000-000dffff	:	PCI	Bus	0000:00

000e0000-000fffff	:	reserved

...

...

...

you	will	see	map	of	the	system's	memory	for	each	physical	device.	Here	the	first	column
displays	the	memory	registers	used	by	each	of	the	different	types	of	memory.	The	second
column	lists	the	kind	of	memory	located	within	those	registers.	Or	for	example:

kmemcheck

605

https://0xax.gitbooks.io/linux-insides/content/mm/
https://en.wikipedia.org/wiki/Memory_management
https://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Compile_time

$	sudo	cat	/proc/ioports

0000-0cf7	:	PCI	Bus	0000:00

		0000-001f	:	dma1

		0020-0021	:	pic1

		0040-0043	:	timer0

		0050-0053	:	timer1

		0060-0060	:	keyboard

		0064-0064	:	keyboard

		0070-0077	:	rtc0

		0080-008f	:	dma	page	reg

		00a0-00a1	:	pic2

		00c0-00df	:	dma2

		00f0-00ff	:	fpu

				00f0-00f0	:	PNP0C04:00

		03c0-03df	:	vga+

		03f8-03ff	:	serial

		04d0-04d1	:	pnp	00:06

		0800-087f	:	pnp	00:01

		0a00-0a0f	:	pnp	00:04

		0a20-0a2f	:	pnp	00:04

		0a30-0a3f	:	pnp	00:04

...

...

...

can	show	us	lists	of	currently	registered	port	regions	used	for	input	or	output	communication
with	a	device.	All	memory-mapped	I/O	addresses	are	not	used	by	the	kernel	directly.	So,
before	the	Linux	kernel	can	use	such	memory,	it	must	to	map	it	to	the	virtual	memory	space
which	is	the	main	purpose	of	the		ioremap		mechanism.	Note	that	we	saw	only	early
	ioremap		in	the	previous	part.	Soon	we	will	look	at	the	implementation	of	the	non-early
	ioremap		function.	But	before	this	we	must	learn	other	things,	like	a	different	types	of
memory	allocators	and	etc.,	because	in	other	way	it	will	be	very	difficult	to	understand	it.

So,	before	we	will	move	on	to	the	non-early	memory	management	of	the	Linux	kernel,	we
will	see	some	mechanisms	which	provide	special	abilities	for	debugging,	check	of	memory
leaks,	memory	control	and	etc.	It	will	be	easier	to	understand	how	memory	management
arranged	in	the	Linux	kernel	after	learning	of	all	of	these	things.

As	you	already	may	guess	from	the	title	of	this	part,	we	will	start	to	consider	memory
mechanisms	from	the	kmemcheck.	As	we	always	did	in	other	chapters,	we	will	start	to
consider	from	theoretical	side	and	will	learn	what	is		kmemcheck		mechanism	in	general	and
only	after	this,	we	will	see	how	it	is	implemented	in	the	Linux	kernel.

So	let's	start.	What	is	it		kmemcheck		in	the	Linux	kernel?	As	you	may	gues	from	the	name	of
this	mechanism,	the		kmemcheck		checks	memory.	That's	true.	Main	point	of	the		kmemcheck	
mechanism	is	to	check	that	some	kernel	code	accesses		uninitialized	memory	.	Let's	take

kmemcheck

606

https://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Memory_leak
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://0xax.gitbooks.io/linux-insides/content/

following	simple	C	program:

#include	<stdlib.h>

#include	<stdio.h>

struct	A	{

								int	a;

};

int	main(int	argc,	char	**argv)	{

								struct	A	*a	=	malloc(sizeof(struct	A));

								printf("a->a	=	%d\n",	a->a);

								return	0;

}

Here	we	allocate	memory	for	the		A		structure	and	tries	to	print	value	of	the		a		field.	If	we
will	compile	this	program	without	additional	options:

gcc	test.c	-o	test

The	compiler	will	not	show	us	warning	that		a		filed	is	not	unitialized.	But	if	we	will	run	this
program	with	valgrind	tool,	we	will	see	the	following	output:

~$			valgrind	--leak-check=yes	./test

==28469==	Memcheck,	a	memory	error	detector

==28469==	Copyright	(C)	2002-2015,	and	GNU	GPL'd,	by	Julian	Seward	et	al.

==28469==	Using	Valgrind-3.11.0	and	LibVEX;	rerun	with	-h	for	copyright	info

==28469==	Command:	./test

==28469==	

==28469==	Conditional	jump	or	move	depends	on	uninitialised	value(s)

==28469==				at	0x4E820EA:	vfprintf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4E88D48:	printf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4005B9:	main	(in	/home/alex/test)

==28469==	

==28469==	Use	of	uninitialised	value	of	size	8

==28469==				at	0x4E7E0BB:	_itoa_word	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4E8262F:	vfprintf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4E88D48:	printf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4005B9:	main	(in	/home/alex/test)

...

...

...

Actually	the		kmemcheck		mechanism	does	the	same	for	the	kernel,	what	the		valgrind		does
for	userspace	programs.	It	check	unitilized	memory.

kmemcheck

607

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Valgrind

To	enable	this	mechanism	in	the	Linux	kernel,	you	need	to	enable	the		CONFIG_KMEMCHECK	
kernel	configuration	option	in	the:

Kernel	hacking

		->	Memory	Debugging

menu	of	the	Linux	kernel	configuration:

We	may	not	only	enable	support	of	the		kmemcheck		mechanism	in	the	Linux	kernel,	but	it	also
provides	some	configuration	options	for	us.	We	will	see	all	of	these	options	in	the	next
paragraph	of	this	part.	Last	note	before	we	will	consider	how	does	the		kmemcheck		check
memory.	Now	this	mechanism	is	implemented	only	for	the	x86_64	architecture.	You	can	be
sure	if	you	will	look	in	the	arch/x86/Kconfig		x86		related	kernel	configuration	file,	you	will
see	following	lines:

config	X86

		...

		...

		...

		select	HAVE_ARCH_KMEMCHECK

		...

		...

		...

So,	there	is	no	anything	which	is	specific	for	other	architectures.

kmemcheck

608

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig

Ok,	so	we	know	that		kmemcheck		provides	mechanism	to	check	usage	of		uninitialized
memory		in	the	Linux	kernel	and	how	to	enable	it.	How	it	does	these	checks?	When	the	Linux
kernel	tries	to	allocate	some	memory	i.e.	something	is	called	like	this:

struct	my_struct	*my_struct	=	kmalloc(sizeof(struct	my_struct),	GFP_KERNEL);

or	in	other	words	somebody	wants	to	access	a	page,	a	page	fault	exception	is	generated.
This	is	achieved	by	the	fact	that	the		kmemcheck		marks	memory	pages	as		non-present	
(more	about	this	you	can	read	in	the	special	part	which	is	devoted	to	paging).	If	a		page
fault		exception	is	occured,	the	exception	handler	knows	about	it	and	in	a	case	when	the
	kmemcheck		is	enabled	it	transfers	control	to	it.	After	the		kmemcheck		will	finish	its	checks,	the
page	will	be	marked	as		present		and	the	interrupted	code	will	be	able	to	continue	execution.
There	is	little	subtlety	in	this	chain.	When	the	first	instruction	of	interrupted	code	will	be
executed,	the		kmemcheck		will	mark	the	page	as		non-present		again.	In	this	way	next	access
to	memory	will	be	catched	again.

We	just	considered	the		kmemcheck		mechanism	from	theoretical	side.	Now	let's	consider	how
it	is	implemented	in	the	Linux	kernel.

Implementation	of	the		kmemcheck		mechanism
in	the	Linux	kernel
So,	now	we	know	what	is	it		kmemcheck		and	what	it	does	in	the	Linux	kernel.	Time	to	see	at
its	implementation	in	the	Linux	kernel.	Implementation	of	the		kmemcheck		is	splitted	in	two
parts.	The	first	is	generic	part	is	located	in	the	mm/kmemcheck.c	source	code	file	and	the
second	x86_64	architecture-specific	part	is	located	in	the	arch/x86/mm/kmemcheck
directory.

Let's	start	from	the	initialization	of	this	mechanism.	We	already	know	that	to	enable	the
	kmemcheck		mechanism	in	the	Linux	kernel,	we	must	enable	the		CONFIG_KMEMCHECK		kernel
configuration	option.	But	besides	this,	we	need	to	pass	one	of	following	parameters:

kmemcheck=0	(disabled)
kmemcheck=1	(enabled)
kmemcheck=2	(one-shot	mode)

to	the	Linux	kernel	command	line.	The	first	two	are	clear,	but	the	last	needs	a	little
explanation.	This	option	switches	the		kmemcheck		in	a	special	mode	when	it	will	be	turned	off
after	detecting	the	first	use	of	uninitialized	memory.	Actually	this	mode	is	enabled	by	default
in	the	Linux	kernel:

kmemcheck

609

https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_fault
https://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html
https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/tree/master/arch/x86/mm/kmemcheck

We	know	from	the	seventh	part	of	the	chapter	which	describes	initialization	of	the	Linux
kernel	that	the	kernel	command	line	is	parsed	during	initialization	of	the	Linux	kernel	in
	do_initcall_level	,		do_early_param		functions.	Actually	the		kmemcheck		subsystem	consists
from	two	stages.	The	first	stage	is	early.	If	we	will	look	at	the	mm/kmemcheck.c	source	code
file,	we	will	see	the		param_kmemcheck		function	which	is	will	be	called	during	early	command
line	parsing:

static	int	__init	param_kmemcheck(char	*str)

{

				int	val;

				int	ret;

				if	(!str)

								return	-EINVAL;

				ret	=	kstrtoint(str,	0,	&val);

				if	(ret)

								return	ret;

				kmemcheck_enabled	=	val;

				return	0;

}

early_param("kmemcheck",	param_kmemcheck);

As	we	already	saw,	the		param_kmemcheck		may	have	one	of	the	following	values:		0	
(enabled),		1		(disabled)	or		2		(one-shot).	The	implementation	of	the		param_kmemcheck		is
pretty	simple.	We	just	convert	string	value	of	the		kmemcheck		command	line	option	to	integer
representation	and	set	it	to	the		kmemcheck_enabled		variable.

kmemcheck

610

https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-7.html
https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c

The	second	stage	will	be	executed	during	initialization	of	the	Linux	kernel,	rather	during
intialization	of	early	initcalls.	The	second	stage	is	represented	by	the		kmemcheck_init	:

int	__init	kmemcheck_init(void)

{

				...

				...

				...

}

early_initcall(kmemcheck_init);

Main	goal	of	the		kmemcheck_init		function	is	to	call	the		kmemcheck_selftest		function	and
check	its	result:

if	(!kmemcheck_selftest())	{

				printk(KERN_INFO	"kmemcheck:	self-tests	failed;	disabling\n");

				kmemcheck_enabled	=	0;

				return	-EINVAL;

}

printk(KERN_INFO	"kmemcheck:	Initialized\n");

and	return	with	the		EINVAL		if	this	check	is	failed.	The		kmemcheck_selftest		function	checks
sizes	of	different	memory	access	related	opcodes	like		rep	movsb	,		movzwq		and	etc.	If	sizes
of	opcodes	are	equal	to	expected	sizes,	the		kmemcheck_selftest		will	return		true		and
	false		in	other	way.

So	when	the	somebody	will	call:

struct	my_struct	*my_struct	=	kmalloc(sizeof(struct	my_struct),	GFP_KERNEL);

through	a	series	of	different	function	calls	the		kmem_getpages		function	will	be	called.	This
function	is	defined	in	the	mm/slab.c	source	code	file	and	main	goal	of	this	function	tries	to
allocate	pages	with	the	given	flags.	In	the	end	of	this	function	we	can	see	following	code:

if	(kmemcheck_enabled	&&	!(cachep->flags	&	SLAB_NOTRACK))	{

				kmemcheck_alloc_shadow(page,	cachep->gfporder,	flags,	nodeid);

				if	(cachep->ctor)

								kmemcheck_mark_uninitialized_pages(page,	nr_pages);

				else

								kmemcheck_mark_unallocated_pages(page,	nr_pages);

}

kmemcheck

611

https://0xax.gitbooks.io/linux-insides/content/Concepts/initcall.html
https://en.wikipedia.org/wiki/Opcode
https://github.com/torvalds/linux/blob/master/mm/slab.c
https://en.wikipedia.org/wiki/Paging

So,	here	we	check	that	the	if		kmemcheck		is	enabled	and	the		SLAB_NOTRACK		bit	is	not	set	in
flags	we	set		non-present		bit	for	the	just	allocated	page.	The		SLAB_NOTRACK		bit	tell	us	to	not
track	uninitialized	memory.	Additionally	we	check	if	a	cache	object	has	constructor	(details
will	be	considered	in	next	parts)	we	mark	allocated	page	as	uninitilized	or	unallocated	in
other	way.	The		kmemcheck_alloc_shadow		function	is	defined	in	the	mm/kmemcheck.c	source
code	file	and	does	following	things:

void	kmemcheck_alloc_shadow(struct	page	*page,	int	order,	gfp_t	flags,	int	node)

{

				struct	page	*shadow;

							shadow	=	alloc_pages_node(node,	flags	|	__GFP_NOTRACK,	order);

							for(i	=	0;	i	<	pages;	++i)

								page[i].shadow	=	page_address(&shadow[i]);

							kmemcheck_hide_pages(page,	pages);

}

First	of	all	it	allocates	memory	space	for	the	shadow	bits.	If	this	bit	is	set	in	a	page,	this
means	that	this	page	is	tracked	by	the		kmemcheck	.	After	we	allocated	space	for	the	shadow
bit,	we	fill	all	allocated	pages	with	this	bit.	In	the	end	we	just	call	the		kmemcheck_hide_pages	
function	with	the	pointer	to	the	allocated	page	and	number	of	these	pages.	The
	kmemcheck_hide_pages		is	architecture-specific	function,	so	its	implementation	is	located	in
the	arch/x86/mm/kmemcheck/kmemcheck.c	source	code	file.	The	main	goal	of	this	function
is	to	set		non-present		bit	in	given	pages.	Let's	look	at	the	implementation	of	this	function:

void	kmemcheck_hide_pages(struct	page	*p,	unsigned	int	n)

{

				unsigned	int	i;

				for	(i	=	0;	i	<	n;	++i)	{

								unsigned	long	address;

								pte_t	*pte;

								unsigned	int	level;

								address	=	(unsigned	long)	page_address(&p[i]);

								pte	=	lookup_address(address,	&level);

								BUG_ON(!pte);

								BUG_ON(level	!=	PG_LEVEL_4K);

								set_pte(pte,	__pte(pte_val(*pte)	&	~_PAGE_PRESENT));

								set_pte(pte,	__pte(pte_val(*pte)	|	_PAGE_HIDDEN));

								__flush_tlb_one(address);

				}

}

kmemcheck

612

https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://github.com/torvalds/linux/tree/master/arch/x86/mm/kmemcheck/kmemcheck.c

Here	we	go	through	all	pages	and	and	tries	to	get		page	table	entry		for	each	page.	If	this
operation	was	successful,	we	unset	present	bit	and	set	hidden	bit	in	each	page.	In	the	end
we	flush	translation	lookaside	buffer,	because	some	pages	was	changed.	From	this	point
allocated	pages	are	tracked	by	the		kmemcheck	.	Now,	as		present		bit	is	unset,	the	page	fault
execution	will	be	occured	right	after	the		kmalloc		will	return	pointer	to	allocated	space	and	a
code	will	try	to	access	this	memory.

As	you	may	remember	from	the	second	part	of	the	Linux	kernel	initialization	chapter,	the
	page	fault		handler	is	located	in	the	arch/x86/mm/fault.c	source	code	file	and	represented
by	the		do_page_fault		function.	We	can	see	following	check	from	the	beginning	of	the
	do_page_fault		function:

static	noinline	void

__do_page_fault(struct	pt_regs	*regs,	unsigned	long	error_code,

								unsigned	long	address)

{

				...

				...

				...

				if	(kmemcheck_active(regs))

								kmemcheck_hide(regs);

				...

				...

				...

}

The		kmemcheck_active		gets		kmemcheck_context		per-cpu	structure	and	return	the	result	of
comparision	of	the		balance		field	of	this	structure	with	zero:

bool	kmemcheck_active(struct	pt_regs	*regs)

{

				struct	kmemcheck_context	*data	=	this_cpu_ptr(&kmemcheck_context);

				return	data->balance	>	0;

}

The		kmemcheck_context		is	structure	which	describes	current	state	of	the		kmemcheck	
mechanism.	It	stored	unitialized	addresses,	number	of	such	addresses	and	etc.	The
	balance		field	of	this	structure	represents	current	state	of	the		kmemcheck		or	in	other	words	it
can	tell	us	did		kmemcheck		already	hid	pages	or	not	yet.	If	the		data->balance		is	greater	than
zero,	the		kmemcheck_hide		function	will	be	called.	This	means	than		kmemecheck		already	set
	present		bit	for	given	pages	and	now	we	need	to	hide	pages	again	to	to	cause	nest	step
page	fault.	This	function	will	hide	addresses	of	pages	again	by	unsetting	of		present		bit.
This	means	that	one	session	of		kmemcheck		already	finished	and	new	page	fault	occured.	At

kmemcheck

613

https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Page_fault
https://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
https://github.com/torvalds/linux/blob/master/arch/x86/mm/fault.c
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html

the	first	step	the		kmemcheck_active		will	return	false	as	the		data->balance		is	zero	for	the
start	and	the		kmemcheck_hide		will	not	be	called.	Next,	we	may	see	following	line	of	code	in
the		do_page_fault	:

if	(kmemcheck_fault(regs,	address,	error_code))

								return;

First	of	all	the		kmemcheck_fault		function	checks	that	the	fault	was	occured	by	the	correct
reason.	At	first	we	check	the	flags	register	and	check	that	we	are	in	normal	kernel	mode:

if	(regs->flags	&	X86_VM_MASK)

								return	false;

if	(regs->cs	!=	__KERNEL_CS)

								return	false;

If	these	checks	wasn't	successful	we	return	from	the		kmemcheck_fault		function	as	it	was	not
	kmemcheck		related	page	fault.	After	this	we	try	to	lookup	a		page	table	entry		related	to	the
faulted	address	and	if	we	can't	find	it	we	return:

pte	=	kmemcheck_pte_lookup(address);

if	(!pte)

				return	false;

Last	two	steps	of	the		kmemcheck_fault		function	is	to	call	the		kmemcheck_access		function
which	check	access	to	the	given	page	and	show	addresses	again	by	setting	present	bit	in
the	given	page.	The		kmemcheck_access		function	does	all	main	job.	It	check	current
instruction	which	caused	a	page	fault.	If	it	will	find	an	error,	the	context	of	this	error	will	be
saved	by		kmemcheck		to	the	ring	queue:

static	struct	kmemcheck_error	error_fifo[CONFIG_KMEMCHECK_QUEUE_SIZE];

The		kmemcheck		mechanism	declares	special	tasklet:

static	DECLARE_TASKLET(kmemcheck_tasklet,	&do_wakeup,	0);

which	runs	the		do_wakeup		function	from	the	arch/x86/mm/kmemcheck/error.c	source	code
file	when	it	will	be	scheduled	to	run.

The		do_wakeup		function	will	call	the		kmemcheck_error_recall		function	which	will	print	errors
collected	by		kmemcheck	.	As	we	already	saw	the:

kmemcheck

614

https://en.wikipedia.org/wiki/FLAGS_register
https://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html
https://github.com/torvalds/linux/blob/master/arch/x86/mm/kmemcheck/error.c

kmemcheck_show(regs);

function	will	be	called	in	the	end	of	the		kmemcheck_fault		function.	This	function	will	set
present	bit	for	the	given	pages	again:

if	(unlikely(data->balance	!=	0))	{

				kmemcheck_show_all();

				kmemcheck_error_save_bug(regs);

				data->balance	=	0;

				return;

}

Where	the		kmemcheck_show_all		function	calls	the		kmemcheck_show_addr		for	each	address:

static	unsigned	int	kmemcheck_show_all(void)

{

				struct	kmemcheck_context	*data	=	this_cpu_ptr(&kmemcheck_context);

				unsigned	int	i;

				unsigned	int	n;

				n	=	0;

				for	(i	=	0;	i	<	data->n_addrs;	++i)

								n	+=	kmemcheck_show_addr(data->addr[i]);

				return	n;

}

by	the	call	of	the		kmemcheck_show_addr	:

int	kmemcheck_show_addr(unsigned	long	address)

{

				pte_t	*pte;

				pte	=	kmemcheck_pte_lookup(address);

				if	(!pte)

								return	0;

				set_pte(pte,	__pte(pte_val(*pte)	|	_PAGE_PRESENT));

				__flush_tlb_one(address);

				return	1;

}

In	the	end	of	the		kmemcheck_show		function	we	set	the	TF	flag	if	it	wasn't	set:

kmemcheck

615

https://en.wikipedia.org/wiki/Trap_flag

if	(!(regs->flags	&	X86_EFLAGS_TF))

				data->flags	=	regs->flags;

We	need	to	do	it	because	we	need	to	hide	pages	again	after	first	executed	instruction	after	a
page	fault	will	be	handled.	In	a	case	when	the		TF		flag,	so	the	processor	will	switch	into
single-step	mode	after	the	first	instruction	will	be	executed.	In	this	case		debug		exception	will
occured.	From	this	moment	pages	will	be	hidden	again	and	execution	will	be	continued.	As
pages	hidden	from	this	moment,	page	fault	exception	will	occur	again	and		kmemcheck	
continue	to	check/collect	errors	again	and	print	them	from	time	to	time.

That's	all.

Conclusion
This	is	the	end	of	the	third	part	about	linux	kernel	memory	management.	If	you	have
questions	or	suggestions,	ping	me	on	twitter	0xAX,	drop	me	an	email	or	just	create	an	issue.
In	the	next	part	we	will	see	yet	another	memory	debugging	related	tool	-		kmemleak	.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	a	PR	to	linux-insides.

Links
memory	management
debugging
memory	leaks
kmemcheck	documentation
valgrind
paging
page	fault
initcalls
opcode
translation	lookaside	buffer
per-cpu	variables
flags	register
tasklet
Paging
Previous	part

kmemcheck

616

https://en.wikipedia.org/wiki/Memory_management
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Memory_leak
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://en.wikipedia.org/wiki/Valgrind
https://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html
https://en.wikipedia.org/wiki/Page_fault
https://0xax.gitbooks.io/linux-insides/content/Concepts/initcall.html
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/FLAGS_register
https://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html
http://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html
https://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html

kmemcheck

617

Linux	kernel	concepts
This	chapter	describes	various	concepts	which	are	used	in	the	Linux	kernel.

Per-CPU	variables
CPU	masks
The	initcall	mechanism

Concepts

618

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://0xax.gitbooks.io/linux-insides/content/Concepts/initcall.html

Per-CPU	variables
Per-CPU	variables	are	one	of	the	kernel	features.	You	can	understand	what	this	feature
means	by	reading	its	name.	We	can	create	a	variable	and	each	processor	core	will	have	its
own	copy	of	this	variable.	In	this	part,	we	take	a	closer	look	at	this	feature	and	try	to
understand	how	it	is	implemented	and	how	it	works.

The	kernel	provides	an	API	for	creating	per-cpu	variables	-	the		DEFINE_PER_CPU		macro:

#define	DEFINE_PER_CPU(type,	name)	\

								DEFINE_PER_CPU_SECTION(type,	name,	"")

This	macro	defined	in	the	include/linux/percpu-defs.h	as	many	other	macros	for	work	with
per-cpu	variables.	Now	we	will	see	how	this	feature	is	implemented.

Take	a	look	at	the		DECLARE_PER_CPU		definition.	We	see	that	it	takes	2	parameters:		type		and
	name	,	so	we	can	use	it	to	create	per-cpu	variables,	for	example	like	this:

DEFINE_PER_CPU(int,	per_cpu_n)

We	pass	the	type	and	the	name	of	our	variable.		DEFINE_PER_CPU		calls	the
	DEFINE_PER_CPU_SECTION		macro	and	passes	the	same	two	parameters	and	empty	string	to	it.
Let's	look	at	the	definition	of	the		DEFINE_PER_CPU_SECTION	:

#define	DEFINE_PER_CPU_SECTION(type,	name,	sec)				\

									__PCPU_ATTRS(sec)	PER_CPU_DEF_ATTRIBUTES		\

									__typeof__(type)	name

#define	__PCPU_ATTRS(sec)																																																\

									__percpu	__attribute__((section(PER_CPU_BASE_SECTION	sec)))					\

									PER_CPU_ATTRIBUTES

where		section		is:

#define	PER_CPU_BASE_SECTION	".data..percpu"

After	all	macros	are	expanded	we	will	get	a	global	per-cpu	variable:

__attribute__((section(".data..percpu")))	int	per_cpu_n

Per-CPU	variables

619

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h

It	means	that	we	will	have	a		per_cpu_n		variable	in	the		.data..percpu		section.	We	can	find
this	section	in	the		vmlinux	:

.data..percpu	00013a58		0000000000000000		0000000001a5c000		00e00000		2**12

														CONTENTS,	ALLOC,	LOAD,	DATA

Ok,	now	we	know	that	when	we	use	the		DEFINE_PER_CPU		macro,	a	per-cpu	variable	in	the
	.data..percpu		section	will	be	created.	When	the	kernel	initializes	it	calls	the
	setup_per_cpu_areas		function	which	loads	the		.data..percpu		section	multiple	times,	one
section	per	CPU.

Let's	look	at	the	per-CPU	areas	initialization	process.	It	starts	in	the	init/main.c	from	the	call
of	the		setup_per_cpu_areas		function	which	is	defined	in	the	arch/x86/kernel/setup_percpu.c.

pr_info("NR_CPUS:%d	nr_cpumask_bits:%d	nr_cpu_ids:%d	nr_node_ids:%d\n",

								NR_CPUS,	nr_cpumask_bits,	nr_cpu_ids,	nr_node_ids);

The		setup_per_cpu_areas		starts	from	the	output	information	about	the	maximum	number	of
CPUs	set	during	kernel	configuration	with	the		CONFIG_NR_CPUS		configuration	option,	actual
number	of	CPUs,		nr_cpumask_bits		is	the	same	that		NR_CPUS		bit	for	the	new		cpumask	
operators	and	number	of		NUMA		nodes.

We	can	see	this	output	in	the	dmesg:

$	dmesg	|	grep	percpu

[0.000000]	setup_percpu:	NR_CPUS:8	nr_cpumask_bits:8	nr_cpu_ids:8	nr_node_ids:1

In	the	next	step	we	check	the		percpu		first	chunk	allocator.	All	percpu	areas	are	allocated	in
chunks.	The	first	chunk	is	used	for	the	static	percpu	variables.	The	Linux	kernel	has
	percpu_alloc		command	line	parameters	which	provides	the	type	of	the	first	chunk	allocator.
We	can	read	about	it	in	the	kernel	documentation:

percpu_alloc=				Select	which	percpu	first	chunk	allocator	to	use.

								Currently	supported	values	are	"embed"	and	"page".

								Archs	may	support	subset	or	none	of	the				selections.

								See	comments	in	mm/percpu.c	for	details	on	each

								allocator.		This	parameter	is	primarily				for	debugging

								and	performance	comparison.

The	mm/percpu.c	contains	the	handler	of	this	command	line	option:

early_param("percpu_alloc",	percpu_alloc_setup);

Per-CPU	variables

620

https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c
https://github.com/torvalds/linux/blob/master/mm/percpu.c

Where	the		percpu_alloc_setup		function	sets	the		pcpu_chosen_fc		variable	depends	on	the
	percpu_alloc		parameter	value.	By	default	the	first	chunk	allocator	is		auto	:

enum	pcpu_fc	pcpu_chosen_fc	__initdata	=	PCPU_FC_AUTO;

If	the		percpu_alloc		parameter	is	not	given	to	the	kernel	command	line,	the		embed		allocator
will	be	used	which	embeds	the	first	percpu	chunk	into	bootmem	with	the	memblock.	The	last
allocator	is	the	first	chunk		page		allocator	which	maps	the	first	chunk	with		PAGE_SIZE		pages.

As	I	wrote	about	first	of	all,	we	make	a	check	of	the	first	chunk	allocator	type	in	the
	setup_per_cpu_areas	.	First	of	all	we	check	that	first	chunk	allocator	is	not	page:

if	(pcpu_chosen_fc	!=	PCPU_FC_PAGE)	{

				...

				...

				...

}

If	it	is	not		PCPU_FC_PAGE	,	we	will	use	the		embed		allocator	and	allocate	space	for	the	first
chunk	with	the		pcpu_embed_first_chunk		function:

rc	=	pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,

																								dyn_size,	atom_size,

																								pcpu_cpu_distance,

																								pcpu_fc_alloc,	pcpu_fc_free);

As	I	wrote	above,	the		pcpu_embed_first_chunk		function	embeds	the	first	percpu	chunk	into
bootmem.	As	you	can	see	we	pass	a	couple	of	parameters	to	the		pcup_embed_first_chunk	,
they	are

	PERCPU_FIRST_CHUNK_RESERVE		-	the	size	of	the	reserved	space	for	the	static		percpu	
variables;
	dyn_size		-	minimum	free	size	for	dynamic	allocation	in	bytes;
	atom_size		-	all	allocations	are	whole	multiples	of	this	and	aligned	to	this	parameter;
	pcpu_cpu_distance		-	callback	to	determine	distance	between	cpus;
	pcpu_fc_alloc		-	function	to	allocate		percpu		page;
	pcpu_fc_free		-	function	to	release		percpu		page.

All	of	these	parameters	we	calculate	before	the	call	of	the		pcpu_embed_first_chunk	:

Per-CPU	variables

621

http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html

const	size_t	dyn_size	=	PERCPU_MODULE_RESERVE	+	PERCPU_DYNAMIC_RESERVE	-	PERCPU_FIRST_

CHUNK_RESERVE;

size_t	atom_size;

#ifdef	CONFIG_X86_64

								atom_size	=	PMD_SIZE;

#else

								atom_size	=	PAGE_SIZE;

#endif

If	the	first	chunk	allocator	is		PCPU_FC_PAGE	,	we	will	use	the		pcpu_page_first_chunk		instead
of	the		pcpu_embed_first_chunk	.	After	that		percpu		areas	up,	we	setup		percpu		offset	and	its
segment	for	every	CPU	with	the		setup_percpu_segment		function	(only	for		x86		systems)	and
move	some	early	data	from	the	arrays	to	the		percpu		variables	(x86_cpu_to_apicid	,
	irq_stack_ptr		and	etc...).	After	the	kernel	finishes	the	initialization	process,	we	will	have
loaded	N		.data..percpu		sections,	where	N	is	the	number	of	CPUs,	and	the	section	used	by
the	bootstrap	processor	will	contain	an	uninitialized	variable	created	with	the
	DEFINE_PER_CPU		macro.

The	kernel	provides	an	API	for	per-cpu	variables	manipulating:

get_cpu_var(var)
put_cpu_var(var)

Let's	look	at	the		get_cpu_var		implementation:

#define	get_cpu_var(var)					\

(*({																									\

									preempt_disable();		\

									this_cpu_ptr(&var);	\

}))

The	Linux	kernel	is	preemptible	and	accessing	a	per-cpu	variable	requires	us	to	know	which
processor	the	kernel	running	on.	So,	current	code	must	not	be	preempted	and	moved	to	the
another	CPU	while	accessing	a	per-cpu	variable.	That's	why	first	of	all	we	can	see	a	call	of
the		preempt_disable		function.	After	this	we	can	see	a	call	of	the		this_cpu_ptr		macro,
which	looks	like:

#define	this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)

and

#define	raw_cpu_ptr(ptr)								per_cpu_ptr(ptr,	0)

Per-CPU	variables

622

where		per_cpu_ptr		returns	a	pointer	to	the	per-cpu	variable	for	the	given	cpu	(second
parameter).	After	we've	created	a	per-cpu	variable	and	made	modifications	to	it,	we	must
call	the		put_cpu_var		macro	which	enables	preemption	with	a	call	of		preempt_enable	
function.	So	the	typical	usage	of	a	per-cpu	variable	is	as	follows:

get_cpu_var(var);

...

//Do	something	with	the	'var'

...

put_cpu_var(var);

Let's	look	at	the		per_cpu_ptr		macro:

#define	per_cpu_ptr(ptr,	cpu)																													\

({																																																								\

								__verify_pcpu_ptr(ptr);																											\

									SHIFT_PERCPU_PTR((ptr),	per_cpu_offset((cpu)));		\

})

As	I	wrote	above,	this	macro	returns	a	per-cpu	variable	for	the	given	cpu.	First	of	all	it	calls
	__verify_pcpu_ptr	:

#define	__verify_pcpu_ptr(ptr)

do	{

				const	void	__percpu	*__vpp_verify	=	(typeof((ptr)	+	0))NULL;

				(void)__vpp_verify;

}	while	(0)

which	makes	the	given		ptr		type	of		const	void	__percpu	*	,

After	this	we	can	see	the	call	of	the		SHIFT_PERCPU_PTR		macro	with	two	parameters.	At	first
parameter	we	pass	our	ptr	and	second	we	pass	the	cpu	number	to	the		per_cpu_offset	
macro:

#define	per_cpu_offset(x)	(__per_cpu_offset[x])

which	expands	to	getting	the		x		element	from	the		__per_cpu_offset		array:

extern	unsigned	long	__per_cpu_offset[NR_CPUS];

where		NR_CPUS		is	the	number	of	CPUs.	The		__per_cpu_offset		array	is	filled	with	the
distances	between	cpu-variable	copies.	For	example	all	per-cpu	data	is		X		bytes	in	size,	so
if	we	access		__per_cpu_offset[Y]	,		X*Y		will	be	accessed.	Let's	look	at	the

Per-CPU	variables

623

	SHIFT_PERCPU_PTR		implementation:

#define	SHIFT_PERCPU_PTR(__p,	__offset)																																	\

									RELOC_HIDE((typeof(*(__p))	__kernel	__force	*)(__p),	(__offset))

	RELOC_HIDE		just	returns	offset		(typeof(ptr))	(__ptr	+	(off))		and	it	will	return	a	pointer	to
the	variable.

That's	all!	Of	course	it	is	not	the	full	API,	but	a	general	overview.	It	can	be	hard	to	start	with,
but	to	understand	per-cpu	variables	you	mainly	need	to	understand	the	include/linux/percpu-
defs.h	magic.

Let's	again	look	at	the	algorithm	of	getting	a	pointer	to	a	per-cpu	variable:

The	kernel	creates	multiple		.data..percpu		sections	(one	per-cpu)	during	initialization
process;
All	variables	created	with	the		DEFINE_PER_CPU		macro	will	be	relocated	to	the	first	section
or	for	CPU0;
	__per_cpu_offset		array	filled	with	the	distance	(BOOT_PERCPU_OFFSET)	between
	.data..percpu		sections;
When	the		per_cpu_ptr		is	called,	for	example	for	getting	a	pointer	on	a	certain	per-cpu
variable	for	the	third	CPU,	the		__per_cpu_offset		array	will	be	accessed,	where	every
index	points	to	the	required	CPU.

That's	all.

Per-CPU	variables

624

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h

CPU	masks

Introduction
	Cpumasks		is	a	special	way	provided	by	the	Linux	kernel	to	store	information	about	CPUs	in
the	system.	The	relevant	source	code	and	header	files	which	are	contains	API	for		Cpumasks	
manipulating:

include/linux/cpumask.h
lib/cpumask.c
kernel/cpu.c

As	comment	says	from	the	include/linux/cpumask.h:	Cpumasks	provide	a	bitmap	suitable	for
representing	the	set	of	CPU's	in	a	system,	one	bit	position	per	CPU	number.	We	already
saw	a	bit	about	cpumask	in	the		boot_cpu_init		function	from	the	Kernel	entry	point	part.
This	function	makes	first	boot	cpu	online,	active	and	etc...:

set_cpu_online(cpu,	true);

set_cpu_active(cpu,	true);

set_cpu_present(cpu,	true);

set_cpu_possible(cpu,	true);

	set_cpu_possible		is	a	set	of	cpu	ID's	which	can	be	plugged	in	anytime	during	the	life	of	that
system	boot.		cpu_present		represents	which	CPUs	are	currently	plugged	in.		cpu_online	
represents	a	subset	of	the		cpu_present		and	indicates	CPUs	which	are	available	for
scheduling.	These	masks	depend	on	the		CONFIG_HOTPLUG_CPU		configuration	option	and	if	this
option	is	disabled		possible	==	present		and		active	==	online	.	The	implementations	of	all
of	these	functions	are	very	similar.	Every	function	checks	the	second	parameter.	If	it	is
	true	,	it	calls		cpumask_set_cpu		otherwise	it	calls		cpumask_clear_cpu		.

There	are	two	ways	for	a		cpumask		creation.	First	is	to	use		cpumask_t	.	It	is	defined	as:

typedef	struct	cpumask	{	DECLARE_BITMAP(bits,	NR_CPUS);	}	cpumask_t;

It	wraps	the		cpumask		structure	which	contains	one	bitmask		bits		field.	The
	DECLARE_BITMAP		macro	gets	two	parameters:

bitmap	name;
number	of	bits.

Cpumasks

625

https://github.com/torvalds/linux/blob/master/include/linux/cpumask.h
https://github.com/torvalds/linux/blob/master/lib/cpumask.c
https://github.com/torvalds/linux/blob/master/kernel/cpu.c
https://github.com/torvalds/linux/blob/master/include/linux/cpumask.h
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html

and	creates	an	array	of		unsigned	long		with	the	given	name.	Its	implementation	is	pretty
easy:

#define	DECLARE_BITMAP(name,bits)	\

								unsigned	long	name[BITS_TO_LONGS(bits)]

where		BITS_TO_LONGS	:

#define	BITS_TO_LONGS(nr)							DIV_ROUND_UP(nr,	BITS_PER_BYTE	*	sizeof(long))

#define	DIV_ROUND_UP(n,d)	(((n)	+	(d)	-	1)	/	(d))

As	we	are	focusing	on	the		x86_64		architecture,		unsigned	long		is	8-bytes	size	and	our
array	will	contain	only	one	element:

(((8)	+	(8)	-	1)	/	(8))	=	1

	NR_CPUS		macro	represents	the	number	of	CPUs	in	the	system	and	depends	on	the
	CONFIG_NR_CPUS		macro	which	is	defined	in	include/linux/threads.h	and	looks	like	this:

#ifndef	CONFIG_NR_CPUS

								#define	CONFIG_NR_CPUS		1

#endif

#define	NR_CPUS									CONFIG_NR_CPUS

The	second	way	to	define	cpumask	is	to	use	the		DECLARE_BITMAP		macro	directly	and	the
	to_cpumask		macro	which	converts	the	given	bitmap	to		struct	cpumask	*	:

#define	to_cpumask(bitmap)																																														\

								((struct	cpumask	*)(1	?	(bitmap)																																\

																												:	(void	*)sizeof(__check_is_bitmap(bitmap))))

We	can	see	the	ternary	operator	operator	here	which	is		true		every	time.
	__check_is_bitmap		inline	function	is	defined	as:

static	inline	int	__check_is_bitmap(const	unsigned	long	*bitmap)

{

								return	1;

}

Cpumasks

626

https://github.com/torvalds/linux/blob/master/include/linux/threads.h

And	returns		1		every	time.	We	need	it	here	for	only	one	purpose:	at	compile	time	it	checks
that	a	given		bitmap		is	a	bitmap,	or	in	other	words	it	checks	that	a	given		bitmap		has	type	-
	unsigned	long	*	.	So	we	just	pass		cpu_possible_bits		to	the		to_cpumask		macro	for
converting	an	array	of		unsigned	long		to	the		struct	cpumask	*	.

cpumask	API
As	we	can	define	cpumask	with	one	of	the	method,	Linux	kernel	provides	API	for
manipulating	a	cpumask.	Let's	consider	one	of	the	function	which	presented	above.	For
example		set_cpu_online	.	This	function	takes	two	parameters:

Number	of	CPU;
CPU	status;

Implementation	of	this	function	looks	as:

void	set_cpu_online(unsigned	int	cpu,	bool	online)

{

				if	(online)	{

								cpumask_set_cpu(cpu,	to_cpumask(cpu_online_bits));

								cpumask_set_cpu(cpu,	to_cpumask(cpu_active_bits));

				}	else	{

								cpumask_clear_cpu(cpu,	to_cpumask(cpu_online_bits));

				}

}

First	of	all	it	checks	the	second		state		parameter	and	calls		cpumask_set_cpu		or
	cpumask_clear_cpu		depends	on	it.	Here	we	can	see	casting	to	the		struct	cpumask	*		of	the
second	parameter	in	the		cpumask_set_cpu	.	In	our	case	it	is		cpu_online_bits		which	is	a
bitmap	and	defined	as:

static	DECLARE_BITMAP(cpu_online_bits,	CONFIG_NR_CPUS)	__read_mostly;

The		cpumask_set_cpu		function	makes	only	one	call	to	the		set_bit		function:

static	inline	void	cpumask_set_cpu(unsigned	int	cpu,	struct	cpumask	*dstp)

{

								set_bit(cpumask_check(cpu),	cpumask_bits(dstp));

}

The		set_bit		function	takes	two	parameters	too,	and	sets	a	given	bit	(first	parameter)	in	the
memory	(second	parameter	or		cpu_online_bits		bitmap).	We	can	see	here	that	before
	set_bit		will	be	called,	its	two	parameters	will	be	passed	to	the

Cpumasks

627

cpumask_check;
cpumask_bits.

Let's	consider	these	two	macros.	First	if		cpumask_check		does	nothing	in	our	case	and	just
returns	given	parameter.	The	second		cpumask_bits		just	returns	the		bits		field	from	the
given		struct	cpumask	*		structure:

#define	cpumask_bits(maskp)	((maskp)->bits)

Now	let's	look	on	the		set_bit		implementation:

	static	__always_inline	void

	set_bit(long	nr,	volatile	unsigned	long	*addr)

	{

									if	(IS_IMMEDIATE(nr))	{

																asm	volatile(LOCK_PREFIX	"orb	%1,%0"

																								:	CONST_MASK_ADDR(nr,	addr)

																								:	"iq"	((u8)CONST_MASK(nr))

																								:	"memory");

								}	else	{

																asm	volatile(LOCK_PREFIX	"bts	%1,%0"

																								:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

								}

	}

This	function	looks	scary,	but	it	is	not	so	hard	as	it	seems.	First	of	all	it	passes		nr		or
number	of	the	bit	to	the		IS_IMMEDIATE		macro	which	just	calls	the	GCC	internal
	__builtin_constant_p		function:

#define	IS_IMMEDIATE(nr)				(__builtin_constant_p(nr))

	__builtin_constant_p		checks	that	given	parameter	is	known	constant	at	compile-time.	As
our		cpu		is	not	compile-time	constant,	the		else		clause	will	be	executed:

asm	volatile(LOCK_PREFIX	"bts	%1,%0"	:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

Let's	try	to	understand	how	it	works	step	by	step:

	LOCK_PREFIX		is	a	x86		lock		instruction.	This	instruction	tells	the	cpu	to	occupy	the	system
bus	while	the	instruction(s)	will	be	executed.	This	allows	the	CPU	to	synchronize	memory
access,	preventing	simultaneous	access	of	multiple	processors	(or	devices	-	the	DMA
controller	for	example)	to	one	memory	cell.

Cpumasks

628

	BITOP_ADDR		casts	the	given	parameter	to	the		(*(volatile	long	*)		and	adds		+m	
constraints.		+		means	that	this	operand	is	both	read	and	written	by	the	instruction.		m	
shows	that	this	is	a	memory	operand.		BITOP_ADDR		is	defined	as:

#define	BITOP_ADDR(x)	"+m"	(*(volatile	long	*)	(x))

Next	is	the		memory		clobber.	It	tells	the	compiler	that	the	assembly	code	performs	memory
reads	or	writes	to	items	other	than	those	listed	in	the	input	and	output	operands	(for
example,	accessing	the	memory	pointed	to	by	one	of	the	input	parameters).

	Ir		-	immediate	register	operand.

The		bts		instruction	sets	a	given	bit	in	a	bit	string	and	stores	the	value	of	a	given	bit	in	the
	CF		flag.	So	we	passed	the	cpu	number	which	is	zero	in	our	case	and	after		set_bit		is
executed,	it	sets	the	zero	bit	in	the		cpu_online_bits		cpumask.	It	means	that	the	first	cpu	is
online	at	this	moment.

Besides	the		set_cpu_*		API,	cpumask	of	course	provides	another	API	for	cpumasks
manipulation.	Let's	consider	it	in	short.

Additional	cpumask	API
cpumask	provides	a	set	of	macros	for	getting	the	numbers	of	CPUs	in	various	states.	For
example:

#define	num_online_cpus()				cpumask_weight(cpu_online_mask)

This	macro	returns	the	amount	of		online		CPUs.	It	calls	the		cpumask_weight		function	with
the		cpu_online_mask		bitmap	(read	about	it).	The	cpumask_weight		function	makes	one	call	of
the		bitmap_weight		function	with	two	parameters:

cpumask	bitmap;
	nr_cpumask_bits		-	which	is		NR_CPUS		in	our	case.

static	inline	unsigned	int	cpumask_weight(const	struct	cpumask	*srcp)

{

				return	bitmap_weight(cpumask_bits(srcp),	nr_cpumask_bits);

}

and	calculates	the	number	of	bits	in	the	given	bitmap.	Besides	the		num_online_cpus	,
cpumask	provides	macros	for	the	all	CPU	states:

Cpumasks

629

num_possible_cpus;
num_active_cpus;
cpu_online;
cpu_possible.

and	many	more.

Besides	that	the	Linux	kernel	provides	the	following	API	for	the	manipulation	of		cpumask	:

	for_each_cpu		-	iterates	over	every	cpu	in	a	mask;
	for_each_cpu_not		-	iterates	over	every	cpu	in	a	complemented	mask;
	cpumask_clear_cpu		-	clears	a	cpu	in	a	cpumask;
	cpumask_test_cpu		-	tests	a	cpu	in	a	mask;
	cpumask_setall		-	set	all	cpus	in	a	mask;
	cpumask_size		-	returns	size	to	allocate	for	a	'struct	cpumask'	in	bytes;

and	many	many	more...

Links
cpumask	documentation

Cpumasks

630

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

The	initcall	mechanism

Introduction
As	you	may	understand	from	the	title,	this	part	will	cover	interesting	and	important	concept	in
the	Linux	kernel	which	is	called	-		initcall	.	We	already	saw	definitions	like	these:

early_param("debug",	debug_kernel);

or

arch_initcall(init_pit_clocksource);

in	some	parts	of	the	Linux	kernel.	Before	we	see	how	this	mechanism	is	implemented	in	the
Linux	kernel,	we	must	know	actually	what	is	it	and	how	the	Linux	kernel	uses	it.	Definitions
like	these	represent	a	callback	function	which	will	be	called	during	initialization	of	the	Linux
kernel	or	right	after	it.	Actually	the	main	point	of	the		initcall		mechanism	is	to	determine
correct	order	of	the	built-in	modules	and	subsystems	initialization.	For	example	let's	look	at
the	following	function:

static	int	__init	nmi_warning_debugfs(void)

{

				debugfs_create_u64("nmi_longest_ns",	0644,

																							arch_debugfs_dir,	&nmi_longest_ns);

				return	0;

}

from	the	arch/x86/kernel/nmi.c	source	code	file.	As	we	may	see	it	just	creates	the
	nmi_longest_ns		debugfs	file	in	the		arch_debugfs_dir		directory.	Actually,	this		debugfs		file
may	be	created	only	after	the		arch_debugfs_dir		will	be	created.	Creation	of	this	directory
occurs	during	the	architecture-specific	initialization	of	the	Linux	kernel.	Actually	this	directory
will	be	created	in	the		arch_kdebugfs_init		function	from	the	arch/x86/kernel/kdebugfs.c
source	code	file.	Note	that	the		arch_kdebugfs_init		function	is	marked	as		initcall		too:

arch_initcall(arch_kdebugfs_init);

The	initcall	mechanism

631

https://en.wikipedia.org/wiki/Callback_%28computer_programming%29
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/nmi.c
https://en.wikipedia.org/wiki/Debugfs
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/kdebugfs.c

The	Linux	kernel	calls	all	architecture-specific		initcalls		before	the		fs		related
	initcalls	.	So,	our		nmi_longest_ns		file	will	be	created	only	after	the		arch_kdebugfs_dir	
directory	will	be	created.	Actually,	the	Linux	kernel	provides	eight	levels	of	main		initcalls	:

	early	;
	core	;
	postcore	;
	arch	;
	susys	;
	fs	;
	device	;
	late	.

All	of	their	names	are	represented	by	the		initcall_level_names		array	which	is	defined	in	the
init/main.c	source	code	file:

static	char	*initcall_level_names[]	__initdata	=	{

				"early",

				"core",

				"postcore",

				"arch",

				"subsys",

				"fs",

				"device",

				"late",

};

All	functions	which	are	marked	as		initcall		by	these	identifiers,	will	be	called	in	the	same
order	or	at	first		early	initcalls		will	be	called,	at	second		core	initcalls		and	etc.	From
this	moment	we	know	a	little	about		initcall		mechanism,	so	we	can	start	to	dive	into	the
source	code	of	the	Linux	kernel	to	see	how	this	mechanism	is	implemented.

Implementation	initcall	mechanism	in	the	Linux
kernel
The	Linux	kernel	provides	a	set	of	macros	from	the	include/linux/init.h	header	file	to	mark	a
given	function	as		initcall	.	All	of	these	macros	are	pretty	simple:

The	initcall	mechanism

632

https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h

#define	early_initcall(fn)								__define_initcall(fn,	early)

#define	core_initcall(fn)								__define_initcall(fn,	1)

#define	postcore_initcall(fn)								__define_initcall(fn,	2)

#define	arch_initcall(fn)								__define_initcall(fn,	3)

#define	subsys_initcall(fn)								__define_initcall(fn,	4)

#define	fs_initcall(fn)												__define_initcall(fn,	5)

#define	device_initcall(fn)								__define_initcall(fn,	6)

#define	late_initcall(fn)								__define_initcall(fn,	7)

and	as	we	may	see	these	macros	just	expands	to	the	call	of	the		__define_initcall		macro
from	the	same	header	file.	As	we	may	see,	the		__define_initcall		macro	takes	two
arguments:

	fn		-	callback	function	which	will	be	called	during	call	of		initcalls		of	the	certain	level;
	id		-	identifier	to	identify		initcall		to	prevent	error	when	two	the	same		initcalls	
point	to	the	same	handler.

The	implementation	of	the		__define_initcall		macro	looks	like:

#define	__define_initcall(fn,	id)	\

				static	initcall_t	__initcall_##fn##id	__used	\

				__attribute__((__section__(".initcall"	#id	".init")))	=	fn;	\

				LTO_REFERENCE_INITCALL(__initcall_##fn##id)

To	understand	the		__define_initcall		macro,	first	of	all	let's	look	at	the		initcall_t		type.
This	type	is	defined	in	the	same	header	file	and	represents	pointer	to	a	function	which
returns	pointer	to	integer	which	will	be	result	of	the		initcall	:

typedef	int	(*initcall_t)(void);

Now	let's	return	to	the		_-define_initcall		macro.	The	##	provides	ability	to	concatenate	two
symbols.	In	our	case,	the	first	line	of	the		__define_initcall		macro	produces	definition	of	the
given	function	which	is	located	in	the		.initcall	id	.init		ELF	section	and	marked	with	the
following	gcc	attributes:		__initcall_function_name_id		and		__used	.	If	we	will	look	in	the
include/asm-generic/vmlinux.lds.h	header	file	which	represents	data	for	the	kernel	linker
script,	we	will	see	that	all	of		initcalls		sections	will	be	placed	in	the		.data		section:

The	initcall	mechanism

633

https://en.wikipedia.org/wiki/Integer
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
http://www.skyfree.org/linux/references/ELF_Format.pdf
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/master/include/asm-generic/vmlinux.lds.h
https://en.wikipedia.org/wiki/Linker_%28computing%29

#define	INIT_CALLS																				\

								VMLINUX_SYMBOL(__initcall_start)	=	.;				\

								*(.initcallearly.init)																				\

								INIT_CALLS_LEVEL(0)																								\

								INIT_CALLS_LEVEL(1)																								\

								INIT_CALLS_LEVEL(2)																								\

								INIT_CALLS_LEVEL(3)																								\

								INIT_CALLS_LEVEL(4)																								\

								INIT_CALLS_LEVEL(5)																								\

								INIT_CALLS_LEVEL(rootfs)																\

								INIT_CALLS_LEVEL(6)																								\

								INIT_CALLS_LEVEL(7)																								\

								VMLINUX_SYMBOL(__initcall_end)	=	.;

#define	INIT_DATA_SECTION(initsetup_align)				\

				.init.data	:	AT(ADDR(.init.data)	-	LOAD_OFFSET)	{							\

								...																																																\

								INIT_CALLS																																											\

								...																																																\

				}

The	seconds	attribute	-		__used		is	defined	in	the	include/linux/compiler-gcc.h	header	file	and
just	expands	to	the	definition	of	the	following		gcc		attribute:

#define	__used			__attribute__((__used__))

which	prevents		variable	defined	but	not	used		warning.	The	last	line	of	the
	__define_initcall		macro	is:

LTO_REFERENCE_INITCALL(__initcall_##fn##id)

depends	on	the		CONFIG_LTO		kernel	configuration	option	and	just	provides	stub	for	the
compiler	Link	time	optimization:

#ifdef	CONFIG_LTO

#define	LTO_REFERENCE_INITCALL(x)	\

								static	__used	__exit	void	*reference_##x(void)		\

								{																																															\

																return	&x;																														\

								}

#else

#define	LTO_REFERENCE_INITCALL(x)

#endif

The	initcall	mechanism

634

https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://gcc.gnu.org/wiki/LinkTimeOptimization

to	prevent	problem	when	there	is	no	reference	to	a	variable	in	a	module	it	will	be	moved	to
the	end	of	the	program.	That's	all	about	the		__define_initcall		macro.	So,	all	of	the
	*_initcall		macros	will	be	expanded	during	compilation	of	the	Linux	kernel,	and	all
	initcalls		will	be	placed	in	their	sections	and	all	of	them	will	be	available	from	the		.data	
section	and	the	Linux	kernel	will	know	where	to	find	a	certain		initcall		to	call	it	during
initialization	process.

As		initcalls		can	be	called	by	the	Linux	kernel,	let's	look	how	the	Linux	kernel	does	this.
This	process	starts	in	the		do_basic_setup		function	from	the	init/main.c	source	code	file:

static	void	__init	do_basic_setup(void)

{

				...

				...

				...

							do_initcalls();

				...

				...

				...

}

which	is	called	during	the	initialization	of	the	Linux	kernel,	right	after	main	steps	of
initialization	like	memory	manager	related	initialization,		CPU		subsystem	and	other	already
finished.	The		do_initcalls		function	just	goes	through	the	array	of		initcall		levels	and	call
the		do_initcall_level		function	for	each	level:

static	void	__init	do_initcalls(void)

{

				int	level;

				for	(level	=	0;	level	<	ARRAY_SIZE(initcall_levels)	-	1;	level++)

								do_initcall_level(level);

}

The		initcall_levels		array	is	defined	in	the	same	source	code	file	and	contains	pointers	to
the	sections	which	were	defined	in	the		__define_initcall		macro:

The	initcall	mechanism

635

https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/init/main.c

static	initcall_t	*initcall_levels[]	__initdata	=	{

				__initcall0_start,

				__initcall1_start,

				__initcall2_start,

				__initcall3_start,

				__initcall4_start,

				__initcall5_start,

				__initcall6_start,

				__initcall7_start,

				__initcall_end,

};

If	you	are	interested,	you	can	find	these	sections	in	the		arch/x86/kernel/vmlinux.lds		linker
script	which	is	generated	after	the	Linux	kernel	compilation:

.init.data	:	AT(ADDR(.init.data)	-	0xffffffff80000000)	{

				...

				...

				...

				...

				__initcall_start	=	.;

				*(.initcallearly.init)

				__initcall0_start	=	.;

				*(.initcall0.init)

				*(.initcall0s.init)

				__initcall1_start	=	.;

				...

				...

}

If	this	is	not	familiar	for	you,	you	can	know	more	about	linkers	in	the	special	part	of	this	book.

As	we	just	saw,	the		do_initcall_level		function	takes	one	parameter	-	level	of		initcall	
and	does	two	following	things:	First	of	all	this	function	parses	the		initcall_command_line	
which	is	copy	of	usual	kernel	command	line	which	may	contain	parameters	for	modules	with
the		parse_args		function	from	the	kernel/params.c	source	code	file	and	call	the
	do_on_initcall		function	for	each	level:

for	(fn	=	initcall_levels[level];	fn	<	initcall_levels[level+1];	fn++)

								do_one_initcall(*fn);

The		do_on_initcall		does	all	main	job	for	us.	As	we	may	see,	this	function	takes	one
parameter	which	represent		initcall		callback	function	and	does	the	call	of	the	given
callback:

The	initcall	mechanism

636

https://en.wikipedia.org/wiki/Linker_%28computing%29
https://0xax.gitbooks.io/linux-insides/content/Misc/linkers.html
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/kernel/params.c

int	__init_or_module	do_one_initcall(initcall_t	fn)

{

				int	count	=	preempt_count();

				int	ret;

				char	msgbuf[64];

				if	(initcall_blacklisted(fn))

								return	-EPERM;

				if	(initcall_debug)

								ret	=	do_one_initcall_debug(fn);

				else

								ret	=	fn();

				msgbuf[0]	=	0;

				if	(preempt_count()	!=	count)	{

								sprintf(msgbuf,	"preemption	imbalance	");

								preempt_count_set(count);

				}

				if	(irqs_disabled())	{

								strlcat(msgbuf,	"disabled	interrupts	",	sizeof(msgbuf));

								local_irq_enable();

				}

				WARN(msgbuf[0],	"initcall	%pF	returned	with	%s\n",	fn,	msgbuf);

				return	ret;

}

Let's	try	to	understand	what	does	the		do_on_initcall		function	does.	First	of	all	we	increase
preemption	counter	to	check	it	later	to	be	sure	that	it	is	not	imbalanced.	After	this	step	we
can	see	the	call	of	the		initcall_backlist		function	which	goes	over	the
	blacklisted_initcalls		list	which	stores	blacklisted		initcalls		and	releases	the	given
	initcall		if	it	is	located	in	this	list:

list_for_each_entry(entry,	&blacklisted_initcalls,	next)	{

				if	(!strcmp(fn_name,	entry->buf))	{

								pr_debug("initcall	%s	blacklisted\n",	fn_name);

								kfree(fn_name);

								return	true;

				}

}

The	blacklisted		initcalls		stored	in	the		blacklisted_initcalls		list	and	this	list	is	filled
during	early	Linux	kernel	initialization	from	the	Linux	kernel	command	line.

After	the	blacklisted		initcalls		will	be	handled,	the	next	part	of	code	does	directly	the	call	of
the		initcall	:

The	initcall	mechanism

637

https://en.wikipedia.org/wiki/Preemption_%28computing%29

if	(initcall_debug)

				ret	=	do_one_initcall_debug(fn);

else

				ret	=	fn();

Depends	on	the	value	of	the		initcall_debug		variable,	the		do_one_initcall_debug		function
will	call		initcall		or	this	function	will	do	it	directly	via		fn()	.	The		initcall_debug		variable
is	defined	in	the	same	source	code	file:

bool	initcall_debug;

and	provides	ability	to	print	some	information	to	the	kernel	log	buffer.	The	value	of	the
variable	can	be	set	from	the	kernel	commands	via	the		initcall_debug		parameter.	As	we
can	read	from	the	documentation	of	the	Linux	kernel	command	line:

initcall_debug				[KNL]	Trace	initcalls	as	they	are	executed.		Useful

																						for	working	out	where	the	kernel	is	dying	during

																						startup.

And	that's	true.	If	we	will	look	at	the	implementation	of	the		do_one_initcall_debug		function,
we	will	see	that	it	does	the	same	as	the		do_one_initcall		function	or	i.e.	the
	do_one_initcall_debug		function	calls	the	given		initcall		and	prints	some	information	(like
the	pid	of	the	currently	running	task,	duration	of	execution	of	the		initcall		and	etc.)	related
to	the	execution	of	the	given		initcall	:

static	int	__init_or_module	do_one_initcall_debug(initcall_t	fn)

{

				ktime_t	calltime,	delta,	rettime;

				unsigned	long	long	duration;

				int	ret;

				printk(KERN_DEBUG	"calling		%pF	@	%i\n",	fn,	task_pid_nr(current));

				calltime	=	ktime_get();

				ret	=	fn();

				rettime	=	ktime_get();

				delta	=	ktime_sub(rettime,	calltime);

				duration	=	(unsigned	long	long)	ktime_to_ns(delta)	>>	10;

				printk(KERN_DEBUG	"initcall	%pF	returned	%d	after	%lld	usecs\n",

									fn,	ret,	duration);

				return	ret;

}

The	initcall	mechanism

638

https://github.com/torvalds/linux/blob/master/init/main.c
https://en.wikipedia.org/wiki/Dmesg
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://en.wikipedia.org/wiki/Process_identifier

As	an		initcall		was	called	by	the	one	of	the		do_one_initcall		or		do_one_initcall_debug	
functions,	we	may	see	two	checks	in	the	end	of	the		do_one_initcall		function.	The	first	one
checks	the	amount	of	possible		__preempt_count_add		and		__preempt_count_sub		calls	inside
of	the	executed	initcall,	and	if	this	value	is	not	equal	to	the	previous	value	of	the	preemptible
counter,	we	add	the		preemption	imbalance		string	to	the	message	buffer	and	set	correct
value	of	the	preemptible	counter:

if	(preempt_count()	!=	count)	{

				sprintf(msgbuf,	"preemption	imbalance	");

				preempt_count_set(count);

}

Later	this	error	string	will	be	printed.	The	last	check	the	state	of	local	IRQs	and	if	they	are
disabled,	we	add	the		disabled	interrupts		strings	to	the	our	message	buffer	and	enable
	IRQs		for	the	current	processor	to	prevent	the	state	when		IRQs		were	disabled	by	an
	initcall		and	didn't	enabled	again:

if	(irqs_disabled())	{

				strlcat(msgbuf,	"disabled	interrupts	",	sizeof(msgbuf));

				local_irq_enable();

}

That's	all.	In	this	way	the	Linux	kernel	does	initialization	of	many	subsystems	in	a	correct
order.	From	now	we	know	what	is	it		initcall		mechanism	in	the	Linux	kernel.	We	saw	main
general	part	of	the		initcall		mechanism	in	this	part.	But	we	avoided	some	important
concepts.	Let's	make	a	short	look	at	these	concepts.

First	of	all,	we	have	missed	one	level	of		initcalls	,	this	is		rootfs	initcalls	.	You	can	find
definition	of	the		rootfs_initcall		in	the	include/linux/init.h	header	file	together	with	all
similar	macros	which	we	saw	in	this	part:

#define	rootfs_initcall(fn)								__define_initcall(fn,	rootfs)

As	we	may	understand	from	the	macro's	name,	its	main	purpose	is	to	store	callbacks	which
are	related	to	the	rootfs.	Besides	this	goal,	it	may	be	useful	to	initialize	other	stuffs	after
initialization	related	to	filesystems	level,	but	only	before	devices	related	stuff	are	not
initialized.	For	example,	the	decompression	of	the	initramfs	which	occurred	in	the
	populate_rootfs		function	from	the	init/initramfs.c	source	code	file:

rootfs_initcall(populate_rootfs);

From	this	place,	we	may	see	familiar	output:

The	initcall	mechanism

639

https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://en.wikipedia.org/wiki/Initramfs
https://en.wikipedia.org/wiki/Initramfs
https://github.com/torvalds/linux/blob/master/init/initramfs.c

[0.199960]	Unpacking	initramfs...

Besides	the		rootfs_initcall		level,	there	are	additional		console_initcall	,
	security_initcall		and	other	secondary		initcall		levels.	The	last	thing	that	we	have
missed	is	the	set	of	the		*_initcall_sync		levels.	Almost	each		*_initcall		macro	that	we
have	seen	in	this	part,	has	macro	companion	with	the		_sync		prefix:

#define	core_initcall_sync(fn)								__define_initcall(fn,	1s)

#define	postcore_initcall_sync(fn)				__define_initcall(fn,	2s)

#define	arch_initcall_sync(fn)								__define_initcall(fn,	3s)

#define	subsys_initcall_sync(fn)				__define_initcall(fn,	4s)

#define	fs_initcall_sync(fn)								__define_initcall(fn,	5s)

#define	device_initcall_sync(fn)				__define_initcall(fn,	6s)

#define	late_initcall_sync(fn)								__define_initcall(fn,	7s)

The	main	goal	of	these	additional	levels	is	to	wait	for	completion	of	all	a	module	related
initialization	routines	for	a	certain	level.

That's	all.

Conclusion
In	this	part	we	saw	the	important	mechanism	of	the	Linux	kernel	which	allows	to	call	a
function	which	depends	on	the	current	state	of	the	Linux	kernel	during	its	initialization.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or
just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you	found	any	mistakes	please	send	me	PR	to	linux-insides..

Links
callback
debugfs
integer	type
symbols	concatenation
GCC
Link	time	optimization
Introduction	to	linkers
Linux	kernel	command	line

The	initcall	mechanism

640

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Callback_%28computer_programming%29
https://en.wikipedia.org/wiki/Debugfs
https://en.wikipedia.org/wiki/Integer
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://0xax.gitbooks.io/linux-insides/content/Misc/linkers.html
https://www.kernel.org/doc/Documentation/kernel-parameters.txt

Process	identifier
IRQs
rootfs
previous	part

The	initcall	mechanism

641

https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Initramfs
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html

Data	Structures	in	the	Linux	Kernel
Linux	kernel	provides	different	implementations	of	data	structures	like	doubly	linked	list,	B+
tree,	priority	heap	and	many	many	more.

This	part	considers	the	following	data	structures	and	algorithms:

Doubly	linked	list
Radix	tree
Bit	arrays

Data	Structures	in	the	Linux	Kernel

642

https://github.com/0xAX/linux-insides/blob/master/DataStructures/dlist.md
https://github.com/0xAX/linux-insides/blob/master/DataStructures/radix-tree.md
https://github.com/0xAX/linux-insides/blob/master/DataStructures/bitmap.md

Data	Structures	in	the	Linux	Kernel

Doubly	linked	list
Linux	kernel	provides	its	own	implementation	of	doubly	linked	list,	which	you	can	find	in	the
include/linux/list.h.	We	will	start		Data	Structures	in	the	Linux	kernel		from	the	doubly	linked
list	data	structure.	Why?	Because	it	is	very	popular	in	the	kernel,	just	try	to	search

First	of	all,	let's	look	on	the	main	structure	in	the	include/linux/types.h:

struct	list_head	{

				struct	list_head	*next,	*prev;

};

You	can	note	that	it	is	different	from	many	implementations	of	doubly	linked	list	which	you
have	seen.	For	example,	this	doubly	linked	list	structure	from	the	glib	library	looks	like	:

struct	GList	{

		gpointer	data;

		GList	*next;

		GList	*prev;

};

Usually	a	linked	list	structure	contains	a	pointer	to	the	item.	The	implementation	of	linked	list
in	Linux	kernel	does	not.	So	the	main	question	is	-		where	does	the	list	store	the	data?	.
The	actual	implementation	of	linked	list	in	the	kernel	is	-		Intrusive	list	.	An	intrusive	linked
list	does	not	contain	data	in	its	nodes	-	A	node	just	contains	pointers	to	the	next	and
previous	node	and	list	nodes	part	of	the	data	that	are	added	to	the	list.	This	makes	the	data
structure	generic,	so	it	does	not	care	about	entry	data	type	anymore.

For	example:

struct	nmi_desc	{

				spinlock_t	lock;

				struct	list_head	head;

};

Let's	look	at	some	examples	to	understand	how		list_head		is	used	in	the	kernel.	As	I
already	wrote	about,	there	are	many,	really	many	different	places	where	lists	are	used	in	the
kernel.	Let's	look	for	an	example	in	miscellaneous	character	drivers.	Misc	character	drivers

Doubly	linked	list

643

https://github.com/torvalds/linux/blob/master/include/linux/list.h
http://lxr.free-electrons.com/ident?i=list_head
https://github.com/torvalds/linux/blob/master/include/linux/types.h
http://www.gnu.org/software/libc/

API	from	the	drivers/char/misc.c	is	used	for	writing	small	drivers	for	handling	simple
hardware	or	virtual	devices.	Those	drivers	share	same	major	number:

#define	MISC_MAJOR														10

but	have	their	own	minor	number.	For	example	you	can	see	it	with:

ls	-l	/dev	|		grep	10

crw-------			1	root	root					10,	235	Mar	21	12:01	autofs

drwxr-xr-x		10	root	root									200	Mar	21	12:01	cpu

crw-------			1	root	root					10,		62	Mar	21	12:01	cpu_dma_latency

crw-------			1	root	root					10,	203	Mar	21	12:01	cuse

drwxr-xr-x			2	root	root									100	Mar	21	12:01	dri

crw-rw-rw-			1	root	root					10,	229	Mar	21	12:01	fuse

crw-------			1	root	root					10,	228	Mar	21	12:01	hpet

crw-------			1	root	root					10,	183	Mar	21	12:01	hwrng

crw-rw----+		1	root	kvm						10,	232	Mar	21	12:01	kvm

crw-rw----			1	root	disk					10,	237	Mar	21	12:01	loop-control

crw-------			1	root	root					10,	227	Mar	21	12:01	mcelog

crw-------			1	root	root					10,		59	Mar	21	12:01	memory_bandwidth

crw-------			1	root	root					10,		61	Mar	21	12:01	network_latency

crw-------			1	root	root					10,		60	Mar	21	12:01	network_throughput

crw-r-----			1	root	kmem					10,	144	Mar	21	12:01	nvram

brw-rw----			1	root	disk						1,		10	Mar	21	12:01	ram10

crw--w----			1	root	tty							4,		10	Mar	21	12:01	tty10

crw-rw----			1	root	dialout			4,		74	Mar	21	12:01	ttyS10

crw-------			1	root	root					10,		63	Mar	21	12:01	vga_arbiter

crw-------			1	root	root					10,	137	Mar	21	12:01	vhci

Now	let's	have	a	close	look	at	how	lists	are	used	in	the	misc	device	drivers.	First	of	all,	let's
look	on		miscdevice		structure:

struct	miscdevice

{

						int	minor;

						const	char	*name;

						const	struct	file_operations	*fops;

						struct	list_head	list;

						struct	device	*parent;

						struct	device	*this_device;

						const	char	*nodename;

						mode_t	mode;

};

We	can	see	the	fourth	field	in	the		miscdevice		structure	-		list		which	is	a	list	of	registered
devices.	In	the	beginning	of	the	source	code	file	we	can	see	the	definition	of	misc_list:

Doubly	linked	list

644

https://github.com/torvalds/linux/blob/master/drivers/char/misc.c

static	LIST_HEAD(misc_list);

which	expands	to	the	definition	of	variables	with		list_head		type:

#define	LIST_HEAD(name)	\

				struct	list_head	name	=	LIST_HEAD_INIT(name)

and	initializes	it	with	the		LIST_HEAD_INIT		macro,	which	sets	previous	and	next	entries	with
the	address	of	variable	-	name:

#define	LIST_HEAD_INIT(name)	{	&(name),	&(name)	}

Now	let's	look	on	the		misc_register		function	which	registers	a	miscellaneous	device.	At	the
start	it	initializes		miscdevice->list		with	the		INIT_LIST_HEAD		function:

INIT_LIST_HEAD(&misc->list);

which	does	the	same	as	the		LIST_HEAD_INIT		macro:

static	inline	void	INIT_LIST_HEAD(struct	list_head	*list)

{

				list->next	=	list;

				list->prev	=	list;

}

In	the	next	step	after	a	device	is	created	by	the		device_create		function,	we	add	it	to	the
miscellaneous	devices	list	with:

list_add(&misc->list,	&misc_list);

Kernel		list.h		provides	this	API	for	the	addition	of	a	new	entry	to	the	list.	Let's	look	at	its
implementation:

static	inline	void	list_add(struct	list_head	*new,	struct	list_head	*head)

{

				__list_add(new,	head,	head->next);

}

It	just	calls	internal	function		__list_add		with	the	3	given	parameters:

new	-	new	entry.

Doubly	linked	list

645

head	-	list	head	after	which	the	new	item	will	be	inserted.
head->next	-	next	item	after	list	head.

Implementation	of	the		__list_add		is	pretty	simple:

static	inline	void	__list_add(struct	list_head	*new,

																		struct	list_head	*prev,

																		struct	list_head	*next)

{

				next->prev	=	new;

				new->next	=	next;

				new->prev	=	prev;

				prev->next	=	new;

}

Here	we	add	a	new	item	between		prev		and		next	.	So		misc		list	which	we	defined	at	the
start	with	the		LIST_HEAD_INIT		macro	will	contain	previous	and	next	pointers	to	the
	miscdevice->list	.

There	is	still	one	question:	how	to	get	list's	entry.	There	is	a	special	macro:

#define	list_entry(ptr,	type,	member)	\

				container_of(ptr,	type,	member)

which	gets	three	parameters:

ptr	-	the	structure	list_head	pointer;
type	-	structure	type;
member	-	the	name	of	the	list_head	within	the	structure;

For	example:

const	struct	miscdevice	*p	=	list_entry(v,	struct	miscdevice,	list)

After	this	we	can	access	to	any		miscdevice		field	with		p->minor		or		p->name		and	etc...	Let's
look	on	the		list_entry		implementation:

#define	list_entry(ptr,	type,	member)	\

				container_of(ptr,	type,	member)

As	we	can	see	it	just	calls		container_of		macro	with	the	same	arguments.	At	first	sight,	the
	container_of		looks	strange:

Doubly	linked	list

646

#define	container_of(ptr,	type,	member)	({																						\

				const	typeof(((type	*)0)->member)	*__mptr	=	(ptr);				\

				(type	*)((char	*)__mptr	-	offsetof(type,member));})

First	of	all	you	can	note	that	it	consists	of	two	expressions	in	curly	brackets.	The	compiler
will	evaluate	the	whole	block	in	the	curly	braces	and	use	the	value	of	the	last	expression.

For	example:

#include	<stdio.h>

int	main()	{

				int	i	=	0;

				printf("i	=	%d\n",	({++i;	++i;}));

				return	0;

}

will	print		2	.

The	next	point	is		typeof	,	it's	simple.	As	you	can	understand	from	its	name,	it	just	returns
the	type	of	the	given	variable.	When	I	first	saw	the	implementation	of	the		container_of	
macro,	the	strangest	thing	I	found	was	the	zero	in	the		((type	*)0)		expression.	Actually	this
pointer	magic	calculates	the	offset	of	the	given	field	from	the	address	of	the	structure,	but	as
we	have		0		here,	it	will	be	just	a	zero	offset	along	with	the	field	width.	Let's	look	at	a	simple
example:

#include	<stdio.h>

struct	s	{

								int	field1;

								char	field2;

								char	field3;

};

int	main()	{

				printf("%p\n",	&((struct	s*)0)->field3);

				return	0;

}

will	print		0x5	.

The	next		offsetof		macro	calculates	offset	from	the	beginning	of	the	structure	to	the	given
structure's	field.	Its	implementation	is	very	similar	to	the	previous	code:

#define	offsetof(TYPE,	MEMBER)	((size_t)	&((TYPE	*)0)->MEMBER)

Doubly	linked	list

647

Let's	summarize	all	about		container_of		macro.	The		container_of		macro	returns	the
address	of	the	structure	by	the	given	address	of	the	structure's	field	with		list_head		type,
the	name	of	the	structure	field	with		list_head		type	and	type	of	the	container	structure.	At
the	first	line	this	macro	declares	the		__mptr		pointer	which	points	to	the	field	of	the	structure
that		ptr		points	to	and	assigns		ptr		to	it.	Now		ptr		and		__mptr		point	to	the	same
address.	Technically	we	don't	need	this	line	but	it's	useful	for	type	checking.	The	first	line
ensures	that	the	given	structure	(type		parameter)	has	a	member	called		member	.	In	the
second	line	it	calculates	offset	of	the	field	from	the	structure	with	the		offsetof		macro	and
subtracts	it	from	the	structure	address.	That's	all.

Of	course		list_add		and		list_entry		is	not	the	only	functions	which		<linux/list.h>	
provides.	Implementation	of	the	doubly	linked	list	provides	the	following	API:

list_add
list_add_tail
list_del
list_replace
list_move
list_is_last
list_empty
list_cut_position
list_splice
list_for_each
list_for_each_entry

and	many	more.

Doubly	linked	list

648

Data	Structures	in	the	Linux	Kernel

Radix	tree
As	you	already	know	linux	kernel	provides	many	different	libraries	and	functions	which
implement	different	data	structures	and	algorithms.	In	this	part	we	will	consider	one	of	these
data	structures	-	Radix	tree.	There	are	two	files	which	are	related	to		radix	tree	
implementation	and	API	in	the	linux	kernel:

include/linux/radix-tree.h
lib/radix-tree.c

Lets	talk	about	what	a		radix	tree		is.	Radix	tree	is	a		compressed	trie		where	a	trie	is	a	data
structure	which	implements	an	interface	of	an	associative	array	and	allows	to	store	values
as		key-value	.	The	keys	are	usually	strings,	but	any	data	type	can	be	used.	A	trie	is	different
from	an		n-tree		because	of	its	nodes.	Nodes	of	a	trie	do	not	store	keys;	instead,	a	node	of
a	trie	stores	single	character	labels.	The	key	which	is	related	to	a	given	node	is	derived	by
traversing	from	the	root	of	the	tree	to	this	node.	For	example:

Radix	tree

649

http://en.wikipedia.org/wiki/Radix_tree
https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h
https://github.com/torvalds/linux/blob/master/lib/radix-tree.c
http://en.wikipedia.org/wiki/Trie

               +-----------+
               |           |
               |    "	"    |
															|											|

        +------+-----------+------+
        |                         |
        |                         |
   +----v------+            +-----v-----+
   |           |            |           |
   |    g      |            |     c     |
			|											|												|											|

   +-----------+            +-----------+
        |                         |
        |                         |
   +----v------+            +-----v-----+
   |           |            |           |
   |    o      |            |     a     |
			|											|												|											|

   +-----------+            +-----------+
                                  |
                                  |
                            +-----v-----+
                            |           |
                            |     t     |
																												|											|

                            +-----------+

So	in	this	example,	we	can	see	the		trie		with	keys,		go		and		cat	.	The	compressed	trie	or
	radix	tree		differs	from		trie		in	that	all	intermediates	nodes	which	have	only	one	child	are
removed.

Radix	tree	in	linux	kernel	is	the	data	structure	which	maps	values	to	integer	keys.	It	is
represented	by	the	following	structures	from	the	file	include/linux/radix-tree.h:

struct	radix_tree_root	{

									unsigned	int												height;

									gfp_t																			gfp_mask;

									struct	radix_tree_node		__rcu	*rnode;

};

This	structure	presents	the	root	of	a	radix	tree	and	contains	three	fields:

	height		-	height	of	the	tree;
	gfp_mask		-	tells	how	memory	allocations	will	be	performed;
	rnode		-	pointer	to	the	child	node.

The	first	field	we	will	discuss	is		gfp_mask	:

Radix	tree

650

https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h

Low-level	kernel	memory	allocation	functions	take	a	set	of	flags	as	-		gfp_mask	,	which
describes	how	that	allocation	is	to	be	performed.	These		GFP_		flags	which	control	the
allocation	process	can	have	following	values:	(GF_NOIO		flag)	means	sleep	and	wait	for
memory,	(__GFP_HIGHMEM		flag)	means	high	memory	can	be	used,	(GFP_ATOMIC		flag)	means
the	allocation	process	has	high-priority	and	can't	sleep	etc.

	GFP_NOIO		-	can	sleep	and	wait	for	memory;
	__GFP_HIGHMEM		-	high	memory	can	be	used;
	GFP_ATOMIC		-	allocation	process	is	high-priority	and	can't	sleep;

etc.

The	next	field	is		rnode	:

struct	radix_tree_node	{

								unsigned	int				path;

								unsigned	int				count;

								union	{

																struct	{

																								struct	radix_tree_node	*parent;

																								void	*private_data;

																};

																struct	rcu_head	rcu_head;

								};

								/*	For	tree	user	*/

								struct	list_head	private_list;

								void	__rcu						*slots[RADIX_TREE_MAP_SIZE];

								unsigned	long			tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];

};

This	structure	contains	information	about	the	offset	in	a	parent	and	height	from	the	bottom,
count	of	the	child	nodes	and	fields	for	accessing	and	freeing	a	node.	This	fields	are
described	below:

	path		-	offset	in	parent	&	height	from	the	bottom;
	count		-	count	of	the	child	nodes;
	parent		-	pointer	to	the	parent	node;
	private_data		-	used	by	the	user	of	a	tree;
	rcu_head		-	used	for	freeing	a	node;
	private_list		-	used	by	the	user	of	a	tree;

The	two	last	fields	of	the		radix_tree_node		-		tags		and		slots		are	important	and	interesting.
Every	node	can	contains	a	set	of	slots	which	are	store	pointers	to	the	data.	Empty	slots	in
the	linux	kernel	radix	tree	implementation	store		NULL	.	Radix	trees	in	the	linux	kernel	also
supports	tags	which	are	associated	with	the		tags		fields	in	the		radix_tree_node		structure.
Tags	allow	individual	bits	to	be	set	on	records	which	are	stored	in	the	radix	tree.

Radix	tree

651

Now	that	we	know	about	radix	tree	structure,	it	is	time	to	look	on	its	API.

Linux	kernel	radix	tree	API
We	start	from	the	data	structure	initialization.	There	are	two	ways	to	initialize	a	new	radix
tree.	The	first	is	to	use		RADIX_TREE		macro:

RADIX_TREE(name,	gfp_mask);

`

As	you	can	see	we	pass	the		name		parameter,	so	with	the		RADIX_TREE		macro	we	can	define
and	initialize	radix	tree	with	the	given	name.	Implementation	of	the		RADIX_TREE		is	easy:

#define	RADIX_TREE(name,	mask)	\

									struct	radix_tree_root	name	=	RADIX_TREE_INIT(mask)

#define	RADIX_TREE_INIT(mask)			{	\

								.height	=	0,														\

								.gfp_mask	=	(mask),							\

								.rnode	=	NULL,												\

}

At	the	beginning	of	the		RADIX_TREE		macro	we	define	instance	of	the		radix_tree_root	
structure	with	the	given	name	and	call		RADIX_TREE_INIT		macro	with	the	given	mask.	The
	RADIX_TREE_INIT		macro	just	initializes		radix_tree_root		structure	with	the	default	values
and	the	given	mask.

The	second	way	is	to	define		radix_tree_root		structure	by	hand	and	pass	it	with	mask	to	the
	INIT_RADIX_TREE		macro:

struct	radix_tree_root	my_radix_tree;

INIT_RADIX_TREE(my_tree,	gfp_mask_for_my_radix_tree);

where:

#define	INIT_RADIX_TREE(root,	mask)		\

do	{																																	\

								(root)->height	=	0;										\

								(root)->gfp_mask	=	(mask);			\

								(root)->rnode	=	NULL;								\

}	while	(0)

makes	the	same	initialization	with	default	values	as	it	does		RADIX_TREE_INIT		macro.

Radix	tree

652

The	next	are	two	functions	for	inserting	and	deleting	records	to/from	a	radix	tree:

	radix_tree_insert	;
	radix_tree_delete	;

The	first		radix_tree_insert		function	takes	three	parameters:

root	of	a	radix	tree;
index	key;
data	to	insert;

The		radix_tree_delete		function	takes	the	same	set	of	parameters	as	the
	radix_tree_insert	,	but	without	data.

The	search	in	a	radix	tree	implemented	in	two	ways:

	radix_tree_lookup	;
	radix_tree_gang_lookup	;
	radix_tree_lookup_slot	.

The	first		radix_tree_lookup		function	takes	two	parameters:

root	of	a	radix	tree;
index	key;

This	function	tries	to	find	the	given	key	in	the	tree	and	return	the	record	associated	with	this
key.	The	second		radix_tree_gang_lookup		function	have	the	following	signature

unsigned	int	radix_tree_gang_lookup(struct	radix_tree_root	*root,

																																				void	**results,

																																				unsigned	long	first_index,

																																				unsigned	int	max_items);

and	returns	number	of	records,	sorted	by	the	keys,	starting	from	the	first	index.	Number	of
the	returned	records	will	not	be	greater	than		max_items		value.

And	the	last		radix_tree_lookup_slot		function	will	return	the	slot	which	will	contain	the	data.

Links
Radix	tree
Trie

Radix	tree

653

http://en.wikipedia.org/wiki/Radix_tree
http://en.wikipedia.org/wiki/Trie

Radix	tree

654

Data	Structures	in	the	Linux	Kernel

Bit	arrays	and	bit	operations	in	the	Linux
kernel
Besides	different	linked	and	tree	based	data	structures,	the	Linux	kernel	provides	API	for	bit
arrays	or		bitmap	.	Bit	arrays	are	heavily	used	in	the	Linux	kernel	and	following	source	code
files	contain	common		API		for	work	with	such	structures:

lib/bitmap.c
include/linux/bitmap.h

Besides	these	two	files,	there	is	also	architecture-specific	header	file	which	provides
optimized	bit	operations	for	certain	architecture.	We	consider	x86_64	architecture,	so	in	our
case	it	will	be:

arch/x86/include/asm/bitops.h

header	file.	As	I	just	wrote	above,	the		bitmap		is	heavily	used	in	the	Linux	kernel.	For
example	a		bit	array		is	used	to	store	set	of	online/offline	processors	for	systems	which
support	hot-plug	cpu	(more	about	this	you	can	read	in	the	cpumasks	part),	a		bit	array	
stores	set	of	allocated	irqs	during	initialization	of	the	Linux	kernel	and	etc.

So,	the	main	goal	of	this	part	is	to	see	how		bit	arrays		are	implemented	in	the	Linux	kernel.
Let's	start.

Declaration	of	bit	array
Before	we	will	look	on		API		for	bitmaps	manipulation,	we	must	know	how	to	declare	it	in	the
Linux	kernel.	There	are	two	common	method	to	declare	own	bit	array.	The	first	simple	way	to
declare	a	bit	array	is	to	array	of		unsigned	long	.	For	example:

unsigned	long	my_bitmap[8]

The	second	way	is	to	use	the		DECLARE_BITMAP		macro	which	is	defined	in	the
include/linux/types.h	header	file:

Bit	arrays

655

https://en.wikipedia.org/wiki/Linked_data_structure
https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Bit_array
https://github.com/torvalds/linux/blob/master/lib/bitmap.c
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/types.h

#define	DECLARE_BITMAP(name,bits)	\

				unsigned	long	name[BITS_TO_LONGS(bits)]

We	can	see	that		DECLARE_BITMAP		macro	takes	two	parameters:

	name		-	name	of	bitmap;
	bits		-	amount	of	bits	in	bitmap;

and	just	expands	to	the	definition	of		unsigned	long		array	with		BITS_TO_LONGS(bits)	
elements,	where	the		BITS_TO_LONGS		macro	converts	a	given	number	of	bits	to	number	of
	longs		or	in	other	words	it	calculates	how	many		8		byte	elements	in		bits	:

#define	BITS_PER_BYTE											8

#define	DIV_ROUND_UP(n,d)	(((n)	+	(d)	-	1)	/	(d))

#define	BITS_TO_LONGS(nr)							DIV_ROUND_UP(nr,	BITS_PER_BYTE	*	sizeof(long))

So,	for	example		DECLARE_BITMAP(my_bitmap,	64)		will	produce:

>>>	(((64)	+	(64)	-	1)	/	(64))

1

and:

unsigned	long	my_bitmap[1];

After	we	are	able	to	declare	a	bit	array,	we	can	start	to	use	it.

Architecture-specific	bit	operations
We	already	saw	above	a	couple	of	source	code	and	header	files	which	provide	API	for
manipulation	of	bit	arrays.	The	most	important	and	widely	used	API	of	bit	arrays	is
architecture-specific	and	located	as	we	already	know	in	the	arch/x86/include/asm/bitops.h
header	file.

First	of	all	let's	look	at	the	two	most	important	functions:

	set_bit	;
	clear_bit	.

Bit	arrays

656

https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h

I	think	that	there	is	no	need	to	explain	what	these	function	do.	This	is	already	must	be	clear
from	their	name.	Let's	look	on	their	implementation.	If	you	will	look	into	the
arch/x86/include/asm/bitops.h	header	file,	you	will	note	that	each	of	these	functions
represented	by	two	variants:	atomic	and	not.	Before	we	will	start	to	dive	into
implementations	of	these	functions,	first	of	all	we	must	to	know	a	little	about		atomic	
operations.

In	simple	words	atomic	operations	guarantees	that	two	or	more	operations	will	not	be
performed	on	the	same	data	concurrently.	The		x86		architecture	provides	a	set	of	atomic
instructions,	for	example	xchg	instruction,	cmpxchg	instruction	and	etc.	Besides	atomic
instructions,	some	of	non-atomic	instructions	can	be	made	atomic	with	the	help	of	the	lock
instruction.	It	is	enough	to	know	about	atomic	operations	for	now,	so	we	can	begin	to
consider	implementation	of		set_bit		and		clear_bit		functions.

First	of	all,	let's	start	to	consider		non-atomic		variants	of	this	function.	Names	of	non-atomic
	set_bit		and		clear_bit		starts	from	double	underscore.	As	we	already	know,	all	of	these
functions	are	defined	in	the	arch/x86/include/asm/bitops.h	header	file	and	the	first	function	is
	__set_bit	:

static	inline	void	__set_bit(long	nr,	volatile	unsigned	long	*addr)

{

				asm	volatile("bts	%1,%0"	:	ADDR	:	"Ir"	(nr)	:	"memory");

}

As	we	can	see	it	takes	two	arguments:

	nr		-	number	of	bit	in	a	bit	array.
	addr		-	address	of	a	bit	array	where	we	need	to	set	bit.

Note	that	the		addr		parameter	is	defined	with		volatile		keyword	which	tells	to	compiler	that
value	maybe	changed	by	the	given	address.	The	implementation	of	the		__set_bit		is	pretty
easy.	As	we	can	see,	it	just	contains	one	line	of	inline	assembler	code.	In	our	case	we	are
using	the	bts	instruction	which	selects	a	bit	which	is	specified	with	the	first	operand	(nr		in
our	case)	from	the	bit	array,	stores	the	value	of	the	selected	bit	in	the	CF	flags	register	and
set	this	bit.

Note	that	we	can	see	usage	of	the		nr	,	but	there	is		addr		here.	You	already	might	guess
that	the	secret	is	in		ADDR	.	The		ADDR		is	the	macro	which	is	defined	in	the	same	header
code	file	and	expands	to	the	string	which	contains	value	of	the	given	address	and		+m	
constraint:

#define	ADDR																BITOP_ADDR(addr)

#define	BITOP_ADDR(x)	"+m"	(*(volatile	long	*)	(x))

Bit	arrays

657

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_328.html
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/Inline_assembler
http://x86.renejeschke.de/html/file_module_x86_id_25.html
https://en.wikipedia.org/wiki/FLAGS_register

Besides	the		+m	,	we	can	see	other	constraints	in	the		__set_bit		function.	Let's	look	on	they
and	try	to	understand	what	do	they	mean:

	+m		-	represents	memory	operand	where		+		tells	that	the	given	operand	will	be	input
and	output	operand;
	I		-	represents	integer	constant;
	r		-	represents	register	operand

Besides	these	constraint,	we	also	can	see	-	the		memory		keyword	which	tells	compiler	that
this	code	will	change	value	in	memory.	That's	all.	Now	let's	look	at	the	same	function	but	at
	atomic		variant.	It	looks	more	complex	that	its		non-atomic		variant:

static	__always_inline	void

set_bit(long	nr,	volatile	unsigned	long	*addr)

{

				if	(IS_IMMEDIATE(nr))	{

								asm	volatile(LOCK_PREFIX	"orb	%1,%0"

												:	CONST_MASK_ADDR(nr,	addr)

												:	"iq"	((u8)CONST_MASK(nr))

												:	"memory");

				}	else	{

								asm	volatile(LOCK_PREFIX	"bts	%1,%0"

												:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

				}

}

First	of	all	note	that	this	function	takes	the	same	set	of	parameters	that		__set_bit	,	but
additionally	marked	with	the		__always_inline		attribute.	The		__always_inline		is	macro
which	defined	in	the	include/linux/compiler-gcc.h	and	just	expands	to	the		always_inline	
attribute:

#define	__always_inline	inline	__attribute__((always_inline))

which	means	that	this	function	will	be	always	inlined	to	reduce	size	of	the	Linux	kernel
image.	Now	let's	try	to	understand	implementation	of	the		set_bit		function.	First	of	all	we
check	a	given	number	of	bit	at	the	beginning	of	the		set_bit		function.	The		IS_IMMEDIATE	
macro	defined	in	the	same	header	file	and	expands	to	the	call	of	the	builtin	gcc	function:

#define	IS_IMMEDIATE(nr)								(__builtin_constant_p(nr))

The		__builtin_constant_p		builtin	function	returns		1		if	the	given	parameter	is	known	to	be
constant	at	compile-time	and	returns		0		in	other	case.	We	no	need	to	use	slow		bts	
instruction	to	set	bit	if	the	given	number	of	bit	is	known	in	compile	time	constant.	We	can	just
apply	bitwise	or	for	byte	from	the	give	address	which	contains	given	bit	and	masked	number

Bit	arrays

658

https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Bitwise_operation#OR

of	bits	where	high	bit	is		1		and	other	is	zero.	In	other	case	if	the	given	number	of	bit	is	not
known	constant	at	compile-time,	we	do	the	same	as	we	did	in	the		__set_bit		function.	The
	CONST_MASK_ADDR		macro:

#define	CONST_MASK_ADDR(nr,	addr)				BITOP_ADDR((void	*)(addr)	+	((nr)>>3))

expands	to	the	give	address	with	offset	to	the	byte	which	contains	a	given	bit.	For	example
we	have	address		0x1000		and	the	number	of	bit	is		0x9	.	So,	as		0x9		is		one	byte	+	one	bit	
our	address	with	be		addr	+	1	:

>>>	hex(0x1000	+	(0x9	>>	3))

'0x1001'

The		CONST_MASK		macro	represents	our	given	number	of	bit	as	byte	where	high	bit	is		1		and
other	bits	are		0	:

#define	CONST_MASK(nr)												(1	<<	((nr)	&	7))

>>>	bin(1	<<	(0x9	&	7))

'0b10'

In	the	end	we	just	apply	bitwise		or		for	these	values.	So,	for	example	if	our	address	will	be
	0x4097		and	we	need	to	set		0x9		bit:

>>>	bin(0x4097)

'0b100000010010111'

>>>	bin((0x4097	>>	0x9)	|	(1	<<	(0x9	&	7)))

'0b100010'

the		ninth		bit	will	be	set.

Note	that	all	of	these	operations	are	marked	with		LOCK_PREFIX		which	is	expands	to	the	lock
instruction	which	guarantees	atomicity	of	this	operation.

As	we	already	know,	besides	the		set_bit		and		__set_bit		operations,	the	Linux	kernel
provides	two	inverse	functions	to	clear	bit	in	atomic	and	non-atomic	context.	They	are
	clear_bit		and		__clear_bit	.	Both	of	these	functions	are	defined	in	the	same	header	file
and	takes	the	same	set	of	arguments.	But	not	only	arguments	are	similar.	Generally	these
functions	are	very	similar	on	the		set_bit		and		__set_bit	.	Let's	look	on	the	implementation
of	the	non-atomic		__clear_bit		function:

Bit	arrays

659

http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h

static	inline	void	__clear_bit(long	nr,	volatile	unsigned	long	*addr)

{

				asm	volatile("btr	%1,%0"	:	ADDR	:	"Ir"	(nr));

}

Yes.	As	we	see,	it	takes	the	same	set	of	arguments	and	contains	very	similar	block	of	inline
assembler.	It	just	uses	the	btr	instruction	instead	of		bts	.	As	we	can	understand	form	the
function's	name,	it	clears	a	given	bit	by	the	given	address.	The		btr		instruction	acts	like
	btr	.	This	instruction	also	selects	a	given	bit	which	is	specified	in	the	first	operand,	stores
its	value	in	the		CF		flag	register	and	clears	this	bit	in	the	given	bit	array	which	is	specified
with	second	operand.

The	atomic	variant	of	the		__clear_bit		is		clear_bit	:

static	__always_inline	void

clear_bit(long	nr,	volatile	unsigned	long	*addr)

{

				if	(IS_IMMEDIATE(nr))	{

								asm	volatile(LOCK_PREFIX	"andb	%1,%0"

												:	CONST_MASK_ADDR(nr,	addr)

												:	"iq"	((u8)~CONST_MASK(nr)));

				}	else	{

								asm	volatile(LOCK_PREFIX	"btr	%1,%0"

												:	BITOP_ADDR(addr)

												:	"Ir"	(nr));

				}

}

and	as	we	can	see	it	is	very	similar	on		set_bit		and	just	contains	two	differences.	The	first
difference	it	uses		btr		instruction	to	clear	bit	when	the		set_bit		uses		bts		instruction	to	set
bit.	The	second	difference	it	uses	negated	mask	and		and		instruction	to	clear	bit	in	the	given
byte	when	the		set_bit		uses		or		instruction.

That's	all.	Now	we	can	set	and	clear	bit	in	any	bit	array	and	and	we	can	go	to	other
operations	on	bitmasks.

Most	widely	used	operations	on	a	bit	arrays	are	set	and	clear	bit	in	a	bit	array	in	the	Linux
kernel.	But	besides	this	operations	it	is	useful	to	do	additional	operations	on	a	bit	array.	Yet
another	widely	used	operation	in	the	Linux	kernel	-	is	to	know	is	a	given	bit	set	or	not	in	a	bit
array.	We	can	achieve	this	with	the	help	of	the		test_bit		macro.	This	macro	is	defined	in	the
arch/x86/include/asm/bitops.h	header	file	and	expands	to	the	call	of	the		constant_test_bit	
or		variable_test_bit		depends	on	bit	number:

Bit	arrays

660

http://x86.renejeschke.de/html/file_module_x86_id_24.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h

#define	test_bit(nr,	addr)												\

				(__builtin_constant_p((nr))																	\

					?	constant_test_bit((nr),	(addr))												\

					:	variable_test_bit((nr),	(addr)))

So,	if	the		nr		is	known	in	compile	time	constant,	the		test_bit		will	be	expanded	to	the	call
of	the		constant_test_bit		function	or		variable_test_bit		in	other	case.	Now	let's	look	at
implementations	of	these	functions.	Let's	start	from	the		variable_test_bit	:

static	inline	int	variable_test_bit(long	nr,	volatile	const	unsigned	long	*addr)

{

				int	oldbit;

				asm	volatile("bt	%2,%1\n\t"

													"sbb	%0,%0"

													:	"=r"	(oldbit)

													:	"m"	(*(unsigned	long	*)addr),	"Ir"	(nr));

				return	oldbit;

}

The		variable_test_bit		function	takes	similar	set	of	arguments	as		set_bit		and	other
function	take.	We	also	may	see	inline	assembly	code	here	which	executes	bt	and	sbb
instruction.	The		bt		or		bit	test		instruction	selects	a	given	bit	which	is	specified	with	first
operand	from	the	bit	array	which	is	specified	with	the	second	operand	and	stores	its	value	in
the	CF	bit	of	flags	register.	The	second		sbb		instruction	subtracts	first	operand	from	second
and	subtracts	value	of	the		CF	.	So,	here	write	a	value	of	a	given	bit	number	from	a	given	bit
array	to	the		CF		bit	of	flags	register	and	execute		sbb		instruction	which	calculates:		00000000
-	CF		and	writes	the	result	to	the		oldbit	.

The		constant_test_bit		function	does	the	same	as	we	saw	in	the		set_bit	:

static	__always_inline	int	constant_test_bit(long	nr,	const	volatile	unsigned	long	*ad

dr)

{

				return	((1UL	<<	(nr	&	(BITS_PER_LONG-1)))	&

								(addr[nr	>>	_BITOPS_LONG_SHIFT]))	!=	0;

}

It	generates	a	byte	where	high	bit	is		1		and	other	bits	are		0		(as	we	saw	in		CONST_MASK)
and	applies	bitwise	and	to	the	byte	which	contains	a	given	bit	number.

The	next	widely	used	bit	array	related	operation	is	to	change	bit	in	a	bit	array.	The	Linux
kernel	provides	two	helper	for	this:

Bit	arrays

661

http://x86.renejeschke.de/html/file_module_x86_id_22.html
http://x86.renejeschke.de/html/file_module_x86_id_286.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Bitwise_operation#AND

	__change_bit	;
	change_bit	.

As	you	already	can	guess,	these	two	variants	are	atomic	and	non-atomic	as	for	example
	set_bit		and		__set_bit	.	For	the	start,	let's	look	at	the	implementation	of	the		__change_bit	
function:

static	inline	void	__change_bit(long	nr,	volatile	unsigned	long	*addr)

{

				asm	volatile("btc	%1,%0"	:	ADDR	:	"Ir"	(nr));

}

Pretty	easy,	is	not	it?	The	implementation	of	the		__change_bit		is	the	same	as		__set_bit	,
but	instead	of		bts		instruction,	we	are	using	btc.	This	instruction	selects	a	given	bit	from	a
given	bit	array,	stores	its	value	in	the		CF		and	changes	its	value	by	the	applying	of
complement	operation.	So,	a	bit	with	value		1		will	be		0		and	vice	versa:

>>>	int(not	1)

0

>>>	int(not	0)

1

The	atomic	version	of	the		__change_bit		is	the		change_bit		function:

static	inline	void	change_bit(long	nr,	volatile	unsigned	long	*addr)

{

				if	(IS_IMMEDIATE(nr))	{

								asm	volatile(LOCK_PREFIX	"xorb	%1,%0"

												:	CONST_MASK_ADDR(nr,	addr)

												:	"iq"	((u8)CONST_MASK(nr)));

				}	else	{

								asm	volatile(LOCK_PREFIX	"btc	%1,%0"

												:	BITOP_ADDR(addr)

												:	"Ir"	(nr));

				}

}

It	is	similar	on		set_bit		function,	but	also	has	two	differences.	The	first	difference	is		xor	
operation	instead	of		or		and	the	second	is		bts		instead	of		bts	.

For	this	moment	we	know	the	most	important	architecture-specific	operations	with	bit	arrays.
Time	to	look	at	generic	bitmap	API.

Common	bit	operations

Bit	arrays

662

http://x86.renejeschke.de/html/file_module_x86_id_23.html

Besides	the	architecture-specific	API	from	the	arch/x86/include/asm/bitops.h	header	file,	the
Linux	kernel	provides	common	API	for	manipulation	of	bit	arrays.	As	we	know	from	the
beginning	of	this	part,	we	can	find	it	in	the	include/linux/bitmap.h	header	file	and	additionally
in	the	*	lib/bitmap.c	source	code	file.	But	before	these	source	code	files	let's	look	into	the
include/linux/bitops.h	header	file	which	provides	a	set	of	useful	macro.	Let's	look	on	some	of
they.

First	of	all	let's	look	at	following	four	macros:

	for_each_set_bit	

	for_each_set_bit_from	

	for_each_clear_bit	

	for_each_clear_bit_from	

All	of	these	macros	provide	iterator	over	certain	set	of	bits	in	a	bit	array.	The	first	macro
iterates	over	bits	which	are	set,	the	second	does	the	same,	but	starts	from	a	certain	bits.	The
last	two	macros	do	the	same,	but	iterates	over	clear	bits.	Let's	look	on	implementation	of	the
	for_each_set_bit		macro:

#define	for_each_set_bit(bit,	addr,	size)	\

				for	((bit)	=	find_first_bit((addr),	(size));								\

									(bit)	<	(size);																				\

									(bit)	=	find_next_bit((addr),	(size),	(bit)	+	1))

As	we	may	see	it	takes	three	arguments	and	expands	to	the	loop	from	first	set	bit	which	is
returned	as	result	of	the		find_first_bit		function	and	to	the	last	bit	number	while	it	is	less
than	given	size.

Besides	these	four	macros,	the	arch/x86/include/asm/bitops.h	provides	API	for	rotation	of
	64-bit		or		32-bit		values	and	etc.

The	next	header	file	which	provides	API	for	manipulation	with	a	bit	arrays.	For	example	it
provides	two	functions:

	bitmap_zero	;
	bitmap_fill	.

To	clear	a	bit	array	and	fill	it	with		1	.	Let's	look	on	the	implementation	of	the		bitmap_zero	
function:

Bit	arrays

663

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://github.com/torvalds/linux/blob/master/lib/bitmap.c
https://github.com/torvalds/linux/blob/master/include/linux/bitops.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h

static	inline	void	bitmap_zero(unsigned	long	*dst,	unsigned	int	nbits)

{

				if	(small_const_nbits(nbits))

								*dst	=	0UL;

				else	{

								unsigned	int	len	=	BITS_TO_LONGS(nbits)	*	sizeof(unsigned	long);

								memset(dst,	0,	len);

				}

}

First	of	all	we	can	see	the	check	for		nbits	.	The		small_const_nbits		is	macro	which	defined
in	the	same	header	file	and	looks:

#define	small_const_nbits(nbits)	\

				(__builtin_constant_p(nbits)	&&	(nbits)	<=	BITS_PER_LONG)

As	we	may	see	it	checks	that		nbits		is	known	constant	in	compile	time	and		nbits		value
does	not	overflow		BITS_PER_LONG		or		64	.	If	bits	number	does	not	overflow	amount	of	bits	in
a		long		value	we	can	just	set	to	zero.	In	other	case	we	need	to	calculate	how	many		long	
values	do	we	need	to	fill	our	bit	array	and	fill	it	with	memset.

The	implementation	of	the		bitmap_fill		function	is	similar	on	implementation	of	the
	biramp_zero		function,	except	we	fill	a	given	bit	array	with		0xff		values	or		0b11111111	:

static	inline	void	bitmap_fill(unsigned	long	*dst,	unsigned	int	nbits)

{

				unsigned	int	nlongs	=	BITS_TO_LONGS(nbits);

				if	(!small_const_nbits(nbits))	{

								unsigned	int	len	=	(nlongs	-	1)	*	sizeof(unsigned	long);

								memset(dst,	0xff,		len);

				}

				dst[nlongs	-	1]	=	BITMAP_LAST_WORD_MASK(nbits);

}

Besides	the		bitmap_fill		and		bitmap_zero		functions,	the	include/linux/bitmap.h	header	file
provides		bitmap_copy		which	is	similar	on	the		bitmap_zero	,	but	just	uses	memcpy	instead	of
memset.	Also	it	provides	bitwise	operations	for	bit	array	like		bitmap_and	,		bitmap_or	,
	bitamp_xor		and	etc.	We	will	not	consider	implementation	of	these	functions	because	it	is
easy	to	understand	implementations	of	these	functions	if	you	understood	all	from	this	part.
Anyway	if	you	are	interested	how	did	these	function	implemented,	you	may	open
include/linux/bitmap.h	header	file	and	start	to	research.

That's	all.

Bit	arrays

664

https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
http://man7.org/linux/man-pages/man3/memset.3.html
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man3/memset.3.html
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h

Links
bitmap
linked	data	structures
tree	data	structures
hot-plug
cpumasks
IRQs
API
atomic	operations
xchg	instruction
cmpxchg	instruction
lock	instruction
bts	instruction
btr	instruction
bt	instruction
sbb	instruction
btc	instruction
man	memcpy
man	memset
CF
inline	assembler
gcc

Bit	arrays

665

https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Linked_data_structure
https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_328.html
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://x86.renejeschke.de/html/file_module_x86_id_25.html
http://x86.renejeschke.de/html/file_module_x86_id_24.html
http://x86.renejeschke.de/html/file_module_x86_id_22.html
http://x86.renejeschke.de/html/file_module_x86_id_286.html
http://x86.renejeschke.de/html/file_module_x86_id_23.html
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man3/memset.3.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Inline_assembler
https://en.wikipedia.org/wiki/GNU_Compiler_Collection

Theory
This	chapter	describes	various	theoretical	concepts	and	concepts	which	are	not	directly
related	to	practice	but	useful	to	know.

Paging
Elf64	format
Inline	assembly

Theory

666

http://0xax.gitbooks.io/linux-insides/content/Theory/Paging.html
http://0xax.gitbooks.io/linux-insides/content/Theory/ELF.html
http://0xax.gitbooks.io/linux-insides/content/Theory/asm.html

Paging

Introduction
In	the	fifth	part	of	the	series		Linux	kernel	booting	process		we	learned	about	what	the	kernel
does	in	its	earliest	stage.	In	the	next	step	the	kernel	will	initialize	different	things	like		initrd	
mounting,	lockdep	initialization,	and	many	many	other	things,	before	we	can	see	how	the
kernel	runs	the	first	init	process.

Yeah,	there	will	be	many	different	things,	but	many	many	and	once	again	many	work	with
memory.

In	my	view,	memory	management	is	one	of	the	most	complex	parts	of	the	Linux	kernel	and
in	system	programming	in	general.	This	is	why	we	need	to	get	acquainted	with	paging,
before	we	proceed	with	the	kernel	initialization	stuff.

	Paging		is	a	mechanism	that	translates	a	linear	memory	address	to	a	physical	address.	If
you	have	read	the	previous	parts	of	this	book,	you	may	remember	that	we	saw	segmentation
in	real	mode	when	physical	addresses	are	calculated	by	shifting	a	segment	register	by	four
and	adding	an	offset.	We	also	saw	segmentation	in	protected	mode,	where	we	used	the
descriptor	tables	and	base	addresses	from	descriptors	with	offsets	to	calculate	the	physical
addresses.	Now	we	will	see	paging	in	64-bit	mode.

As	the	Intel	manual	says:

Paging	provides	a	mechanism	for	implementing	a	conventional	demand-paged,	virtual-
memory	system	where	sections	of	a	program’s	execution	environment	are	mapped	into
physical	memory	as	needed.

So...	In	this	post	I	will	try	to	explain	the	theory	behind	paging.	Of	course	it	will	be	closely
related	to	the		x86_64		version	of	the	Linux	kernel,	but	we	will	not	go	into	too	much	details	(at
least	in	this	post).

Enabling	paging
There	are	three	paging	modes:

32-bit	paging;
PAE	paging;
IA-32e	paging.

Paging

667

http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html

We	will	only	explain	the	last	mode	here.	To	enable	the		IA-32e	paging		paging	mode	we	need
to	do	following	things:

set	the		CR0.PG		bit;
set	the		CR4.PAE		bit;
set	the		IA32_EFER.LME		bit.

We	already	saw	where	those	bits	were	set	in	arch/x86/boot/compressed/head_64.S:

movl				$(X86_CR0_PG	|	X86_CR0_PE),	%eax

movl				%eax,	%cr0

and

movl				$MSR_EFER,	%ecx

rdmsr

btsl				$_EFER_LME,	%eax

wrmsr

Paging	structures
Paging	divides	the	linear	address	space	into	fixed-size	pages.	Pages	can	be	mapped	into
the	physical	address	space	or	external	storage.	This	fixed	size	is		4096		bytes	for	the
	x86_64		Linux	kernel.	To	perform	the	translation	from	linear	address	to	physical	address,
special	structures	are	used.	Every	structure	is		4096		bytes	and	contains		512		entries	(this
only	for		PAE		and		IA32_EFER.LME		modes).	Paging	structures	are	hierarchical	and	the	Linux
kernel	uses	4	level	of	paging	in	the		x86_64		architecture.	The	CPU	uses	a	part	of	linear
addresses	to	identify	the	entry	in	another	paging	structure	which	is	at	the	lower	level,
physical	memory	region	(page	frame)	or	physical	address	in	this	region	(page	offset).	The
address	of	the	top	level	paging	structure	located	in	the		cr3		register.	We	have	already	seen
this	in	arch/x86/boot/compressed/head_64.S:

leal				pgtable(%ebx),	%eax

movl				%eax,	%cr3

We	build	the	page	table	structures	and	put	the	address	of	the	top-level	structure	in	the		cr3	
register.	Here		cr3		is	used	to	store	the	address	of	the	top-level	structure,	the		PML4		or		Page
Global	Directory		as	it	is	called	in	the	Linux	kernel.		cr3		is	64-bit	register	and	has	the
following	structure:

Paging

668

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S

63																		52	51																																																								32

	--

|																					|																																																										|

|				Reserved	MBZ					|												Address	of	the	top	level	structure												|

|																					|																																																										|

	--

31																																		12	11												5					4					3	2													0

	--

|																																					|															|		P		|		P		|														|

|		Address	of	the	top	level	structure	|			Reserved				|		C		|		W		|				Reserved		|

|																																					|															|		D		|		T		|														|

	--

These	fields	have	the	following	meanings:

Bits	63:52	-	reserved	must	be	0.
Bits	51:12	-	stores	the	address	of	the	top	level	paging	structure;
Reserved	-	reserved	must	be	0;
Bits	4	:	3	-	PWT	or	Page-Level	Writethrough	and	PCD	or	Page-level	cache	disable
indicate.	These	bits	control	the	way	the	page	or	Page	Table	is	handled	by	the	hardware
cache;
Bits	2	:	0	-	ignored;

The	linear	address	translation	is	following:

A	given	linear	address	arrives	to	the	MMU	instead	of	memory	bus.
64-bit	linear	address	is	split	into	some	parts.	Only	low	48	bits	are	significant,	it	means
that		2^48		or	256	TBytes	of	linear-address	space	may	be	accessed	at	any	given	time.
	cr3		register	stores	the	address	of	the	4	top-level	paging	structure.
	47:39		bits	of	the	given	linear	address	store	an	index	into	the	paging	structure	level-4,
	38:30		bits	store	index	into	the	paging	structure	level-3,		29:21		bits	store	an	index	into
the	paging	structure	level-2,		20:12		bits	store	an	index	into	the	paging	structure	level-1
and		11:0		bits	provide	the	offset	into	the	physical	page	in	byte.

schematically,	we	can	imagine	it	like	this:

Paging

669

http://en.wikipedia.org/wiki/Memory_management_unit

Every	access	to	a	linear	address	is	either	a	supervisor-mode	access	or	a	user-mode	access.
This	access	is	determined	by	the		CPL		(current	privilege	level).	If		CPL	<	3		it	is	a	supervisor
mode	access	level,	otherwise	it	is	a	user	mode	access	level.	For	example,	the	top	level	page
table	entry	contains	access	bits	and	has	the	following	structure:

63		62																		52	51																																																				32

	--

|	N	|																					|																																																					|

|			|					Available							|					Address	of	the	paging	structure	on	lower	level		|

|	X	|																					|																																																					|

	--

31																																														12	11		9	8	7	6	5			4			3	2	1					0

	--

|																																																|					|	M	|I|	|	P	|	P	|U|W|				|

|	Address	of	the	paging	structure	on	lower	level	|	AVL	|	B	|G|A|	C	|	W	|	|	|		P	|

|																																																|					|	Z	|N|	|	D	|	T	|S|R|				|

	--

Where:

63	bit	-	N/X	bit	(No	Execute	Bit)	which	presents	ability	to	execute	the	code	from	physical
pages	mapped	by	the	table	entry;
62:52	bits	-	ignored	by	CPU,	used	by	system	software;
51:12	bits	-	stores	physical	address	of	the	lower	level	paging	structure;
11:	9	bits	-	ignored	by	CPU;
MBZ	-	must	be	zero	bits;

Paging

670

Ignored	bits;
A	-	accessed	bit	indicates	was	physical	page	or	page	structure	accessed;
PWT	and	PCD	used	for	cache;
U/S	-	user/supervisor	bit	controls	user	access	to	all	the	physical	pages	mapped	by	this
table	entry;
R/W	-	read/write	bit	controls	read/write	access	to	all	the	physical	pages	mapped	by	this
table	entry;
P	-	present	bit.	Current	bit	indicates	was	page	table	or	physical	page	loaded	into
primary	memory	or	not.

Ok,	we	know	about	the	paging	structures	and	their	entries.	Now	let's	see	some	details	about
4-level	paging	in	the	Linux	kernel.

Paging	structures	in	the	Linux	kernel
As	we've	seen,	the	Linux	kernel	in		x86_64		uses	4-level	page	tables.	Their	names	are:

Page	Global	Directory
Page	Upper	Directory
Page	Middle	Directory
Page	Table	Entry

After	you've	compiled	and	installed	the	Linux	kernel,	you	can	see	the		System.map		file	which
stores	the	virtual	addresses	of	the	functions	that	are	used	by	the	kernel.	For	example:

$	grep	"start_kernel"	System.map

ffffffff81efe497	T	x86_64_start_kernel

ffffffff81efeaa2	T	start_kernel

We	can	see		0xffffffff81efe497		here.	I	doubt	you	really	have	that	much	RAM	installed.	But
anyway,		start_kernel		and		x86_64_start_kernel		will	be	executed.	The	address	space	in
	x86_64		is		2^64		wide,	but	it's	too	large,	that's	why	a	smaller	address	space	is	used,	only
48-bits	wide.	So	we	have	a	situation	where	the	physical	address	space	is	limited	to	48	bits,
but	addressing	still	performs	with	64	bit	pointers.	How	is	this	problem	solved?	Look	at	this
diagram:

Paging

671

0xffffffffffffffff		+-----------+

																				|											|

																				|											|	Kernelspace

																				|											|

0xffff800000000000		+-----------+

																				|											|

																				|											|

																				|			hole				|

																				|											|

																				|											|

0x00007fffffffffff		+-----------+

																				|											|

																				|											|		Userspace

																				|											|

0x0000000000000000  +-----------+

This	solution	is		sign	extension	.	Here	we	can	see	that	the	lower	48	bits	of	a	virtual	address
can	be	used	for	addressing.	Bits		63:48		can	be	either	only	zeroes	or	only	ones.	Note	that
the	virtual	address	space	is	split	into	2	parts:

Kernel	space
Userspace

Userspace	occupies	the	lower	part	of	the	virtual	address	space,	from		0x000000000000000		to
	0x00007fffffffffff		and	kernel	space	occupies	the	highest	part	from		0xffff8000000000		to
	0xffffffffffffffff	.	Note	that	bits		63:48		is	0	for	userspace	and	1	for	kernel	space.	All
addresses	which	are	in	kernel	space	and	in	userspace	or	in	other	words	which	higher
	63:48		bits	are	zeroes	or	ones	are	called		canonical		addresses.	There	is	a		non-canonical	
area	between	these	memory	regions.	Together	these	two	memory	regions	(kernel	space	and
user	space)	are	exactly		2^48		bits	wide.	We	can	find	the	virtual	memory	map	with	4	level
page	tables	in	the	Documentation/x86/x86_64/mm.txt:

Paging

672

https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt

0000000000000000	-	00007fffffffffff	(=47	bits)	user	space,	different	per	mm

hole	caused	by	[48:63]	sign	extension

ffff800000000000	-	ffff87ffffffffff	(=43	bits)	guard	hole,	reserved	for	hypervisor

ffff880000000000	-	ffffc7ffffffffff	(=64	TB)	direct	mapping	of	all	phys.	memory

ffffc80000000000	-	ffffc8ffffffffff	(=40	bits)	hole

ffffc90000000000	-	ffffe8ffffffffff	(=45	bits)	vmalloc/ioremap	space

ffffe90000000000	-	ffffe9ffffffffff	(=40	bits)	hole

ffffea0000000000	-	ffffeaffffffffff	(=40	bits)	virtual	memory	map	(1TB)

...	unused	hole	...

ffffec0000000000	-	fffffc0000000000	(=44	bits)	kasan	shadow	memory	(16TB)

...	unused	hole	...

ffffff0000000000	-	ffffff7fffffffff	(=39	bits)	%esp	fixup	stacks

...	unused	hole	...

ffffffff80000000	-	ffffffffa0000000	(=512	MB)		kernel	text	mapping,	from	phys	0

ffffffffa0000000	-	ffffffffff5fffff	(=1525	MB)	module	mapping	space

ffffffffff600000	-	ffffffffffdfffff	(=8	MB)	vsyscalls

ffffffffffe00000	-	ffffffffffffffff	(=2	MB)	unused	hole

We	can	see	here	the	memory	map	for	user	space,	kernel	space	and	the	non-canonical	area
in-between	them.	The	user	space	memory	map	is	simple.	Let's	take	a	closer	look	at	the
kernel	space.	We	can	see	that	it	starts	from	the	guard	hole	which	is	reserved	for	the
hypervisor.	We	can	find	the	definition	of	this	guard	hole	in
arch/x86/include/asm/page_64_types.h:

#define	__PAGE_OFFSET	_AC(0xffff880000000000,	UL)

Previously	this	guard	hole	and		__PAGE_OFFSET		was	from		0xffff800000000000		to
	0xffff80ffffffffff		to	prevent	access	to	non-canonical	area,	but	was	later	extended	by	3
bits	for	the	hypervisor.

Next	is	the	lowest	usable	address	in	kernel	space	-		ffff880000000000	.	This	virtual	memory
region	is	for	direct	mapping	of	all	the	physical	memory.	After	the	memory	space	which	maps
all	the	physical	addresses,	the	guard	hole.	It	needs	to	be	between	the	direct	mapping	of	all
the	physical	memory	and	the	vmalloc	area.	After	the	virtual	memory	map	for	the	first
terabyte	and	the	unused	hole	after	it,	we	can	see	the		kasan		shadow	memory.	It	was	added
by	commit	and	provides	the	kernel	address	sanitizer.	After	the	next	unused	hole	we	can	see
the		esp		fixup	stacks	(we	will	talk	about	it	in	other	parts	of	this	book)	and	the	start	of	the
kernel	text	mapping	from	the	physical	address	-		0	.	We	can	find	the	definition	of	this
address	in	the	same	file	as	the		__PAGE_OFFSET	:

#define	__START_KERNEL_map						_AC(0xffffffff80000000,	UL)

Usually	kernel's		.text		starts	here	with	the		CONFIG_PHYSICAL_START		offset.	We	have	seen	it
in	the	post	about	ELF64:

Paging

673

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_64_types.h
https://github.com/torvalds/linux/commit/ef7f0d6a6ca8c9e4b27d78895af86c2fbfaeedb2
https://github.com/0xAX/linux-insides/blob/master/Theory/ELF.md

readelf	-s	vmlinux	|	grep	ffffffff81000000

					1:	ffffffff81000000					0	SECTION	LOCAL		DEFAULT				1	

	65099:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	_text

	90766:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	startup_64

Here	I	check		vmlinux		with		CONFIG_PHYSICAL_START		is		0x1000000	.	So	we	have	the	start	point
of	the	kernel		.text		-		0xffffffff80000000		and	offset	-		0x1000000	,	the	resulted	virtual
address	will	be		0xffffffff80000000	+	1000000	=	0xffffffff81000000	.

After	the	kernel		.text		region	there	is	the	virtual	memory	region	for	kernel	module,
	vsyscalls		and	an	unused	hole	of	2	megabytes.

We've	seen	how	virtual	memory	map	in	the	kernel	is	laid	out	and	how	a	virtual	address	is
translated	into	a	physical	one.	Let's	take	the	following	address	as	example:

0xffffffff81000000

In	binary	it	will	be:

1111111111111111	111111111	111111110	000001000	000000000	000000000000

						63:48								47:39					38:30					29:21					20:12						11:0

This	virtual	address	is	split	in	parts	as	described	above:

	63:48		-	bits	not	used;
	47:39		-	bits	store	an	index	into	the	paging	structure	level-4;
	38:30		-	bits	store	index	into	the	paging	structure	level-3;
	29:21		-	bits	store	an	index	into	the	paging	structure	level-2;
	20:12		-	bits	store	an	index	into	the	paging	structure	level-1;
	11:0		-	bits	provide	the	offset	into	the	physical	page	in	byte.

That	is	all.	Now	you	know	a	little	about	theory	of		paging		and	we	can	go	ahead	in	the	kernel
source	code	and	see	the	first	initialization	steps.

Conclusion
It's	the	end	of	this	short	part	about	paging	theory.	Of	course	this	post	doesn't	cover	every
detail	of	paging,	but	soon	we'll	see	in	practice	how	the	Linux	kernel	builds	paging	structures
and	works	with	them.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any
inconvenience.	If	you've	found	any	mistakes	please	send	me	PR	to	linux-insides.

Paging

674

https://github.com/0xAX/linux-insides

Links
Paging	on	Wikipedia
Intel	64	and	IA-32	architectures	software	developer's	manual	volume	3A
MMU
ELF64
Documentation/x86/x86_64/mm.txt
Last	part	-	Kernel	booting	process

Paging

675

http://en.wikipedia.org/wiki/Paging
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://en.wikipedia.org/wiki/Memory_management_unit
https://github.com/0xAX/linux-insides/blob/master/Theory/ELF.md
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html

Executable	and	Linkable	Format
ELF	(Executable	and	Linkable	Format)	is	a	standard	file	format	for	executable	files,	object
code,	shared	libraries	and	core	dumps.	Linux	and	many	UNIX-like	operating	systems	use
this	format.	Let's	look	at	the	structure	of	the	ELF-64	Object	File	Format	and	some	definitions
in	the	linux	kernel	source	code	which	related	with	it.

An	ELF	object	file	consists	of	the	following	parts:

ELF	header	-	describes	the	main	characteristics	of	the	object	file:	type,	CPU
architecture,	the	virtual	address	of	the	entry	point,	the	size	and	offset	of	the	remaining
parts,	etc...;
Program	header	table	-	lists	the	available	segments	and	their	attributes.	Program
header	table	need	loaders	for	placing	sections	of	the	file	as	virtual	memory	segments;
Section	header	table	-	contains	the	description	of	the	sections.

Now	let's	have	a	closer	look	on	these	components.

ELF	header

The	ELF	header	is	located	at	the	beginning	of	the	object	file.	Its	main	purpose	is	to	locate	all
other	parts	of	the	object	file.	The	File	header	contains	the	following	fields:

ELF	identification	-	array	of	bytes	which	helps	identify	the	file	as	an	ELF	object	file	and
also	provides	information	about	general	object	file	characteristic;
Object	file	type	-	identifies	the	object	file	type.	This	field	can	describe	that	ELF	file	is	a
relocatable	object	file,	an	executable	file,	etc...;
Target	architecture;
Version	of	the	object	file	format;
Virtual	address	of	the	program	entry	point;
File	offset	of	the	program	header	table;
File	offset	of	the	section	header	table;
Size	of	an	ELF	header;
Size	of	a	program	header	table	entry;
and	other	fields...

You	can	find	the		elf64_hdr		structure	which	presents	ELF64	header	in	the	linux	kernel
source	code:

Elf64

676

typedef	struct	elf64_hdr	{

				unsigned	char				e_ident[EI_NIDENT];

				Elf64_Half	e_type;

				Elf64_Half	e_machine;

				Elf64_Word	e_version;

				Elf64_Addr	e_entry;

				Elf64_Off	e_phoff;

				Elf64_Off	e_shoff;

				Elf64_Word	e_flags;

				Elf64_Half	e_ehsize;

				Elf64_Half	e_phentsize;

				Elf64_Half	e_phnum;

				Elf64_Half	e_shentsize;

				Elf64_Half	e_shnum;

				Elf64_Half	e_shstrndx;

}	Elf64_Ehdr;

This	structure	defined	in	the	elf.h

Sections

All	data	stores	in	a	sections	in	an	Elf	object	file.	Sections	identified	by	index	in	the	section
header	table.	Section	header	contains	following	fields:

Section	name;
Section	type;
Section	attributes;
Virtual	address	in	memory;
Offset	in	file;
Size	of	section;
Link	to	other	section;
Miscellaneous	information;
Address	alignment	boundary;
Size	of	entries,	if	section	has	table;

And	presented	with	the	following		elf64_shdr		structure	in	the	linux	kernel:

Elf64

677

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L220

typedef	struct	elf64_shdr	{

				Elf64_Word	sh_name;

				Elf64_Word	sh_type;

				Elf64_Xword	sh_flags;

				Elf64_Addr	sh_addr;

				Elf64_Off	sh_offset;

				Elf64_Xword	sh_size;

				Elf64_Word	sh_link;

				Elf64_Word	sh_info;

				Elf64_Xword	sh_addralign;

				Elf64_Xword	sh_entsize;

}	Elf64_Shdr;

elf.h

Program	header	table

All	sections	are	grouped	into	segments	in	an	executable	or	shared	object	file.	Program
header	is	an	array	of	structures	which	describe	every	segment.	It	looks	like:

typedef	struct	elf64_phdr	{

				Elf64_Word	p_type;

				Elf64_Word	p_flags;

				Elf64_Off	p_offset;

				Elf64_Addr	p_vaddr;

				Elf64_Addr	p_paddr;

				Elf64_Xword	p_filesz;

				Elf64_Xword	p_memsz;

				Elf64_Xword	p_align;

}	Elf64_Phdr;

in	the	linux	kernel	source	code.

	elf64_phdr		defined	in	the	same	elf.h.

The	ELF	object	file	also	contains	other	fields/structures	which	you	can	find	in	the
Documentation.	Now	let's	a	look	at	the		vmlinux		ELF	object.

vmlinux
	vmlinux		is	also	a	relocatable	ELF	object	file	.	We	can	take	a	look	at	it	with	the		readelf		util.
First	of	all	let's	look	at	the	header:

Elf64

678

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L312
https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L254
http://www.uclibc.org/docs/elf-64-gen.pdf

$	readelf	-h		vmlinux

ELF	Header:

		Magic:			7f	45	4c	46	02	01	01	00	00	00	00	00	00	00	00	00	

		Class:																													ELF64

		Data:																														2's	complement,	little	endian

		Version:																											1	(current)

		OS/ABI:																												UNIX	-	System	V

		ABI	Version:																							0

		Type:																														EXEC	(Executable	file)

		Machine:																											Advanced	Micro	Devices	X86-64

		Version:																											0x1

		Entry	point	address:															0x1000000

		Start	of	program	headers:										64	(bytes	into	file)

		Start	of	section	headers:										381608416	(bytes	into	file)

		Flags:																													0x0

		Size	of	this	header:															64	(bytes)

		Size	of	program	headers:											56	(bytes)

		Number	of	program	headers:									5

		Size	of	section	headers:											64	(bytes)

		Number	of	section	headers:									73

		Section	header	string	table	index:	70

Here	we	can	see	that		vmlinux		is	a	64-bit	executable	file.

We	can	read	from	the	Documentation/x86/x86_64/mm.txt:

ffffffff80000000	-	ffffffffa0000000	(=512	MB)		kernel	text	mapping,	from	phys	0

We	can	then	look	this	address	up	in	the		vmlinux		ELF	object	with:

$	readelf	-s	vmlinux	|	grep	ffffffff81000000

					1:	ffffffff81000000					0	SECTION	LOCAL		DEFAULT				1	

	65099:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	_text

	90766:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	startup_64

Note	that	the	address	of	the		startup_64		routine	is	not		ffffffff80000000	,	but
	ffffffff81000000		and	now	I'll	explain	why.

We	can	see	following	definition	in	the	arch/x86/kernel/vmlinux.lds.S:

Elf64

679

https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt#L19
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S

				.	=	__START_KERNEL;

				...

				...

				..

				/*	Text	and	read-only	data	*/

				.text	:		AT(ADDR(.text)	-	LOAD_OFFSET)	{

								_text	=	.;

								...

								...

								...

				}

Where		__START_KERNEL		is:

#define	__START_KERNEL								(__START_KERNEL_map	+	__PHYSICAL_START)

	__START_KERNEL_map		is	the	value	from	the	documentation	-		ffffffff80000000		and
	__PHYSICAL_START		is		0x1000000	.	That's	why	address	of	the		startup_64		is
	ffffffff81000000	.

And	at	last	we	can	get	program	headers	from		vmlinux		with	the	following	command:

Elf64

680

readelf	-l	vmlinux

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x1000000

There	are	5	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		LOAD											0x0000000000200000	0xffffffff81000000	0x0000000001000000

																	0x0000000000cfd000	0x0000000000cfd000		R	E				200000

		LOAD											0x0000000001000000	0xffffffff81e00000	0x0000000001e00000

																	0x0000000000100000	0x0000000000100000		RW					200000

		LOAD											0x0000000001200000	0x0000000000000000	0x0000000001f00000

																	0x0000000000014d98	0x0000000000014d98		RW					200000

		LOAD											0x0000000001315000	0xffffffff81f15000	0x0000000001f15000

																	0x000000000011d000	0x0000000000279000		RWE				200000

		NOTE											0x0000000000b17284	0xffffffff81917284	0x0000000001917284

																	0x0000000000000024	0x0000000000000024									4

	Section	to	Segment	mapping:

		Segment	Sections...

			00					.text	.notes	__ex_table	.rodata	__bug_table	.pci_fixup	.builtin_fw

										.tracedata	__ksymtab	__ksymtab_gpl	__kcrctab	__kcrctab_gpl

										__ksymtab_strings	__param	__modver	

			01					.data	.vvar	

			02					.data..percpu	

			03					.init.text	.init.data	.x86_cpu_dev.init	.altinstructions

										.altinstr_replacement	.iommu_table	.apicdrivers	.exit.text

										.smp_locks	.data_nosave	.bss	.brk

Here	we	can	see	five	segments	with	sections	list.	You	can	find	all	of	these	sections	in	the
generated	linker	script	at	-		arch/x86/kernel/vmlinux.lds	.

That's	all.	Of	course	it's	not	a	full	description	of	ELF	(Executable	and	Linkable	Format),	but	if
you	want	to	know	more,	you	can	find	the	documentation	-	here

Elf64

681

http://www.uclibc.org/docs/elf-64-gen.pdf

Inline	assembly

Introduction
While	reading	source	code	in	the	Linux	kernel,	I	often	see	statements	like	this:

__asm__("andq	%%rsp,%0;	":"=r"	(ti)	:	"0"	(CURRENT_MASK));

Yes,	this	is	inline	assembly	or	in	other	words	assembler	code	which	is	integrated	in	a	high
level	programming	language.	In	this	case	the	high	level	programming	language	is	C.	Yes,
the		C		programming	language	is	not	very	high-level,	but	still.

If	you	are	familiar	with	the	assembly	programming	language,	you	may	notice	that		inline
assembly		is	not	very	different	from	normal	assembler.	Moreover,	the	special	form	of	inline
assembly	which	is	called		basic	form		is	exactly	the	same.	For	example:

__asm__("movq	%rax,	%rsp");

or

__asm__("hlt");

The	same	code	(of	course	without		__asm__		prefix)	you	might	see	in	plain	assembly	code.
Yes,	this	is	very	similar,	but	not	so	simple	as	it	might	seem	at	first	glance.	Actually,	the	GCC
supports	two	forms	of	inline	assembly	statements:

	basic	;
	extended	.

The	basic	form	consists	of	only	two	things:	the		__asm__		keyword	and	the	string	with	valid
assembler	instructions.	For	example	it	may	look	something	like	this:

__asm__("movq				$3,	%rax\t\n"

								"movq				%rsi,	%rdi");

The		asm		keyword	may	be	used	in	place	of		__asm__	,	however		__asm__		is	portable
whereas	the		asm		keyword	is	a		GNU		extension.	In	further	examples	I	will	only	use	the
	__asm__		variant.

Inline	assembly

682

https://github.com/torvalds/linux
https://en.wikipedia.org/wiki/Inline_assembler
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html

If	you	know	assembly	programming	language	this	looks	pretty	familiar.	The	main	problem	is
in	the	second	form	of	inline	assembly	statements	-		extended	.	This	form	allows	us	to	pass
parameters	to	an	assembly	statement,	perform	jumps	etc.	Does	not	sound	difficult,	but
requires	knowledge	of	special	rules	in	addition	to	knowledge	of	the	assembly	language.
Every	time	I	see	yet	another	piece	of	inline	assembly	code	in	the	Linux	kernel,	I	need	to	refer
to	the	official	documentation	of		GCC		to	remember	how	a	particular		qualifier		behaves	or
what	the	meaning	of		=&r		is	for	example.

I've	decided	to	write	this	part	to	consolidate	my	knowledge	related	to	the	inline	assembly,	as
inline	assembly	statements	are	quite	common	in	the	Linux	kernel	and	we	may	see	them	in
linux-insides	parts	sometimes.	I	thought	that	it	would	be	useful	if	we	have	a	special	part
which	contains	information	on	more	important	aspects	of	the	inline	assembly.	Of	course	you
may	find	comprehensive	information	about	inline	assembly	in	the	official	documentation,	but
I	like	to	put	everything	in	one	place.

Note:	This	part	will	not	provide	guide	for	assembly	programming.	It	is	not	intended	to
teach	you	to	write	programs	with	assembler	or	to	know	what	one	or	another
assembler	instruction	means.	Just	a	little	memo	for	extended	asm.

Introduction	to	extended	inline	assembly
So,	let's	start.	As	I	already	mentioned	above,	the		basic		assembly	statement	consists	of	the
	asm		or		__asm__		keyword	and	set	of	assembly	instructions.	This	form	is	in	no	way	different
from	"normal"	assembly.	The	most	interesting	part	is	inline	assembler	with	operands,	or
	extended		assembler.	An	extended	assembly	statement	looks	more	complicated	and
consists	of	more	than	two	parts:

__asm__	[volatile]	[goto]	(AssemblerTemplate

																											[:	OutputOperands]

																											[:	InputOperands]

																											[:	Clobbers]

																											[:	GotoLabels]);

All	parameters	which	are	marked	with	squared	brackets	are	optional.	You	may	notice	that	if
we	skip	the	optional	parameters	and	the	modifiers		volatile		and		goto		we	obtain	the
	basic		form.

Let's	start	to	consider	this	in	order.	The	first	optional		qualifier		is		volatile	.	This	specifier
tells	the	compiler	that	an	assembly	statement	may	produce		side	effects	.	In	this	case	we
need	to	prevent	compiler	optimizations	related	to	the	given	assembly	statement.	In	simple

Inline	assembly

683

https://en.wikipedia.org/wiki/Branch_%28computer_science%29
https://gcc.gnu.org/onlinedocs/
https://0xax.gitbooks.io/linux-insides/content/
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C

terms	the		volatile		specifier	instructs	the	compiler	not	to	modify	the	statement	and	place	it
exactly	where	it	was	in	the	original	code.	As	an	example	let's	look	at	the	following	function
from	the	Linux	kernel:

static	inline	void	native_load_gdt(const	struct	desc_ptr	*dtr)

{

				asm	volatile("lgdt	%0"::"m"	(*dtr));

}

Here	we	see	the		native_load_gdt		function	which	loads	a	base	address	from	the	Global
Descriptor	Table	to	the		GDTR		register	with	the		lgdt		instruction.	This	assembly	statement	is
marked	with		volatile		qualifier.	It	is	very	important	that	the	compiler	does	not	change	the
original	place	of	this	assembly	statement	in	the	resulting	code.	Otherwise	the		GDTR		register
may	contain	wrong	address	for	the		Global	Descriptor	Table		or	the	address	may	be	correct,
but	the	structure	has	not	been	filled	yet.	This	can	lead	to	an	exception	being	generated,
preventing	the	kernel	from	booting	correctly.

The	second	optional		qualifier		is	the		goto	.	This	qualifier	tells	the	compiler	that	the	given
assembly	statement	may	perform	a	jump	to	one	of	the	labels	which	are	listed	in	the
	GotoLabels	.	For	example:

__asm__	goto("jmp	%l[label]"	:	:	:	label);

Since	we	finished	with	these	two	qualifiers,	let's	look	at	the	main	part	of	an	assembly
statement	body.	As	we	have	seen	above,	the	main	part	of	an	assembly	statement	consists
of	the	following	four	parts:

set	of	assembly	instructions;
output	parameters;
input	parameters;
clobbers.

The	first	represents	a	string	which	contains	a	set	of	valid	assembly	instructions	which	may
be	separated	by	the		\t\n		sequence.	Names	of	processor	registers	must	be	prefixed	with
the		%%		sequence	in		extended		form	and	other	symbols	like	immediates	must	start	with	the
	$		symbol.	The		OutputOperands		and		InputOperands		are	comma-separated	lists	of	C
variables	which	may	be	provided	with	"constraints"	and	the		Clobbers		is	a	list	of	registers	or
other	values	which	are	modified	by	the	assembler	instructions	from	the		AssemblerTemplate	
beyond	those	listed	in	the		OutputOperands	.	Before	we	dive	into	the	examples	we	have	to
know	a	little	bit	about		constraints	.	A	constraint	is	a	string	which	specifies	placement	of	an
operand.	For	example	the	value	of	an	operand	may	be	written	to	a	processor	register	or
read	from	memory	etc.

Inline	assembly

684

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/C_%28programming_language%29

Consider	the	following	simple	example:

#include	<stdio.h>

int	main(void)

{

								int	a	=	5;

								int	b	=	10;

								int	sum	=	0;

								__asm__("addl	%1,%2"	:	"=r"	(sum)	:	"r"	(a),	"0"	(b));

								printf("a	+	b	=	%d\n",	sum);

								return	0;

}

Let's	compile	and	run	it	to	be	sure	that	it	works	as	expected:

$	gcc	test.c	-o	test

./test

a	+	b	=	15

Ok,	great.	It	works.	Now	let's	look	at	this	example	in	detail.	Here	we	see	a	simple		C	
program	which	calculates	the	sum	of	two	variables	placing	the	result	into	the		sum		variable
and	in	the	end	we	print	the	result.	This	example	consists	of	three	parts.	The	first	is	the
assembly	statement	with	the	add	instruction.	It	adds	the	value	of	the	source	operand
together	with	the	value	of	the	destination	operand	and	stores	the	result	in	the	destination
operand.	In	our	case:

addl	%1,	%2

will	be	expanded	to	the:

addl	a,	b

Variables	and	expressions	which	are	listed	in	the		OutputOperands		and		InputOperands		may
be	matched	in	the		AssemblerTemplate	.	An	input/output	operand	is	designated	as		%N		where
the		N		is	the	number	of	operand	from	left	to	right	beginning	from		zero	.	The	second	part	of
the	our	assembly	statement	is	located	after	the	first		:		symbol	and	contains	the	definition	of
the	output	value:

"=r"	(sum)

Inline	assembly

685

http://x86.renejeschke.de/html/file_module_x86_id_5.html

Notice	that	the		sum		is	marked	with	two	special	symbols:		=r	.	This	is	the	first	constraint	that
we	have	encountered.	The	actual	constraint	here	is	only		r		itself.	The		=		symbol	is
	modifier		which	denotes	output	value.	This	tells	to	compiler	that	the	previous	value	will	be
discarded	and	replaced	by	the	new	data.	Besides	the		=		modifier,		GCC		provides	support	for
following	three	modifiers:

	+		-	an	operand	is	read	and	written	by	an	instruction;
	&		-	output	register	shouldn't	overlap	an	input	register	and	should	be	used	only	for
output;
	%		-	tells	the	compiler	that	operands	may	be	commutative.

Now	let's	go	back	to	the		r		qualifier.	As	I	mentioned	above,	a	qualifier	denotes	the
placement	of	an	operand.	The		r		symbol	means	a	value	will	be	stored	in	one	of	the	general
purpose	register.	The	last	part	of	our	assembly	statement:

"r"	(a),	"0"	(b)

These	are	input	operands	-	variables		a		and		b	.	We	already	know	what	the		r		qualifier
does.	Now	we	can	have	a	look	at	the	constraint	for	the	variable		b	.	The		0		or	any	other
digit	from		1		to		9		is	called	"matching	constraint".	With	this	a	single	operand	can	be	used
for	multiple	roles.	The	value	of	the	constraint	is	the	source	operand	index.	In	our	case		0	
will	match		sum	.	If	we	look	at	assembly	output	of	our	program

0000000000400400	<main>:

		400401:							ba	05	00	00	00										mov				$0x5,%edx

		400406:							b8	0a	00	00	00										mov				$0xa,%eax

		40040b:							01	d0																			add				%edx,%eax

we	see	that	only	two	general	purpose	registers	are	used:		%edx		and		%eax	.	This	way	the
	%eax		register	is	used	for	storing	the	value	of		b		as	well	as	storing	the	result	of	the
calculation.	We	have	looked	at	input	and	output	parameters	of	an	inline	assembly	statement.
Before	we	move	on	to	other	constraints	supported	by		gcc	,	there	is	one	remaining	part	of
the	inline	assembly	statement	we	have	not	discussed	yet	-		clobbers	.

Clobbers
As	mentioned	above,	the	"clobbered"	part	should	contain	a	comma-separated	list	of
registers	whose	content	will	be	modified	by	the	assembler	code.	This	is	useful	if	our
assembly	expression	needs	additional	registers	for	calculation.	If	we	add	clobbered	registers
to	the	inline	assembly	statement,	the	compiler	take	this	into	account	and	the	register	in
question	will	not	simultaneously	be	used	by	the	compiler.

Inline	assembly

686

https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Processor_register

Consider	the	example	from	before,	but	we	will	add	an	additional,	simple	assembler
instruction:

__asm__("movq	$100,	%%rdx\t\n"

								"addl	%1,%2"	:	"=r"	(sum)	:	"r"	(a),	"0"	(b));

If	we	look	at	the	assembly	output

0000000000400400	<main>:

		400400:							ba	05	00	00	00										mov				$0x5,%edx

		400405:							b8	0a	00	00	00										mov				$0xa,%eax

		40040a:							48	c7	c2	64	00	00	00				mov				$0x64,%rdx

		400411:							01	d0																			add				%edx,%eax

we	see	that	the		%edx		register	is	overwritten	with		0x64		or		100		and	the	result	will	be		115	
instead	of		15	.	Now	if	we	add	the		%rdx		register	to	the	list	of	"clobbered"	register

__asm__("movq	$100,	%%rdx\t\n"

								"addl	%1,%2"	:	"=r"	(sum)	:	"r"	(a),	"0"	(b)	:	"%rdx");

and	look	at	the	assembler	output	again

0000000000400400	<main>:

		400400:							b9	05	00	00	00										mov				$0x5,%ecx

		400405:							b8	0a	00	00	00										mov				$0xa,%eax

		40040a:							48	c7	c2	64	00	00	00				mov				$0x64,%rdx

		400411:							01	c8																			add				%ecx,%eax

the		%ecx		register	will	be	used	for		sum		calculation,	preserving	the	intended	semantics	of
the	program.	Besides	general	purpose	registers,	we	may	pass	two	special	specifiers.	They
are:

	cc	;
	memory	.

The	first	-		cc		indicates	that	an	assembler	code	modifies	flags	register.	This	is	typically	used
if	the	assembly	within	contains	arithmetic	or	logic	instructions.

__asm__("incq	%0"	::""(variable):	"cc");

The	second		memory		specifier	tells	the	compiler	that	the	given	inline	assembly	statement
executes	read/write	operations	on	memory	not	specified	by	operands	in	the	output	list.	This
prevents	the	compiler	from	keeping	memory	values	loaded	and	cached	in	registers.	Let's

Inline	assembly

687

https://en.wikipedia.org/wiki/FLAGS_register

take	a	look	at	the	following	example:

#include	<stdio.h>

int	main(void)

{

								int	a[3]	=	{10,20,30};

								int	b	=	5;

								__asm__	volatile("incl	%0"	::	"m"	(a[0]));

								printf("a[0]	-	b	=	%d\n",	a[0]	-	b);

								return	0;

}

This	example	may	be	artificial,	but	it	illustrates	the	main	idea.	Here	we	have	an	array	of
integers	and	one	integer	variable.	The	example	is	pretty	simple,	we	take	the	first	element	of
	a		and	increment	its	value.	After	this	we	subtract	the	value	of		b		from	the	first	element	of
	a	.	In	the	end	we	print	the	result.	If	we	compile	and	run	this	simple	example	the	result	may
surprise	you.

~$	gcc	-O3		test.c	-o	test

~$./test

a[0]	-	b	=	5

The	result	is		5		here,	but	why?	We	incremented		a[0]		and	subtracted	b,	so	the	result
should	be		6		here.	If	we	have	a	look	at	the	assembler	output	for	this	example

00000000004004f6	<main>:

		4004f6:							c7	44	24	f0	0a	00	00				movl			$0xa,-0x10(%rsp)

		4004fd:							00	

		4004fe:							c7	44	24	f4	14	00	00				movl			$0x14,-0xc(%rsp)

		400505:							00	

		400506:							c7	44	24	f8	1e	00	00				movl			$0x1e,-0x8(%rsp)

		40050d:							00	

		40050e:							ff	44	24	f0													incl			-0x10(%rsp)

		400512:							b8	05	00	00	00										mov				$0x5,%eax

we	see	that	the	first	element	of	the		a		contains	the	value		0xa		(10).	The	last	two	lines	of
code	are	the	actual	calculations.	We	see	our	increment	instruction	with		incl		but	then	just	a
move	of		5		to	the		%eax		register.	This	looks	strange.	The	problem	is	we	have	passed	the		-
O3		flag	to		gcc	,	so	the	compiler	did	some	constant	folding	and	propagation	to	determine	the
result	of		a[0]	-	5		at	compile	time	and	reduced	it	to	a		mov		with	a	constant		5		at	runtime.

Let's	now	add		memory		to	the	clobbers	list

Inline	assembly

688

__asm__	volatile("incl	%0"	::	"m"	(a[0])	:	"memory");

and	the	new	result	of	running	this	is

~$	gcc	-O3		test.c	-o	test

~$./test

a[0]	-	b	=	6

Now	the	result	is	correct.	If	we	look	at	the	assembly	output	again

00000000004004f6	<main>:

		4004f6:							c7	44	24	f0	0a	00	00				movl			$0xa,-0x10(%rsp)

		4004fd:							00	

		4004fe:							c7	44	24	f4	14	00	00				movl			$0x14,-0xc(%rsp)

		400505:							00	

		400506:							c7	44	24	f8	1e	00	00				movl			$0x1e,-0x8(%rsp)

		40050d:							00	

		40050e:							ff	44	24	f0													incl			-0x10(%rsp)

		400512:							8b	44	24	f0													mov				-0x10(%rsp),%eax

		400516:							83	e8	05																sub				$0x5,%eax

		400519:							c3																						retq

we	will	see	one	difference	here	which	is	in	the	following	piece	code:

		400512:							8b	44	24	f0													mov				-0x10(%rsp),%eax

		400516:							83	e8	05																sub				$0x5,%eax

Instead	of	constant	folding,		GCC		now	preserves	calculations	in	the	assembly	and	places	the
value	of		a[0]		in	the		%eax		register	afterwards.	In	the	end	it	just	subtracts	the	constant
value	of		b	.	Besides	the		memory		specifier,	we	also	see	a	new	constraint	here	-		m	.	This
constraint	tells	the	compiler	to	use	the	address	of		a[0]	,	instead	of	its	value.	So,	now	we
are	finished	with		clobbers		and	we	may	continue	by	looking	at	other	constraints	supported
by		GCC		besides		r		and		m		which	we	have	already	seen.

Constraints
Now	that	we	are	finished	with	all	three	parts	of	an	inline	assembly	statement,	let's	return	to
constraints.	We	already	saw	some	constraints	in	the	previous	parts,	like		r		which
represents	a		register		operand,		m		which	represents	a	memory	operand	and		0-9		which
represent	an	reused,	indexed	operand.	Besides	these		GCC		provides	support	for	other
constraints.	For	example	the		i		constraint	represents	an		immediate		integer	operand	with
know	value.

Inline	assembly

689

#include	<stdio.h>

int	main(void)

{

								int	a	=	0;

								__asm__("movl	%1,	%0"	:	"=r"(a)	:	"i"(100));

								printf("a	=	%d\n",	a);

								return	0;

}

The	result	is:

~$	gcc	test.c	-o	test

~$./test

a	=	100

Or	for	example		I		which	represents	an	immediate	32-bit	integer.	The	difference	between
	i		and		I		is	that		i		is	general,	whereas		I		is	strictly	specified	to	32-bit	integer	data.	For
example	if	you	try	to	compile	the	following

int	test_asm(int	nr)

{

								unsigned	long	a	=	0;

								__asm__("movq	%1,	%0"	:	"=r"(a)	:	"I"(0xffffffffffff));

								return	a;

}

you	will	get	an	error

$	gcc	-O3	test.c	-o	test

test.c:	In	function	‘test_asm’:

test.c:7:9:	warning:	asm	operand	1	probably	doesn’t	match	constraints

									__asm__("movq	%1,	%0"	:	"=r"(a)	:	"I"(0xffffffffffff));

									^

test.c:7:9:	error:	impossible	constraint	in	‘asm’

when	at	the	same	time

Inline	assembly

690

int	test_asm(int	nr)

{

								unsigned	long	a	=	0;

								__asm__("movq	%1,	%0"	:	"=r"(a)	:	"i"(0xffffffffffff));

								return	a;

}

works	perfectly.

~$	gcc	-O3	test.c	-o	test

~$	echo	$?

0

	GCC		also	supports		J	,		K	,		N		constraints	for	integer	constants	in	the	range	of	0-63	bits,
signed	8-bit	integer	constants	and	unsigned	8-bit	integer	constants	respectively.	The		o	
constraint	represents	a	memory	operand	with	an		offsetable		memory	address.	For
example:

#include	<stdio.h>

int	main(void)

{

								static	unsigned	long	arr[3]	=	{0,	1,	2};

								static	unsigned	long	element;

								__asm__	volatile("movq	16+%1,	%0"	:	"=r"(element)	:	"o"(arr));

								printf("%d\n",	element);

								return	0;

}

The	result,	as	expected:

~$	gcc	-O3	test.c	-o	test

~$./test

2

All	of	these	constraints	may	be	combined	(so	long	as	they	do	not	conflict).	In	this	case	the
compiler	will	choose	the	best	one	for	a	certain	situation.	For	example:

Inline	assembly

691

#include	<stdio.h>

int	a	=	1;

int	main(void)

{

								int	b;

								__asm__	("movl	%1,%0"	:	"=r"(b)	:	"r"(a));

								return	b;

}

will	use	a	memory	operand.

0000000000400400	<main>:

		400400:							8b	05	26	0c	20	00							mov				0x200c26(%rip),%eax								#	60102c	<a>

That's	about	all	of	the	commonly	used	constraints	in	inline	assembly	statements.	You	can
find	more	in	the	official	documentation.

Architecture	specific	constraints
Before	we	finish,	let's	look	at	the	set	of	special	constraints.	These	constrains	are	architecture
specific	and	as	this	book	is	specific	to	the	x86_64	architecture,	we	will	look	at	constraints
related	to	it.	First	of	all	the	set	of		a		...		d		and	also		S		and		D		constraints	represent
generic	purpose	registers.	In	this	case	the		a		constraint	corresponds	to		%al	,		%ax	,		%eax	
or		%rax		register	depending	on	instruction	size.	The		S		and		D		constraints	are		%si		and
	%di		registers	respectively.	For	example	let's	take	our	previous	example.	We	can	see	in	its
assembly	output	that	value	of	the		a		variable	is	stored	in	the		%eax		register.	Now	let's	look
at	the	assembly	output	of	the	same	assembly,	but	with	other	constraint:

#include	<stdio.h>

int	a	=	1;

int	main(void)

{

								int	b;

								__asm__	("movl	%1,%0"	:	"=r"(b)	:	"d"(a));

								return	b;

}

Now	we	see	that	value	of	the		a		variable	will	be	stored	in	the		%edx		register:

Inline	assembly

692

https://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html#Simple-Constraints
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Processor_register

0000000000400400	<main>:

		400400:							8b	15	26	0c	20	00							mov				0x200c26(%rip),%edx								#	60102c	<a>

The		f		and		t		constraints	represent	any	floating	point	stack	register	-		%st		and	the	top	of
the	floating	point	stack	respectively.	The		u		constraint	represents	the	second	value	from	the
top	of	the	floating	point	stack.

That's	all.	You	may	find	more	details	about	x86_64	and	general	constraints	in	the	official
documentation.

Links
Linux	kernel	source	code
assembly	programming	language
GCC
GNU	extension
Global	Descriptor	Table
Processor	registers
add	instruction
flags	register
x86_64
constraints

Inline	assembly

693

https://en.wikipedia.org/wiki/X86-64
https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html#Machine-Constraints
https://github.com/torvalds/linux
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
http://x86.renejeschke.de/html/file_module_x86_id_5.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/X86-64
https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html#Machine-Constraints

Misc
This	chapter	contains	parts	which	are	not	directly	related	to	the	Linux	kernel	source	code
and	implementation	of	different	subsystems.

Misc

694

Process	of	the	Linux	kernel	building

Introduction
I	won't	tell	you	how	to	build	and	install	a	custom	Linux	kernel	on	your	machine.	If	you	need
help	with	this,	you	can	find	many	resources	that	will	help	you	do	it.	Instead,	we	will	learn
what	occurs	when	you	execute		make		in	the	root	directory	of	the	Linux	kernel	source	code.

When	I	started	to	study	the	source	code	of	the	Linux	kernel,	the	makefile	was	the	first	file
that	I	opened.	And	it	was	scary	:).	The	makefile	contained		1591		lines	of	code	when	I	wrote
this	part	and	the	kernel	was	the	4.2.0-rc3	release.

This	makefile	is	the	top	makefile	in	the	Linux	kernel	source	code	and	the	kernel	building
starts	here.	Yes,	it	is	big,	but	moreover,	if	you've	read	the	source	code	of	the	Linux	kernel
you	may	have	noted	that	all	directories	containing	source	code	has	its	own	makefile.	Of
course	it	is	not	possible	to	describe	how	each	source	file	is	compiled	and	linked,	so	we	will
only	study	the	standard	compilation	case.	You	will	not	find	here	building	of	the	kernel's
documentation,	cleaning	of	the	kernel	source	code,	tags	generation,	cross-compilation
related	stuff,	etc...	We	will	start	from	the		make		execution	with	the	standard	kernel
configuration	file	and	will	finish	with	the	building	of	the	bzImage.

It	would	be	better	if	you're	already	familiar	with	the	make	util,	but	I	will	try	to	describe	every
piece	of	code	in	this	part	anyway.

So	let's	start.

Preparation	before	the	kernel	compilation
There	are	many	things	to	prepare	before	the	kernel	compilation	can	be	started.	The	main
point	here	is	to	find	and	configure	the	type	of	compilation,	to	parse	command	line	arguments
that	are	passed	to		make	,	etc...	So	let's	dive	into	the	top		Makefile		of	Linux	kernel.

The	top		Makefile		of	Linux	kernel	is	responsible	for	building	two	major	products:	vmlinux
(the	resident	kernel	image)	and	the	modules	(any	module	files).	The	Makefile	of	the	Linux
kernel	starts	with	the	definition	of	following	variables:

How	the	kernel	is	compiled

695

https://encrypted.google.com/search?q=building+linux+kernel#q=building+linux+kernel+from+source+code
https://github.com/torvalds/linux/blob/master/Makefile
https://en.wikipedia.org/wiki/Make_%28software%29
https://github.com/torvalds/linux/commit/52721d9d3334c1cb1f76219a161084094ec634dc
https://en.wikipedia.org/wiki/Ctags
https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/Make_%28software%29
https://en.wikipedia.org/wiki/Vmlinux
https://github.com/torvalds/linux/blob/master/Makefile

VERSION	=	4

PATCHLEVEL	=	2

SUBLEVEL	=	0

EXTRAVERSION	=	-rc3

NAME	=	Hurr	durr	I'ma	sheep

These	variables	determine	the	current	version	of	Linux	kernel	and	are	used	in	different
places,	for	example	in	the	forming	of	the		KERNELVERSION		variable	in	the	same		Makefile	:

KERNELVERSION	=	$(VERSION)$(if	$(PATCHLEVEL),.$(PATCHLEVEL)$(if	$(SUBLEVEL),.$(SUBLEVE

L)))$(EXTRAVERSION)

After	this	we	can	see	a	couple	of		ifeq		conditions	that	check	some	of	the	parameters
passed	to		make	.	The	Linux	kernel		makefiles		provides	a	special		make	help		target	that
prints	all	available	targets	and	some	of	the	command	line	arguments	that	can	be	passed	to
	make	.	For	example	:		make	V=1		=>	verbose	build.	The	first		ifeq		checks	whether	the		V=n	
option	is	passed	to		make	:

ifeq	("$(origin	V)",	"command	line")

		KBUILD_VERBOSE	=	$(V)

endif

ifndef	KBUILD_VERBOSE

		KBUILD_VERBOSE	=	0

endif

ifeq	($(KBUILD_VERBOSE),1)

		quiet	=

		Q	=

else

		quiet=quiet_

		Q	=	@

endif

export	quiet	Q	KBUILD_VERBOSE

If	this	option	is	passed	to		make	,	we	set	the		KBUILD_VERBOSE		variable	to	the	value	of		V	
option.	Otherwise	we	set	the		KBUILD_VERBOSE		variable	to	zero.	After	this	we	check	the	value
of		KBUILD_VERBOSE		variable	and	set	values	of	the		quiet		and		Q		variables	depending	on	the
value	of		KBUILD_VERBOSE		variable.	The		@		symbols	suppress	the	output	of	command.	And	if
it	is	present	before	a	command	the	output	will	be	something	like	this:		CC
scripts/mod/empty.o		instead	of		Compiling	scripts/mod/empty.o	.	In	the	end	we	just
export	all	of	these	variables.	The	next		ifeq		statement	checks	that		O=/dir		option	was
passed	to	the		make	.	This	option	allows	to	locate	all	output	files	in	the	given		dir	:

How	the	kernel	is	compiled

696

ifeq	($(KBUILD_SRC),)

ifeq	("$(origin	O)",	"command	line")

		KBUILD_OUTPUT	:=	$(O)

endif

ifneq	($(KBUILD_OUTPUT),)

saved-output	:=	$(KBUILD_OUTPUT)

KBUILD_OUTPUT	:=	$(shell	mkdir	-p	$(KBUILD_OUTPUT)	&&	cd	$(KBUILD_OUTPUT)	\

																																&&	/bin/pwd)

$(if	$(KBUILD_OUTPUT),,	\

					$(error	failed	to	create	output	directory	"$(saved-output)"))

sub-make:	FORCE

				(Q)(MAKE)	-C	$(KBUILD_OUTPUT)	KBUILD_SRC=$(CURDIR)	\

				-f	$(CURDIR)/Makefile	$(filter-out	_all	sub-make,$(MAKECMDGOALS))

skip-makefile	:=	1

endif	#	ifneq	($(KBUILD_OUTPUT),)

endif	#	ifeq	($(KBUILD_SRC),)

We	check	the		KBUILD_SRC		that	represents	the	top	directory	of	the	kernel	source	code	and
whether	it	is	empty	(it	is	empty	when	the	makefile	is	executed	for	the	first	time).	We	then	set
the		KBUILD_OUTPUT		variable	to	the	value	passed	with	the		O		option	(if	this	option	was
passed).	In	the	next	step	we	check	this		KBUILD_OUTPUT		variable	and	if	it	is	set,	we	do
following	things:

Store	the	value	of		KBUILD_OUTPUT		in	the	temporary		saved-output		variable;
Try	to	create	the	given	output	directory;
Check	that	directory	created,	in	other	way	print	error	message;
If	the	custom	output	directory	was	created	successfully,	execute		make		again	with	the
new	directory	(see	the		-C		option).

The	next		ifeq		statements	check	that	the		C		or		M		options	passed	to		make	:

ifeq	("$(origin	C)",	"command	line")

		KBUILD_CHECKSRC	=	$(C)

endif

ifndef	KBUILD_CHECKSRC

		KBUILD_CHECKSRC	=	0

endif

ifeq	("$(origin	M)",	"command	line")

		KBUILD_EXTMOD	:=	$(M)

endif

How	the	kernel	is	compiled

697

The		C		option	tells	the		makefile		that	we	need	to	check	all		c		source	code	with	a	tool
provided	by	the		$CHECK		environment	variable,	by	default	it	is	sparse.	The	second		M		option
provides	build	for	the	external	modules	(will	not	see	this	case	in	this	part).	We	also	check
whether	the		KBUILD_SRC		variable	is	set,	and	if	it	isn't,	we	set	the		srctree		variable	to		.	:

ifeq	($(KBUILD_SRC),)

								srctree	:=	.

endif

objtree				:=	.

src								:=	$(srctree)

obj								:=	$(objtree)

export	srctree	objtree	VPATH

That	tells		Makefile		that	the	kernel	source	tree	will	be	in	the	current	directory	where		make	
was	executed.	We	then	set		objtree		and	other	variables	to	this	directory	and	export	them.
The	next	step	is	to	get	value	for	the		SUBARCH		variable	that	represents	what	the	underlying
architecture	is:

SUBARCH	:=	$(shell	uname	-m	|	sed	-e	s/i.86/x86/	-e	s/x86_64/x86/	\

																		-e	s/sun4u/sparc64/	\

																		-e	s/arm.*/arm/	-e	s/sa110/arm/	\

																		-e	s/s390x/s390/	-e	s/parisc64/parisc/	\

																		-e	s/ppc.*/powerpc/	-e	s/mips.*/mips/	\

																		-e	s/sh[234].*/sh/	-e	s/aarch64.*/arm64/)

As	you	can	see,	it	executes	the	uname	util	that	prints	information	about	machine,	operating
system	and	architecture.	As	it	gets	the	output	of		uname	,	it	parses	the	output	and	assigns	the
result	to	the		SUBARCH		variable.	Now	that	we	have		SUBARCH	,	we	set	the		SRCARCH		variable
that	provides	the	directory	of	the	certain	architecture	and		hfr-arch		that	provides	the
directory	for	the	header	files:

ifeq	($(ARCH),i386)

								SRCARCH	:=	x86

endif

ifeq	($(ARCH),x86_64)

								SRCARCH	:=	x86

endif

hdr-arch		:=	$(SRCARCH)

Note		ARCH		is	an	alias	for		SUBARCH	.	In	the	next	step	we	set	the		KCONFIG_CONFIG		variable
that	represents	path	to	the	kernel	configuration	file	and	if	it	was	not	set	before,	it	is	set	to
	.config		by	default:

How	the	kernel	is	compiled

698

https://en.wikipedia.org/wiki/Sparse
https://en.wikipedia.org/wiki/Uname

KCONFIG_CONFIG				?=	.config

export	KCONFIG_CONFIG

and	the	shell	that	will	be	used	during	kernel	compilation:

CONFIG_SHELL	:=	$(shell	if	[-x	"$$BASH"];	then	echo	$$BASH;	\

						else	if	[-x	/bin/bash];	then	echo	/bin/bash;	\

						else	echo	sh;	fi	;	fi)

The	next	set	of	variables	are	related	to	the	compilers	used	during	Linux	kernel	compilation.
We	set	the	host	compilers	for	the		c		and		c++		and	the	flags	to	be	used	with	them:

HOSTCC							=	gcc

HOSTCXX						=	g++

HOSTCFLAGS			=	-Wall	-Wmissing-prototypes	-Wstrict-prototypes	-O2	-fomit-frame-pointer

	-std=gnu89

HOSTCXXFLAGS	=	-O2

Next	we	get	to	the		CC		variable	that	represents	compiler	too,	so	why	do	we	need	the		HOST*	
variables?		CC		is	the	target	compiler	that	will	be	used	during	kernel	compilation,	but		HOSTCC	
will	be	used	during	compilation	of	the	set	of	the		host		programs	(we	will	see	it	soon).	After
this	we	can	see	the	definition	of		KBUILD_MODULES		and		KBUILD_BUILTIN		variables	that	are
used	to	determine	what	to	compile	(modules,	kernel,	or	both):

KBUILD_MODULES	:=

KBUILD_BUILTIN	:=	1

ifeq	($(MAKECMDGOALS),modules)

		KBUILD_BUILTIN	:=	$(if	$(CONFIG_MODVERSIONS),1)

endif

Here	we	can	see	definition	of	these	variables	and	the	value	of		KBUILD_BUILTIN		variable	will
depend	on	the		CONFIG_MODVERSIONS		kernel	configuration	parameter	if	we	pass	only		modules	
to		make	.	The	next	step	is	to	include	the		kbuild		file.

include	scripts/Kbuild.include

The	Kbuild	or		Kernel	Build	System		is	the	special	infrastructure	to	manage	the	build	of	the
kernel	and	its	modules.	The		kbuild		files	has	the	same	syntax	that	makefiles	do.	The
scripts/Kbuild.include	file	provides	some	generic	definitions	for	the		kbuild		system.	As	we

How	the	kernel	is	compiled

699

https://en.wikipedia.org/wiki/Shell_%28computing%29
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/kbuild.txt
https://github.com/torvalds/linux/blob/master/scripts/Kbuild.include

included	this		kbuild		files	we	can	see	definition	of	the	variables	that	are	related	to	the
different	tools	that	will	be	used	during	kernel	and	modules	compilation	(like	linker,	compilers,
utils	from	the	binutils,	etc...):

AS								=	$(CROSS_COMPILE)as

LD								=	$(CROSS_COMPILE)ld

CC								=	$(CROSS_COMPILE)gcc

CPP								=	$(CC)	-E

AR								=	$(CROSS_COMPILE)ar

NM								=	$(CROSS_COMPILE)nm

STRIP								=	$(CROSS_COMPILE)strip

OBJCOPY								=	$(CROSS_COMPILE)objcopy

OBJDUMP								=	$(CROSS_COMPILE)objdump

AWK								=	awk

...

...

...

We	then	define	two	other	variables:		USERINCLUDE		and		LINUXINCLUDE	.	They	contain	the	paths
of	the	directories	with	headersc	z	(public	for	users	in	the	first	case	and	for	kernel	in	the
second	case):

USERINCLUDE				:=	\

								-I$(srctree)/arch/$(hdr-arch)/include/uapi	\

								-Iarch/$(hdr-arch)/include/generated/uapi	\

								-I$(srctree)/include/uapi	\

								-Iinclude/generated/uapi	\

								-include	$(srctree)/include/linux/kconfig.h

LINUXINCLUDE				:=	\

								-I$(srctree)/arch/$(hdr-arch)/include	\

								...

And	the	standard	flags	for	the	C	compiler:

KBUILD_CFLAGS			:=	-Wall	-Wundef	-Wstrict-prototypes	-Wno-trigraphs	\

											-fno-strict-aliasing	-fno-common	\

											-Werror-implicit-function-declaration	\

											-Wno-format-security	\

											-std=gnu89

It	is	the	not	last	compiler	flags,	they	can	be	updated	by	the	other	makefiles	(for	example
kbuilds	from		arch/).	After	all	of	these,	all	variables	will	be	exported	to	be	available	in	the
other	makefiles.	The	following	two	the		RCS_FIND_IGNORE		and	the		RCS_TAR_IGNORE		variables
will	contain	files	that	will	be	ignored	in	the	version	control	system:

How	the	kernel	is	compiled

700

http://www.gnu.org/software/binutils/

export	RCS_FIND_IGNORE	:=	\(-name	SCCS	-o	-name	BitKeeper	-o	-name	.svn	-o				\

														-name	CVS	-o	-name	.pc	-o	-name	.hg	-o	-name	.git	\)	\

														-prune	-o

export	RCS_TAR_IGNORE	:=	--exclude	SCCS	--exclude	BitKeeper	--exclude	.svn	\

													--exclude	CVS	--exclude	.pc	--exclude	.hg	--exclude	.git

That's	all.	We	have	finished	with	the	all	preparations,	next	point	is	the	building	of		vmlinux	.

Directly	to	the	kernel	build
We	have	now	finished	all	the	preparations,	and	next	step	in	the	main	makefile	is	related	to
the	kernel	build.	Before	this	moment,	nothing	has	been	printed	to	the	terminal	by		make	.	But
now	the	first	steps	of	the	compilation	are	started.	We	need	to	go	to	line	598	of	the	Linux
kernel	top	makefile	and	we	will	find	the		vmlinux		target	there:

all:	vmlinux

				include	arch/$(SRCARCH)/Makefile

Don't	worry	that	we	have	missed	many	lines	in	Makefile	that	are	between		export
RCS_FIND_IGNORE.....		and		all:	vmlinux.....	.	This	part	of	the	makefile	is	responsible	for	the
	make	*.config		targets	and	as	I	wrote	in	the	beginning	of	this	part	we	will	see	only	building
of	the	kernel	in	a	general	way.

The		all:		target	is	the	default	when	no	target	is	given	on	the	command	line.	You	can	see
here	that	we	include	architecture	specific	makefile	there	(in	our	case	it	will	be
arch/x86/Makefile).	From	this	moment	we	will	continue	from	this	makefile.	As	we	can	see
	all		target	depends	on	the		vmlinux		target	that	defined	a	little	lower	in	the	top	makefile:

vmlinux:	scripts/link-vmlinux.sh	$(vmlinux-deps)	FORCE

The		vmlinux		is	the	Linux	kernel	in	a	statically	linked	executable	file	format.	The	scripts/link-
vmlinux.sh	script	links	and	combines	different	compiled	subsystems	into	vmlinux.	The
second	target	is	the		vmlinux-deps		that	defined	as:

vmlinux-deps	:=	$(KBUILD_LDS)	$(KBUILD_VMLINUX_INIT)	$(KBUILD_VMLINUX_MAIN)

and	consists	from	the	set	of	the		built-in.o		from	each	top	directory	of	the	Linux	kernel.
Later,	when	we	will	go	through	all	directories	in	the	Linux	kernel,	the		Kbuild		will	compile	all
the		$(obj-y)		files.	It	then	calls		$(LD)	-r		to	merge	these	files	into	one		built-in.o		file.	For

How	the	kernel	is	compiled

701

https://github.com/torvalds/linux/blob/master/Makefile#L598
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/scripts/link-vmlinux.sh

this	moment	we	have	no		vmlinux-deps	,	so	the		vmlinux		target	will	not	be	executed	now.
For	me		vmlinux-deps		contains	following	files:

arch/x86/kernel/vmlinux.lds	arch/x86/kernel/head_64.o

arch/x86/kernel/head64.o				arch/x86/kernel/head.o

init/built-in.o													usr/built-in.o

arch/x86/built-in.o									kernel/built-in.o

mm/built-in.o															fs/built-in.o

ipc/built-in.o														security/built-in.o

crypto/built-in.o											block/built-in.o

lib/lib.a																			arch/x86/lib/lib.a

lib/built-in.o														arch/x86/lib/built-in.o

drivers/built-in.o										sound/built-in.o

firmware/built-in.o									arch/x86/pci/built-in.o

arch/x86/power/built-in.o			arch/x86/video/built-in.o

net/built-in.o

The	next	target	that	can	be	executed	is	following:

$(sort	$(vmlinux-deps)):	$(vmlinux-dirs)	;

$(vmlinux-dirs):	prepare	scripts

				(Q)(MAKE)	$(build)=$@

As	we	can	see		vmlinux-dirs		depends	on	two	targets:		prepare		and		scripts	.		prepare		is
defined	in	the	top		Makefile		of	the	Linux	kernel	and	executes	three	stages	of	preparations:

prepare:	prepare0

prepare0:	archprepare	FORCE

				(Q)(MAKE)	$(build)=.

archprepare:	archheaders	archscripts	prepare1	scripts_basic

prepare1:	prepare2	$(version_h)	include/generated/utsrelease.h	\

																			include/config/auto.conf

				$(cmd_crmodverdir)

prepare2:	prepare3	outputmakefile	asm-generic

The	first		prepare0		expands	to	the		archprepare		that	expands	to	the		archheaders		and
	archscripts		that	defined	in	the		x86_64		specific	Makefile.	Let's	look	on	it.	The		x86_64	
specific	makefile	starts	from	the	definition	of	the	variables	that	are	related	to	the	architecture-
specific	configs	(defconfig,	etc...).	After	this	it	defines	flags	for	the	compiling	of	the	16-bit
code,	calculating	of	the		BITS		variable	that	can	be		32		for		i386		or		64		for	the		x86_64	
flags	for	the	assembly	source	code,	flags	for	the	linker	and	many	many	more	(all	definitions
you	can	find	in	the	arch/x86/Makefile).	The	first	target	is		archheaders		in	the	makefile
generates	syscall	table:

How	the	kernel	is	compiled

702

https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/tree/master/arch/x86/configs
https://en.wikipedia.org/wiki/Real_mode
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile

archheaders:

				(Q)(MAKE)	$(build)=arch/x86/entry/syscalls	all

And	the	second	target	is		archscripts		in	this	makefile	is:

archscripts:	scripts_basic

				(Q)(MAKE)	$(build)=arch/x86/tools	relocs

We	can	see	that	it	depends	on	the		scripts_basic		target	from	the	top	Makefile.	At	the	first
we	can	see	the		scripts_basic		target	that	executes	make	for	the	scripts/basic	makefile:

scripts_basic:

				(Q)(MAKE)	$(build)=scripts/basic

The		scripts/basic/Makefile		contains	targets	for	compilation	of	the	two	host	programs:
	fixdep		and		bin2	:

hostprogs-y				:=	fixdep

hostprogs-$(CONFIG_BUILD_BIN2C)					+=	bin2c

always								:=	$(hostprogs-y)

$(addprefix	$(obj)/,$(filter-out	fixdep,$(always))):	$(obj)/fixdep

First	program	is		fixdep		-	optimizes	list	of	dependencies	generated	by	gcc	that	tells	make
when	to	remake	a	source	code	file.	The	second	program	is		bin2c	,	which	depends	on	the
value	of	the		CONFIG_BUILD_BIN2C		kernel	configuration	option	and	is	a	very	little	C	program
that	allows	to	convert	a	binary	on	stdin	to	a	C	include	on	stdout.	You	can	note	here	a	strange
notation:		hostprogs-y	,	etc...	This	notation	is	used	in	the	all		kbuild		files	and	you	can	read
more	about	it	in	the	documentation.	In	our	case		hostprogs-y		tells		kbuild		that	there	is	one
host	program	named		fixdep		that	will	be	built	from		fixdep.c		that	is	located	in	the	same
directory	where	the		Makefile		is.	The	first	output	after	we	execute		make		in	our	terminal	will
be	result	of	this		kbuild		file:

$	make

		HOSTCC		scripts/basic/fixdep

As		script_basic		target	was	executed,	the		archscripts		target	will	execute		make		for	the
arch/x86/tools	makefile	with	the		relocs		target:

(Q)(MAKE)	$(build)=arch/x86/tools	relocs

How	the	kernel	is	compiled

703

https://github.com/torvalds/linux/blob/master/Makefile
https://github.com/torvalds/linux/blob/master/scripts/basic/Makefile
https://gcc.gnu.org/
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/makefiles.txt
https://github.com/torvalds/linux/blob/master/arch/x86/tools/Makefile

The		relocs_32.c		and	the		relocs_64.c		will	be	compiled	that	will	contain	relocation
information	and	we	will	see	it	in	the		make		output:

		HOSTCC		arch/x86/tools/relocs_32.o

		HOSTCC		arch/x86/tools/relocs_64.o

		HOSTCC		arch/x86/tools/relocs_common.o

		HOSTLD		arch/x86/tools/relocs

There	is	checking	of	the		version.h		after	compiling	of	the		relocs.c	:

$(version_h):	$(srctree)/Makefile	FORCE

				$(call	filechk,version.h)

				$(Q)rm	-f	$(old_version_h)

We	can	see	it	in	the	output:

CHK					include/config/kernel.release

and	the	building	of	the		generic		assembly	headers	with	the		asm-generic		target	from	the
	arch/x86/include/generated/asm		that	generated	in	the	top	Makefile	of	the	Linux	kernel.	After
the		asm-generic		target	the		archprepare		will	be	done,	so	the		prepare0		target	will	be
executed.	As	I	wrote	above:

prepare0:	archprepare	FORCE

				(Q)(MAKE)	$(build)=.

Note	on	the		build	.	It	defined	in	the	scripts/Kbuild.include	and	looks	like	this:

build	:=	-f	$(srctree)/scripts/Makefile.build	obj

Or	in	our	case	it	is	current	source	directory	-		.	:

(Q)(MAKE)	-f	$(srctree)/scripts/Makefile.build	obj=.

The	scripts/Makefile.build	tries	to	find	the		Kbuild		file	by	the	given	directory	via	the		obj	
parameter,	include	this		Kbuild		files:

include	$(kbuild-file)

How	the	kernel	is	compiled

704

https://en.wikipedia.org/wiki/Relocation_%28computing%29
https://github.com/torvalds/linux/blob/master/scripts/Kbuild.include
https://github.com/torvalds/linux/blob/master/scripts/Makefile.build

and	build	targets	from	it.	In	our	case		.		contains	the	Kbuild	file	that	generates	the
	kernel/bounds.s		and	the		arch/x86/kernel/asm-offsets.s	.	After	this	the		prepare		target
finished	to	work.	The		vmlinux-dirs		also	depends	on	the	second	target	-		scripts		that
compiles	following	programs:		file2alias	,		mk_elfconfig	,		modpost	,	etc.....	After
scripts/host-programs	compilation	our		vmlinux-dirs		target	can	be	executed.	First	of	all	let's
try	to	understand	what	does		vmlinux-dirs		contain.	For	my	case	it	contains	paths	of	the
following	kernel	directories:

init	usr	arch/x86	kernel	mm	fs	ipc	security	crypto	block

drivers	sound	firmware	arch/x86/pci	arch/x86/power

arch/x86/video	net	lib	arch/x86/lib

We	can	find	definition	of	the		vmlinux-dirs		in	the	top	Makefile	of	the	Linux	kernel:

vmlinux-dirs				:=	$(patsubst	%/,%,$(filter	%/,	$(init-y)	$(init-m)	\

													$(core-y)	$(core-m)	$(drivers-y)	$(drivers-m)	\

													$(net-y)	$(net-m)	$(libs-y)	$(libs-m)))

init-y								:=	init/

drivers-y				:=	drivers/	sound/	firmware/

net-y								:=	net/

libs-y								:=	lib/

...

...

...

Here	we	remove	the		/		symbol	from	the	each	directory	with	the	help	of	the		patsubst		and
	filter		functions	and	put	it	to	the		vmlinux-dirs	.	So	we	have	list	of	directories	in	the
	vmlinux-dirs		and	the	following	code:

$(vmlinux-dirs):	prepare	scripts

				(Q)(MAKE)	$(build)=$@

The		$@		represents		vmlinux-dirs		here	that	means	that	it	will	go	recursively	over	all
directories	from	the		vmlinux-dirs		and	its	internal	directories	(depens	on	configuration)	and
will	execute		make		in	there.	We	can	see	it	in	the	output:

How	the	kernel	is	compiled

705

https://github.com/torvalds/linux/blob/master/Kbuild
https://github.com/torvalds/linux/blob/master/Makefile

		CC						init/main.o

		CHK					include/generated/compile.h

		CC						init/version.o

		CC						init/do_mounts.o

		...

		CC						arch/x86/crypto/glue_helper.o

		AS						arch/x86/crypto/aes-x86_64-asm_64.o

		CC						arch/x86/crypto/aes_glue.o

		...

		AS						arch/x86/entry/entry_64.o

		AS						arch/x86/entry/thunk_64.o

		CC						arch/x86/entry/syscall_64.o

Source	code	in	each	directory	will	be	compiled	and	linked	to	the		built-in.o	:

$	find	.	-name	built-in.o

./arch/x86/crypto/built-in.o

./arch/x86/crypto/sha-mb/built-in.o

./arch/x86/net/built-in.o

./init/built-in.o

./usr/built-in.o

...

...

Ok,	all	buint-in.o(s)	built,	now	we	can	back	to	the		vmlinux		target.	As	you	remember,	the
	vmlinux		target	is	in	the	top	Makefile	of	the	Linux	kernel.	Before	the	linking	of	the		vmlinux		it
builds	samples,	Documentation,	etc...	but	I	will	not	describe	it	here	as	I	wrote	in	the
beginning	of	this	part.

vmlinux:	scripts/link-vmlinux.sh	$(vmlinux-deps)	FORCE

				...

				...

				+$(call	if_changed,link-vmlinux)

As	you	can	see	main	purpose	of	it	is	a	call	of	the	scripts/link-vmlinux.sh	script	is	linking	of
the	all		built-in.o	(s)	to	the	one	statically	linked	executable	and	creation	of	the
System.map.	In	the	end	we	will	see	following	output:

How	the	kernel	is	compiled

706

https://github.com/torvalds/linux/tree/master/samples
https://github.com/torvalds/linux/tree/master/Documentation
https://github.com/torvalds/linux/blob/master/scripts/link-vmlinux.sh
https://en.wikipedia.org/wiki/System.map

		LINK				vmlinux

		LD						vmlinux.o

		MODPOST	vmlinux.o

		GEN					.version

		CHK					include/generated/compile.h

		UPD					include/generated/compile.h

		CC						init/version.o

		LD						init/built-in.o

		KSYM				.tmp_kallsyms1.o

		KSYM				.tmp_kallsyms2.o

		LD						vmlinux

		SORTEX		vmlinux

		SYSMAP		System.map

and		vmlinux		and		System.map		in	the	root	of	the	Linux	kernel	source	tree:

$	ls	vmlinux	System.map

System.map		vmlinux

That's	all,		vmlinux		is	ready.	The	next	step	is	creation	of	the	bzImage.

Building	bzImage
The		bzImage		file	is	the	compressed	Linux	kernel	image.	We	can	get	it	by	executing		make
bzImage		after		vmlinux		is	built.	That,	or	we	can	just	execute		make		without	any	argument
and	we	will	get		bzImage		anyway	because	it	is	default	image:

all:	bzImage

in	the	arch/x86/kernel/Makefile.	Let's	look	on	this	target,	it	will	help	us	to	understand	how	this
image	builds.	As	I	already	said	the		bzImage		target	defined	in	the	arch/x86/kernel/Makefile
and	looks	like	this:

bzImage:	vmlinux

				(Q)(MAKE)	$(build)=$(boot)	$(KBUILD_IMAGE)

				$(Q)mkdir	-p	$(objtree)/arch/$(UTS_MACHINE)/boot

				$(Q)ln	-fsn	../../x86/boot/bzImage	$(objtree)/arch/$(UTS_MACHINE)/boot/$@

We	can	see	here,	that	first	of	all	called		make		for	the	boot	directory,	in	our	case	it	is:

boot	:=	arch/x86/boot

How	the	kernel	is	compiled

707

https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile

The	main	goal	now	is	to	build	the	source	code	in	the		arch/x86/boot		and
	arch/x86/boot/compressed		directories,	build		setup.bin		and		vmlinux.bin	,	and	build	the
	bzImage		from	them	in	the	end.	First	target	in	the	arch/x86/boot/Makefile	is	the
	$(obj)/setup.elf	:

$(obj)/setup.elf:	$(src)/setup.ld	$(SETUP_OBJS)	FORCE

				$(call	if_changed,ld)

We	already	have	the		setup.ld		linker	script	in	the		arch/x86/boot		directory	and	the
	SETUP_OBJS		variable	that	expands	to	the	all	source	files	from	the		boot		directory.	We	can
see	first	output:

		AS						arch/x86/boot/bioscall.o

		CC						arch/x86/boot/cmdline.o

		AS						arch/x86/boot/copy.o

		HOSTCC		arch/x86/boot/mkcpustr

		CPUSTR		arch/x86/boot/cpustr.h

		CC						arch/x86/boot/cpu.o

		CC						arch/x86/boot/cpuflags.o

		CC						arch/x86/boot/cpucheck.o

		CC						arch/x86/boot/early_serial_console.o

		CC						arch/x86/boot/edd.o

The	next	source	file	is	arch/x86/boot/header.S,	but	we	can't	build	it	now	because	this	target
depends	on	the	following	two	header	files:

$(obj)/header.o:	$(obj)/voffset.h	$(obj)/zoffset.h

The	first	is		voffset.h		generated	by	the		sed		script	that	gets	two	addresses	from	the
	vmlinux		with	the		nm		util:

#define	VO__end	0xffffffff82ab0000

#define	VO__text	0xffffffff81000000

They	are	the	start	and	the	end	of	the	kernel.	The	second	is		zoffset.h		depens	on	the
	vmlinux		target	from	the	arch/x86/boot/compressed/Makefile:

$(obj)/zoffset.h:	$(obj)/compressed/vmlinux	FORCE

				$(call	if_changed,zoffset)

How	the	kernel	is	compiled

708

https://github.com/torvalds/linux/blob/master/arch/x86/boot/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/Makefile

The		$(obj)/compressed/vmlinux		target	depends	on	the		vmlinux-objs-y		that	compiles
source	code	files	from	the	arch/x86/boot/compressed	directory	and	generates		vmlinux.bin	,
	vmlinux.bin.bz2	,	and	compiles	program	-		mkpiggy	.	We	can	see	this	in	the	output:

		LDS					arch/x86/boot/compressed/vmlinux.lds

		AS						arch/x86/boot/compressed/head_64.o

		CC						arch/x86/boot/compressed/misc.o

		CC						arch/x86/boot/compressed/string.o

		CC						arch/x86/boot/compressed/cmdline.o

		OBJCOPY	arch/x86/boot/compressed/vmlinux.bin

		BZIP2			arch/x86/boot/compressed/vmlinux.bin.bz2

		HOSTCC		arch/x86/boot/compressed/mkpiggy

Where		vmlinux.bin		is	the		vmlinux		file	with	debugging	information	and	comments	stripped
and	the		vmlinux.bin.bz2		compressed		vmlinux.bin.all		+		u32		size	of		vmlinux.bin.all	.
The		vmlinux.bin.all		is		vmlinux.bin	+	vmlinux.relocs	,	where		vmlinux.relocs		is	the
	vmlinux		that	was	handled	by	the		relocs		program	(see	above).	As	we	got	these	files,	the
	piggy.S		assembly	files	will	be	generated	with	the		mkpiggy		program	and	compiled:

		MKPIGGY	arch/x86/boot/compressed/piggy.S

		AS						arch/x86/boot/compressed/piggy.o

This	assembly	files	will	contain	the	computed	offset	from	the	compressed	kernel.	After	this
we	can	see	that		zoffset		generated:

		ZOFFSET	arch/x86/boot/zoffset.h

As	the		zoffset.h		and	the		voffset.h		are	generated,	compilation	of	the	source	code	files
from	the	arch/x86/boot	can	be	continued:

		AS						arch/x86/boot/header.o

		CC						arch/x86/boot/main.o

		CC						arch/x86/boot/mca.o

		CC						arch/x86/boot/memory.o

		CC						arch/x86/boot/pm.o

		AS						arch/x86/boot/pmjump.o

		CC						arch/x86/boot/printf.o

		CC						arch/x86/boot/regs.o

		CC						arch/x86/boot/string.o

		CC						arch/x86/boot/tty.o

		CC						arch/x86/boot/video.o

		CC						arch/x86/boot/video-mode.o

		CC						arch/x86/boot/video-vga.o

		CC						arch/x86/boot/video-vesa.o

		CC						arch/x86/boot/video-bios.o

How	the	kernel	is	compiled

709

https://github.com/torvalds/linux/tree/master/arch/x86/boot/compressed
https://github.com/torvalds/linux/tree/master/arch/x86/boot/

As	all	source	code	files	will	be	compiled,	they	will	be	linked	to	the		setup.elf	:

		LD						arch/x86/boot/setup.elf

or:

ld	-m	elf_x86_64			-T	arch/x86/boot/setup.ld	arch/x86/boot/a20.o	arch/x86/boot/bioscal

l.o	arch/x86/boot/cmdline.o	arch/x86/boot/copy.o	arch/x86/boot/cpu.o	arch/x86/boot/cpu

flags.o	arch/x86/boot/cpucheck.o	arch/x86/boot/early_serial_console.o	arch/x86/boot/ed

d.o	arch/x86/boot/header.o	arch/x86/boot/main.o	arch/x86/boot/mca.o	arch/x86/boot/memo

ry.o	arch/x86/boot/pm.o	arch/x86/boot/pmjump.o	arch/x86/boot/printf.o	arch/x86/boot/re

gs.o	arch/x86/boot/string.o	arch/x86/boot/tty.o	arch/x86/boot/video.o	arch/x86/boot/vi

deo-mode.o	arch/x86/boot/version.o	arch/x86/boot/video-vga.o	arch/x86/boot/video-vesa.

o	arch/x86/boot/video-bios.o	-o	arch/x86/boot/setup.elf

The	last	two	things	is	the	creation	of	the		setup.bin		that	will	contain	compiled	code	from	the
	arch/x86/boot/*		directory:

objcopy		-O	binary	arch/x86/boot/setup.elf	arch/x86/boot/setup.bin

and	the	creation	of	the		vmlinux.bin		from	the		vmlinux	:

objcopy		-O	binary	-R	.note	-R	.comment	-S	arch/x86/boot/compressed/vmlinux	arch/x86/b

oot/vmlinux.bin

In	the	end	we	compile	host	program:	arch/x86/boot/tools/build.c	that	will	create	our		bzImage	
from	the		setup.bin		and	the		vmlinux.bin	:

arch/x86/boot/tools/build	arch/x86/boot/setup.bin	arch/x86/boot/vmlinux.bin	arch/x86/b

oot/zoffset.h	arch/x86/boot/bzImage

Actually	the		bzImage		is	the	concatenated		setup.bin		and	the		vmlinux.bin	.	In	the	end	we
will	see	the	output	which	is	familiar	to	all	who	once	built	the	Linux	kernel	from	source:

Setup	is	16268	bytes	(padded	to	16384	bytes).

System	is	4704	kB

CRC	94a88f9a

Kernel:	arch/x86/boot/bzImage	is	ready		(#5)

That's	all.

How	the	kernel	is	compiled

710

https://github.com/torvalds/linux/blob/master/arch/x86/boot/tools/build.c

Conclusion
It	is	the	end	of	this	part	and	here	we	saw	all	steps	from	the	execution	of	the		make		command
to	the	generation	of	the		bzImage	.	I	know,	the	Linux	kernel	makefiles	and	process	of	the
Linux	kernel	building	may	seem	confusing	at	first	glance,	but	it	is	not	so	hard.	Hope	this	part
will	help	you	understand	the	process	of	building	the	Linux	kernel.

Links
GNU	make	util
Linux	kernel	top	Makefile
cross-compilation
Ctags
sparse
bzImage
uname
shell
Kbuild
binutils
gcc
Documentation
System.map
Relocation

How	the	kernel	is	compiled

711

https://en.wikipedia.org/wiki/Make_%28software%29
https://github.com/torvalds/linux/blob/master/Makefile
https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Ctags
https://en.wikipedia.org/wiki/Sparse
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/Uname
https://en.wikipedia.org/wiki/Shell_%28computing%29
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/kbuild.txt
http://www.gnu.org/software/binutils/
https://gcc.gnu.org/
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/makefiles.txt
https://en.wikipedia.org/wiki/System.map
https://en.wikipedia.org/wiki/Relocation_%28computing%29

Introduction
During	the	writing	of	the	linux-insides	book	I	have	received	many	emails	with	questions
related	to	the	linker	script	and	linker-related	subjects.	So	I've	decided	to	write	this	to	cover
some	aspects	of	the	linker	and	the	linking	of	object	files.

If	we	open	the		Linker		page	on	Wikipedia,	we	will	see	following	definition:

In	computer	science,	a	linker	or	link	editor	is	a	computer	program	that	takes	one	or
more	object	files	generated	by	a	compiler	and	combines	them	into	a	single	executable
file,	library	file,	or	another	object	file.

If	you've	written	at	least	one	program	on	C	in	your	life,	you	will	have	seen	files	with	the		*.o	
extension.	These	files	are	object	files.	Object	files	are	blocks	of	machine	code	and	data	with
placeholder	addresses	that	reference	data	and	functions	in	other	object	files	or	libraries,	as
well	as	a	list	of	its	own	functions	and	data.	The	main	purpose	of	the	linker	is	collect/handle
the	code	and	data	of	each	object	file,	turning	it	into	the	final	executable	file	or	library.	In	this
post	we	will	try	to	go	through	all	aspects	of	this	process.	Let's	start.

Linking	process
Let's	create	a	simple	project	with	the	following	structure:

*-linkers

*--main.c

*--lib.c

*--lib.h

Our		main.c		source	code	file	contains:

#include	<stdio.h>

#include	"lib.h"

int	main(int	argc,	char	**argv)	{

				printf("factorial	of	5	is:	%d\n",	factorial(5));

				return	0;

}

The		lib.c		file	contains:

Linkers

712

http://0xax.gitbooks.io/linux-insides/content/
https://en.wikipedia.org/wiki/Linker_%28computing%29
https://en.wikipedia.org/wiki/Object_file

int	factorial(int	base)	{

				int	res,i	=	1;

				if	(base	==	0)	{

								return	1;

				}

				while	(i	<=	base)	{

								res	*=	i;

								i++;

				}

				return	res;

}

And	the		lib.h		file	contains:

#ifndef	LIB_H

#define	LIB_H

int	factorial(int	base);

#endif

Now	let's	compile	only	the		main.c		source	code	file	with:

$	gcc	-c	main.c

If	we	look	inside	the	outputted	object	file	with	the		nm		util,	we	will	see	the	following	output:

$	nm	-A	main.o

main.o:																	U	factorial

main.o:0000000000000000	T	main

main.o:																	U	printf

The		nm		util	allows	us	to	see	the	list	of	symbols	from	the	given	object	file.	It	consists	of	three
columns:	the	first	is	the	name	of	the	given	object	file	and	the	address	of	any	resolved
symbols.	The	second	column	contains	a	character	that	represents	the	status	of	the	given
symbol.	In	this	case	the		U		means		undefined		and	the		T		denotes	that	the	symbols	are
placed	in	the		.text		section	of	the	object.	The		nm		utility	shows	us	here	that	we	have	three
symbols	in	the		main.c		source	code	file:

	factorial		-	the	factorial	function	defined	in	the		lib.c		source	code	file.	It	is	marked	as
	undefined		here	because	we	compiled	only	the		main.c		source	code	file,	and	it	does
not	know	anything	about	code	from	the		lib.c		file	for	now;

Linkers

713

	main		-	the	main	function;
	printf		-	the	function	from	the	glibc	library.		main.c		does	not	know	anything	about	it	for
now	either.

What	can	we	understand	from	the	output	of		nm		so	far?	The		main.o		object	file	contains	the
local	symbol		main		at	address		0000000000000000		(it	will	be	filled	with	correct	address	after	is
is	linked),	and	two	unresolved	symbols.	We	can	see	all	of	this	information	in	the	disassembly
output	of	the		main.o		object	file:

$	objdump	-S	main.o

main.o:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000000000	<main>:

			0:				55																							push			%rbp

			1:				48	89	e5																	mov				%rsp,%rbp

			4:				48	83	ec	10														sub				$0x10,%rsp

			8:				89	7d	fc																	mov				%edi,-0x4(%rbp)

			b:				48	89	75	f0														mov				%rsi,-0x10(%rbp)

			f:				bf	05	00	00	00											mov				$0x5,%edi

		14:				e8	00	00	00	00											callq		19	<main+0x19>

		19:				89	c6																				mov				%eax,%esi

		1b:				bf	00	00	00	00											mov				$0x0,%edi

		20:				b8	00	00	00	00											mov				$0x0,%eax

		25:				e8	00	00	00	00											callq		2a	<main+0x2a>

		2a:				b8	00	00	00	00											mov				$0x0,%eax

		2f:				c9																							leaveq	

		30:				c3																							retq

Here	we	are	interested	only	in	the	two		callq		operations.	The	two		callq		operations
contain		linker	stubs	,	or	the	function	name	and	offset	from	it	to	the	next	instruction.	These
stubs	will	be	updated	to	the	real	addresses	of	the	functions.	We	can	see	these	functions'
names	with	in	the	following		objdump		output:

$	objdump	-S	-r	main.o

...

		14:				e8	00	00	00	00											callq		19	<main+0x19>

		15:	R_X86_64_PC32																			factorial-0x4

		19:				89	c6																				mov				%eax,%esi

...

		25:				e8	00	00	00	00											callq		2a	<main+0x2a>

		26:			R_X86_64_PC32																			printf-0x4

		2a:				b8	00	00	00	00											mov				$0x0,%eax

...

Linkers

714

https://en.wikipedia.org/wiki/GNU_C_Library

The		-r		or		--reloc		flags	of	the		objdump		util	print	the		relocation		entries	of	the	file.	Now
let's	look	in	more	detail	at	the	relocation	process.

Relocation
Relocation	is	the	process	of	connecting	symbolic	references	with	symbolic	definitions.	Let's
look	at	the	previous	snippet	from	the		objdump		output:

		14:				e8	00	00	00	00											callq		19	<main+0x19>

		15:			R_X86_64_PC32																			factorial-0x4

		19:				89	c6																				mov				%eax,%esi

Note	the		e8	00	00	00	00		on	the	first	line.	The		e8		is	the	opcode	of	the		call	,	and	the
remainder	of	the	line	is	a	relative	offset.	So	the		e8	00	00	00	00		contains	a	one-byte
operation	code	followed	by	a	four-byte	address.	Note	that	the		00	00	00	00		is	4-bytes.	Why
only	4-bytes	if	an	address	can	be	8-bytes	in	a		x86_64		(64-bit)	machine?	Actually	we
compiled	the		main.c		source	code	file	with	the		-mcmodel=small	!	From	the		gcc		man	page:

-mcmodel=small

Generate	code	for	the	small	code	model:	the	program	and	its	symbols	must	be	linked	in	

the	lower	2	GB	of	the	address	space.	Pointers	are	64	bits.	Programs	can	be	statically	

or	dynamically	linked.	This	is	the	default	code	model.

Of	course	we	didn't	pass	this	option	to	the		gcc		when	we	compiled	the		main.c	,	but	it	is	the
default.	We	know	that	our	program	will	be	linked	in	the	lower	2	GB	of	the	address	space
from	the		gcc		manual	extract	above.	Four	bytes	is	therefore	enough	for	this.	So	we	have
opcode	of	the		call		instruction	and	an	unknown	address.	When	we	compile		main.c		with
all	its	dependencies	to	an	executable	file,	and	then	look	at	the	factorial	call	we	see:

Linkers

715

https://en.wikipedia.org/wiki/Opcode

$	gcc	main.c	lib.c	-o	factorial	|	objdump	-S	factorial	|	grep	factorial

factorial:					file	format	elf64-x86-64

...

...

0000000000400506	<main>:

				40051a:				e8	18	00	00	00											callq		400537	<factorial>

...

...

0000000000400537	<factorial>:

				400550:				75	07																				jne				400559	<factorial+0x22>

				400557:				eb	1b																				jmp				400574	<factorial+0x3d>

				400559:				eb	0e																				jmp				400569	<factorial+0x32>

				40056f:				7e	ea																				jle				40055b	<factorial+0x24>

...

...

As	we	can	see	in	the	previous	output,	the	address	of	the		main		function	is
	0x0000000000400506	.	Why	it	does	not	start	from		0x0	?	You	may	already	know	that	standard
C	programs	are	linked	with	the		glibc		C	standard	library	(assuming	the		-nostdlib		was	not
passed	to	the		gcc).	The	compiled	code	for	a	program	includes	constructor	functions	to
initialize	data	in	the	program	when	the	program	is	started.	These	functions	need	to	be	called
before	the	program	is	started,	or	in	another	words	before	the		main		function	is	called.	To
make	the	initialization	and	termination	functions	work,	the	compiler	must	output	something	in
the	assembler	code	to	cause	those	functions	to	be	called	at	the	appropriate	time.	Execution
of	this	program	will	start	from	the	code	placed	in	the	special		.init		section.	We	can	see	this
in	the	beginning	of	the	objdump	output:

objdump	-S	factorial	|	less

factorial:					file	format	elf64-x86-64

Disassembly	of	section	.init:

00000000004003a8	<_init>:

		4003a8:							48	83	ec	08													sub				$0x8,%rsp

		4003ac:							48	8b	05	a5	05	20	00				mov				0x2005a5(%rip),%rax								#	600958	<_D

YNAMIC+0x1d0>

Not	that	it	starts	at	the		0x00000000004003a8		address	relative	to	the		glibc		code.	We	can
check	it	also	in	the	ELF	output	by	running		readelf	:

$	readelf	-d	factorial	|	grep	\(INIT\)

	0x000000000000000c	(INIT)															0x4003a8

Linkers

716

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

So,	the	address	of	the		main		function	is		0000000000400506		and	is	offset	from	the		.init	
section.	As	we	can	see	from	the	output,	the	address	of	the		factorial		function	is
	0x0000000000400537		and	binary	code	for	the	call	of	the		factorial		function	now	is		e8	18	00
00	00	.	We	already	know	that		e8		is	opcode	for	the		call		instruction,	the	next		18	00	00	00	
(note	that	address	represented	as	little	endian	for		x86_64	,	so	it	is		00	00	00	18)	is	the	offset
from	the		callq		to	the		factorial		function:

>>>	hex(0x40051a	+	0x18	+	0x5)	==	hex(0x400537)

True

So	we	add		0x18		and		0x5		to	the	address	of	the		call		instruction.	The	offset	is	measured
from	the	address	of	the	following	instruction.	Our	call	instruction	is	5-bytes	long	(e8	18	00	00
00)	and	the		0x18		is	the	offset	of	the	call	after	the		factorial		function.	A	compiler	generally
creates	each	object	file	with	the	program	addresses	starting	at	zero.	But	if	a	program	is
created	from	multiple	object	files,	these	will	overlap.

What	we	have	seen	in	this	section	is	the		relocation		process.	This	process	assigns	load
addresses	to	the	various	parts	of	the	program,	adjusting	the	code	and	data	in	the	program	to
reflect	the	assigned	addresses.

Ok,	now	that	we	know	a	little	about	linkers	and	relocation	it	is	time	to	learn	more	about
linkers	by	linking	our	object	files.

GNU	linker
As	you	can	understand	from	the	title,	I	will	use	GNU	linker	or	just		ld		in	this	post.	Of	course
we	can	use		gcc		to	link	our		factorial		project:

$	gcc	main.c	lib.o	-o	factorial

and	after	it	we	will	get	executable	file	-		factorial		as	a	result:

./factorial	

factorial	of	5	is:	120

But		gcc		does	not	link	object	files.	Instead	it	uses		collect2		which	is	just	wrapper	for	the
	GNU	ld		linker:

Linkers

717

https://en.wikipedia.org/wiki/GNU_linker

~$	/usr/lib/gcc/x86_64-linux-gnu/4.9/collect2	--version

collect2	version	4.9.3

/usr/bin/ld	--version

GNU	ld	(GNU	Binutils	for	Debian)	2.25

...

...

...

Ok,	we	can	use	gcc	and	it	will	produce	executable	file	of	our	program	for	us.	But	let's	look
how	to	use		GNU	ld		linker	for	the	same	purpose.	First	of	all	let's	try	to	link	these	object	files
with	the	following	example:

ld	main.o	lib.o	-o	factorial

Try	to	do	it	and	you	will	get	following	error:

$	ld	main.o	lib.o	-o	factorial

ld:	warning:	cannot	find	entry	symbol	_start;	defaulting	to	00000000004000b0

main.o:	In	function	`main':

main.c:(.text+0x26):	undefined	reference	to	`printf'

Here	we	can	see	two	problems:

Linker	can't	find		_start		symbol;
Linker	does	not	know	anything	about		printf		function.

First	of	all	let's	try	to	understand	what	is	this		_start		entry	symbol	that	appears	to	be
required	for	our	program	to	run?	When	I	started	to	learn	programming	I	learned	that	the
	main		function	is	the	entry	point	of	the	program.	I	think	you	learned	this	too	:)	But	it	actually
isn't	the	entry	point,	it's		_start		instead.	The		_start		symbol	is	defined	in	the		crt1.o	
object	file.	We	can	find	it	with	the	following	command:

Linkers

718

$	objdump	-S	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o:					file	format	el

f64-x86-64

Disassembly	of	section	.text:

0000000000000000	<_start>:

			0:				31	ed																				xor				%ebp,%ebp

			2:				49	89	d1																	mov				%rdx,%r9

			...

			...

			...

We	pass	this	object	file	to	the		ld		command	as	its	first	argument	(see	above).	Now	let's	try
to	link	it	and	will	look	on	result:

ld	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

main.o	lib.o	-o	factorial

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o:	In	function	`_star

t':

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:115:	undefined	reference	to	`__li

bc_csu_fini'

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:116:	undefined	reference	to	`__li

bc_csu_init'

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:122:	undefined	reference	to	`__li

bc_start_main'

main.o:	In	function	`main':

main.c:(.text+0x26):	undefined	reference	to	`printf'

Unfortunately	we	will	see	even	more	errors.	We	can	see	here	old	error	about	undefined
	printf		and	yet	another	three	undefined	references:

	__libc_csu_fini	

	__libc_csu_init	

	__libc_start_main	

The		_start		symbol	is	defined	in	the	sysdeps/x86_64/start.S	assembly	file	in	the		glibc	
source	code.	We	can	find	following	assembly	code	lines	there:

mov	$__libc_csu_fini,	%R8_LP

mov	$__libc_csu_init,	%RCX_LP

...

call	__libc_start_main

Linkers

719

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=0d27a38e9c02835ce17d1c9287aa01be222e72eb;hb=HEAD

Here	we	pass	address	of	the	entry	point	to	the		.init		and		.fini		section	that	contain	code
that	starts	to	execute	when	the	program	is	ran	and	the	code	that	executes	when	program
terminates.	And	in	the	end	we	see	the	call	of	the		main		function	from	our	program.	These
three	symbols	are	defined	in	the	csu/elf-init.c	source	code	file.	The	following	two	object	files:

	crtn.o	;
	crti.o	.

define	the	function	prologs/epilogs	for	the	.init	and	.fini	sections	(with	the		_init		and		_fini	
symbols	respectively).

The		crtn.o		object	file	contains	these		.init		and		.fini		sections:

$	objdump	-S	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o

0000000000000000	<.init>:

			0:				48	83	c4	08														add				$0x8,%rsp

			4:				c3																							retq			

Disassembly	of	section	.fini:

0000000000000000	<.fini>:

			0:				48	83	c4	08														add				$0x8,%rsp

			4:				c3																							retq

And	the		crti.o		object	file	contains	the		_init		and		_fini		symbols.	Let's	try	to	link	again
with	these	two	object	files:

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	\

-o	factorial

And	anyway	we	will	get	the	same	errors.	Now	we	need	to	pass		-lc		option	to	the		ld	.	This
option	will	search	for	the	standard	library	in	the	paths	present	in	the		$LD_LIBRARY_PATH	
environment	variable.	Let's	try	to	link	again	wit	the		-lc		option:

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	-lc	\

-o	factorial

Finally	we	get	an	executable	file,	but	if	we	try	to	run	it,	we	will	get	strange	results:

Linkers

720

https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/elf-init.c;hb=1d4bbc54bd4f7d85d774871341b49f4357af1fb7

$./factorial	

bash:	./factorial:	No	such	file	or	directory

What's	the	problem	here?	Let's	look	on	the	executable	file	with	the	readelf	util:

$	readelf	-l	factorial	

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x4003c0

There	are	7	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		PHDR											0x0000000000000040	0x0000000000400040	0x0000000000400040

																	0x0000000000000188	0x0000000000000188		R	E				8

		INTERP									0x00000000000001c8	0x00000000004001c8	0x00000000004001c8

																	0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

		LOAD											0x0000000000000000	0x0000000000400000	0x0000000000400000

																	0x0000000000000610	0x0000000000000610		R	E				200000

		LOAD											0x0000000000000610	0x0000000000600610	0x0000000000600610

																	0x00000000000001cc	0x00000000000001cc		RW					200000

		DYNAMIC								0x0000000000000610	0x0000000000600610	0x0000000000600610

																	0x0000000000000190	0x0000000000000190		RW					8

		NOTE											0x00000000000001e4	0x00000000004001e4	0x00000000004001e4

																	0x0000000000000020	0x0000000000000020		R						4

		GNU_STACK						0x0000000000000000	0x0000000000000000	0x0000000000000000

																	0x0000000000000000	0x0000000000000000		RW					10

	Section	to	Segment	mapping:

		Segment	Sections...

			00					

			01					.interp	

			02					.interp	.note.ABI-tag	.hash	.dynsym	.dynstr	.gnu.version	.gnu.version_r	.rel

a.dyn	.rela.plt	.init	.plt	.text	.fini	.rodata	.eh_frame	

			03					.dynamic	.got	.got.plt	.data	

			04					.dynamic	

			05					.note.ABI-tag	

			06

Note	on	the	strange	line:

		INTERP									0x00000000000001c8	0x00000000004001c8	0x00000000004001c8

																	0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

Linkers

721

https://sourceware.org/binutils/docs/binutils/readelf.html

The		.interp		section	in	the		elf		file	holds	the	path	name	of	a	program	interpreter	or	in
another	words	the		.interp		section	simply	contains	an		ascii		string	that	is	the	name	of	the
dynamic	linker.	The	dynamic	linker	is	the	part	of	Linux	that	loads	and	links	shared	libraries
needed	by	an	executable	when	it	is	executed,	by	copying	the	content	of	libraries	from	disk	to
RAM.	As	we	can	see	in	the	output	of	the		readelf		command	it	is	placed	in	the		/lib64/ld-
linux-x86-64.so.2		file	for	the		x86_64		architecture.	Now	let's	add	the		-dynamic-linker	
option	with	the	path	of		ld-linux-x86-64.so.2		to	the		ld		call	and	will	see	the	following
results:

$	gcc	-c	main.c	lib.c

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	\

-dynamic-linker	/lib64/ld-linux-x86-64.so.2	\

-lc	-o	factorial

Now	we	can	run	it	as	normal	executable	file:

$./factorial

factorial	of	5	is:	120

It	works!	With	the	first	line	we	compile	the		main.c		and	the		lib.c		source	code	files	to
object	files.	We	will	get	the		main.o		and	the		lib.o		after	execution	of	the		gcc	:

$	file	lib.o	main.o

lib.o:		ELF	64-bit	LSB	relocatable,	x86-64,	version	1	(SYSV),	not	stripped

main.o:	ELF	64-bit	LSB	relocatable,	x86-64,	version	1	(SYSV),	not	stripped

and	after	this	we	link	object	files	of	our	program	with	the	needed	system	object	files	and
libraries.	We	just	saw	a	simple	example	of	how	to	compile	and	link	a	C	program	with	the
	gcc		compiler	and		GNU	ld		linker.	In	this	example	we	have	used	a	couple	command	line
options	of	the		GNU	linker	,	but	it	supports	much	more	command	line	options	than		-o	,		-
dynamic-linker	,	etc...	Moreover		GNU	ld		has	its	own	language	that	allows	to	control	the
linking	process.	In	the	next	two	paragraphs	we	will	look	into	it.

Useful	command	line	options	of	the	GNU	linker

Linkers

722

As	I	already	wrote	and	as	you	can	see	in	the	manual	of	the		GNU	linker	,	it	has	big	set	of	the
command	line	options.	We've	seen	a	couple	of	options	in	this	post:		-o	<output>		-	that	tells
	ld		to	produce	an	output	file	called		output		as	the	result	of	linking,		-l<name>		that	adds	the
archive	or	object	file	specified	by	the	name,		-dynamic-linker		that	specifies	the	name	of	the
dynamic	linker.	Of	course		ld		supports	much	more	command	line	options,	let's	look	at	some
of	them.

The	first	useful	command	line	option	is		@file	.	In	this	case	the		file		specifies	filename
where	command	line	options	will	be	read.	For	example	we	can	create	file	with	the	name
	linker.ld	,	put	there	our	command	line	arguments	from	the	previous	example	and	execute
it	with:

$	ld	@linker.ld

The	next	command	line	option	is		-b		or		--format	.	This	command	line	option	specifies
format	of	the	input	object	files		ELF	,		DJGPP/COFF		and	etc.	There	is	a	command	line	option
for	the	same	purpose	but	for	the	output	file:		--oformat=output-format	.

The	next	command	line	option	is		--defsym	.	Full	format	of	this	command	line	option	is	the		-
-defsym=symbol=expression	.	It	allows	to	create	global	symbol	in	the	output	file	containing	the
absolute	address	given	by	expression.	We	can	find	following	case	where	this	command	line
option	can	be	useful:	in	the	Linux	kernel	source	code	and	more	precisely	in	the	Makefile	that
is	related	to	the	kernel	decompression	for	the	ARM	architecture	-
arch/arm/boot/compressed/Makefile,	we	can	find	following	definition:

LDFLAGS_vmlinux	=	--defsym	_kernel_bss_size=$(KBSS_SZ)

As	we	already	know,	it	defines	the		_kernel_bss_size		symbol	with	the	size	of	the		.bss	
section	in	the	output	file.	This	symbol	will	be	used	in	the	first	assembly	file	that	will	be
executed	during	kernel	decompressing:

ldr	r5,	=_kernel_bss_size

The	next	command	line	options	is	the		-shared		that	allows	us	to	create	shared	library.	The
	-M		or		-map	<filename>		command	line	option	prints	the	linking	map	with	the	information
about	symbols.	In	our	case:

Linkers

723

https://github.com/torvalds/linux/blob/master/arch/arm/boot/compressed/Makefile
https://github.com/torvalds/linux/blob/master/arch/arm/boot/compressed/head.S

$	ld	-M	@linker.ld

...

...

...

.text											0x00000000004003c0						0x112

	*(.text.unlikely	.text.*_unlikely	.text.unlikely.*)

	(.text.exit	.text.exit.)

	(.text.startup	.text.startup.)

	(.text.hot	.text.hot.)

	(.text	.stub	.text.	.gnu.linkonce.t.*)

	.text										0x00000000004003c0							0x2a	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../

../x86_64-linux-gnu/crt1.o

...

...

...

	.text										0x00000000004003ea							0x31	main.o

																0x00000000004003ea																main

	.text										0x000000000040041b							0x3f	lib.o

																0x000000000040041b																factorial

Of	course	the		GNU	linker		support	standard	command	line	options:		--help		and		--version	
that	print	common	help	of	the	usage	of	the		ld		and	its	version.	That's	all	about	command
line	options	of	the		GNU	linker	.	Of	course	it	is	not	the	full	set	of	command	line	options
supported	by	the		ld		util.	You	can	find	the	complete	documentation	of	the		ld		util	in	the
manual.

Control	Language	linker
As	I	wrote	previously,		ld		has	support	for	its	own	language.	It	accepts	Linker	Command
Language	files	written	in	a	superset	of	AT&T's	Link	Editor	Command	Language	syntax,	to
provide	explicit	and	total	control	over	the	linking	process.	Let's	look	on	its	details.

With	the	linker	language	we	can	control:

input	files;
output	files;
file	formats
addresses	of	sections;
etc...

Commands	written	in	the	linker	control	language	are	usually	placed	in	a	file	called	linker
script.	We	can	pass	it	to		ld		with	the		-T		command	line	option.	The	main	command	in	a
linker	script	is	the		SECTIONS		command.	Each	linker	script	must	contain	this	command	and	it
determines	the		map		of	the	output	file.	The	special	variable		.		contains	current	position	of

Linkers

724

the	output.	Let's	write	a	simple	assembly	program	and	we	will	look	at	how	we	can	use	a
linker	script	to	control	linking	of	this	program.	We	will	take	a	hello	world	program	for	this
example:

section	.data

				msg				db	"hello,	world!",`\n`

section	.text

				global				_start

_start:

				mov				rax,	1

				mov				rdi,	1

				mov				rsi,	msg

				mov				rdx,	14

				syscall

				mov				rax,	60

				mov				rdi,	0

				syscall

We	can	compile	and	link	it	with	the	following	commands:

$	nasm	-f	elf64	-o	hello.o	hello.asm

$	ld	-o	hello	hello.o

Our	program	consists	from	two	sections:		.text		contains	code	of	the	program	and		.data	
contains	initialized	variables.	Let's	write	simple	linker	script	and	try	to	link	our		hello.asm	
assembly	file	with	it.	Our	script	is:

/*

	*	Linker	script	for	the	factorial

	*/

OUTPUT(hello)	

OUTPUT_FORMAT("elf64-x86-64")

INPUT(hello.o)

SECTIONS

{

				.	=	0x200000;

				.text	:	{

										*(.text)

				}

				.	=	0x400000;

				.data	:	{

										*(.data)

				}

}

Linkers

725

On	the	first	three	lines	you	can	see	a	comment	written	in		C		style.	After	it	the		OUTPUT		and
the		OUTPUT_FORMAT		commands	specify	the	name	of	our	executable	file	and	its	format.	The
next	command,		INPUT	,	specifies	the	input	file	to	the		ld		linker.	Then,	we	can	see	the	main
	SECTIONS		command,	which,	as	I	already	wrote,	must	be	present	in	every	linker	script.	The
	SECTIONS		command	represents	the	set	and	order	of	the	sections	which	will	be	in	the	output
file.	At	the	beginning	of	the		SECTIONS		command	we	can	see	following	line		.	=	0x200000	.	I
already	wrote	above	that		.		command	points	to	the	current	position	of	the	output.	This	line
says	that	the	code	should	be	loaded	at	address		0x200000		and	the	line		.	=	0x400000		says
that	data	section	should	be	loaded	at	address		0x400000	.	The	second	line	after	the		.	=
0x200000		defines		.text		as	an	output	section.	We	can	see		*(.text)		expression	inside	it.
The		*		symbol	is	wildcard	that	matches	any	file	name.	In	other	words,	the		*(.text)	
expression	says	all		.text		input	sections	in	all	input	files.	We	can	rewrite	it	as
	hello.o(.text)		for	our	example.	After	the	following	location	counter		.	=	0x400000	,	we	can
see	definition	of	the	data	section.

We	can	compile	and	link	it	with	the:

$	nasm		-f	elf64	-o	hello.o	hello.S	&&	ld	-T	linker.script	&&	./hello

hello,	world!

If	we	will	look	inside	it	with	the		objdump		util,	we	can	see	that		.text		section	starts	from	the
address		0x200000		and	the		.data		sections	starts	from	the	address		0x400000	:

$	objdump	-D	hello

Disassembly	of	section	.text:

0000000000200000	<_start>:

		200000:				b8	01	00	00	00											mov				$0x1,%eax

		...

Disassembly	of	section	.data:

0000000000400000	<msg>:

		400000:				68	65	6c	6c	6f											pushq		$0x6f6c6c65

		...

Apart	from	the	commands	we	have	already	seen,	there	are	a	few	others.	The	first	is	the
	ASSERT(exp,	message)		that	ensures	that	given	expression	is	not	zero.	If	it	is	zero,	then	exit
the	linker	with	an	error	code	and	print	the	given	error	message.	If	you've	read	about	Linux
kernel	booting	process	in	the	linux-insides	book,	you	may	know	that	the	setup	header	of	the
Linux	kernel	has	offset		0x1f1	.	In	the	linker	script	of	the	Linux	kernel	we	can	find	a	check	for
this:

Linkers

726

http://0xax.gitbooks.io/linux-insides/content/

.	=	ASSERT(hdr	==	0x1f1,	"The	setup	header	has	the	wrong	offset!");

The		INCLUDE	filename		command	allows	to	include	external	linker	script	symbols	in	the
current	one.	In	a	linker	script	we	can	assign	a	value	to	a	symbol.		ld		supports	a	couple	of
assignment	operators:

symbol	=	expression	;
symbol	+=	expression	;
symbol	-=	expression	;
symbol	*=	expression	;
symbol	/=	expression	;
symbol	<<=	expression	;
symbol	>>=	expression	;
symbol	&=	expression	;
symbol	|=	expression	;

As	you	can	note	all	operators	are	C	assignment	operators.	For	example	we	can	use	it	in	our
linker	script	as:

START_ADDRESS	=	0x200000;

DATA_OFFSET			=	0x200000;

SECTIONS

{

				.	=	START_ADDRESS;

				.text	:	{

										*(.text)

				}

				.	=	START_ADDRESS	+	DATA_OFFSET;

				.data	:	{

										*(.data)

				}

}

As	you	already	may	noted	the	syntax	for	expressions	in	the	linker	script	language	is	identical
to	that	of	C	expressions.	Besides	this	the	control	language	of	the	linking	supports	following
builtin	functions:

	ABSOLUTE		-	returns	absolute	value	of	the	given	expression;
	ADDR		-	takes	the	section	and	returns	its	address;
	ALIGN		-	returns	the	value	of	the	location	counter	(.		operator)	that	aligned	by	the
boundary	of	the	next	expression	after	the	given	expression;
	DEFINED		-	returns		1		if	the	given	symbol	placed	in	the	global	symbol	table	and		0		in

Linkers

727

other	way;
	MAX		and		MIN		-	return	maximum	and	minimum	of	the	two	given	expressions;
	NEXT		-	returns	the	next	unallocated	address	that	is	a	multiple	of	the	give	expression;
	SIZEOF		-	returns	the	size	in	bytes	of	the	given	named	section.

That's	all.

Conclusion
This	is	the	end	of	the	post	about	linkers.	We	learned	many	things	about	linkers	in	this	post,
such	as	what	is	a	linker	and	why	it	is	needed,	how	to	use	it,	etc..

If	you	have	any	questions	or	suggestions,	write	me	an	email	or	ping	me	on	twitter.

Please	note	that	English	is	not	my	first	language,	and	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	let	me	know	via	email	or	send	a	PR.

Links
Book	about	Linux	kernel	insides
linker
object	files
glibc
opcode
ELF
GNU	linker
My	posts	about	assembly	programming	for	x86_64
readelf

Linkers

728

https://twitter.com/0xAX
http://0xax.gitbooks.io/linux-insides/content/
https://en.wikipedia.org/wiki/Linker_%28computing%29
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/GNU_linker
http://0xax.github.io/categories/assembly/
https://sourceware.org/binutils/docs/binutils/readelf.html

Linux	kernel	development

Introduction
As	you	already	may	know,	I've	started	a	series	of	blog	posts	about	assembler	programming
for		x86_64		architecture	in	the	last	year.	I	have	never	written	a	line	of	low-level	code	before
this	moment,	except	for	a	couple	of	toy		Hello	World		examples	in	university.	It	was	a	long
time	ago	and,	as	I	already	said,	I	didn't	write	low-level	code	at	all.	Some	time	ago	I	became
interested	in	such	things.	I	understood	that	I	can	write	programs,	but	didn't	actually
understand	how	my	program	is	arranged.

After	writing	some	assembler	code	I	began	to	understand	how	my	program	looks	after
compilation,	approximately.	But	anyway,	I	didn't	understand	many	other	things.	For
example:	what	occurs	when	the		syscall		instruction	is	executed	in	my	assembler,	what
occurs	when	the		printf		function	starts	to	work	or	how	can	my	program	talk	with	other
computers	via	network.	Assembler	programming	language	didn't	give	me	answers	to	my
questions	and	I	decided	to	go	deeper	in	my	research.	I	started	to	learn	from	the	source	code
of	the	Linux	kernel	and	tried	to	understand	the	things	that	I'm	interested	in.	The	source	code
of	the	Linux	kernel	didn't	give	me	the	answers	to	all	of	my	questions,	but	now	my	knowledge
about	the	Linux	kernel	and	the	processes	around	it	is	much	better.

I'm	writing	this	part	nine	and	a	half	months	after	I've	started	to	learn	from	the	source	code	of
the	Linux	kernel	and	published	the	first	part	of	this	book.	Now	it	contains	forty	parts	and	it	is
not	the	end.	I	decided	to	write	this	series	about	the	Linux	kernel	mostly	for	myself.	As	you
know	the	Linux	kernel	is	very	huge	piece	of	code	and	it	is	easy	to	forget	what	does	this	or
that	part	of	the	Linux	kernel	mean	and	how	does	it	implement	something.	But	soon	the	linux-
insides	repo	became	popular	and	after	nine	months	it	has		9096		stars:

It	seems	that	people	are	interested	in	the	insides	of	the	Linux	kernel.	Besides	this,	in	all	the
time	that	I	have	been	writing		linux-insides	,	I	have	received	many	questions	from	different
people	about	how	to	begin	contributing	to	the	Linux	kernel.	Generally	people	are	interested
in	contributing	to	open	source	projects	and	the	Linux	kernel	is	not	an	exception:

Linux	kernel	development

729

http://0xax.github.io/categories/assembly/
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-1.html
https://github.com/0xAX/linux-insides

So,	it	seems	that	people	are	interested	in	the	Linux	kernel	development	process.	I	thought	it
would	be	strange	if	a	book	about	the	Linux	kernel	would	not	contain	a	part	describing	how	to
take	a	part	in	the	Linux	kernel	development	and	that's	why	I	decided	to	write	it.	You	will	not
find	information	about	why	you	should	be	interested	in	contributing	to	the	Linux	kernel	in	this
part.	But	if	you	are	interested	how	to	start	with	Linux	kernel	development,	this	part	is	for	you.

Let's	start.

How	to	start	with	Linux	kernel
First	of	all,	let's	see	how	to	get,	build,	and	run	the	Linux	kernel.	You	can	run	your	custom
build	of	the	Linux	kernel	in	two	ways:

Run	the	Linux	kernel	on	a	virtual	machine;
Run	the	Linux	kernel	on	real	hardware.

I'll	provide	descriptions	for	both	methods.	Before	we	start	doing	anything	with	the	Linux
kernel,	we	need	to	get	it.	There	are	a	couple	of	ways	to	do	this	depending	on	your	purpose.
If	you	just	want	to	update	the	current	version	of	the	Linux	kernel	on	your	computer,	you	can
use	the	instructions	specific	to	your	Linux	distro.

In	the	first	case	you	just	need	to	download	new	version	of	the	Linux	kernel	with	the	package
manager.	For	example,	to	upgrade	the	version	of	the	Linux	kernel	to		4.1		for	Ubuntu	(Vivid
Vervet),	you	will	just	need	to	execute	the	following	commands:

$	sudo	add-apt-repository	ppa:kernel-ppa/ppa

$	sudo	apt-get	update

After	this	execute	this	command:

$	apt-cache	showpkg	linux-headers

and	choose	the	version	of	the	Linux	kernel	in	which	you	are	interested.	In	the	end	execute
the	next	command	and	replace		${version}		with	the	version	that	you	chose	in	the	output	of
the	previous	command:

Linux	kernel	development

730

https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Package_manager
http://releases.ubuntu.com/15.04/

$	sudo	apt-get	install	linux-headers-${version}	linux-headers-${version}-generic	linux

-image-${version}-generic	--fix-missing

and	reboot	your	system.	After	the	reboot	you	will	see	the	new	kernel	in	the	grub	menu.

In	the	other	way	if	you	are	interested	in	the	Linux	kernel	development,	you	will	need	to	get
the	source	code	of	the	Linux	kernel.	You	can	find	it	on	the	kernel.org	website	and	download
an	archive	with	the	Linux	kernel	source	code.	Actually	the	Linux	kernel	development	process
is	fully	built	around		git		version	control	system.	So	you	can	get	it	with		git		from	the
	kernel.org	:

$	git	clone	git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

I	don't	know	how	about	you,	but	I	prefer		github	.	There	is	a	mirror	of	the	Linux	kernel
mainline	repository,	so	you	can	clone	it	with:

$	git	clone	git@github.com:torvalds/linux.git

I	use	my	own	fork	for	development	and	when	I	want	to	pull	updates	from	the	main	repository
I	just	execute	the	following	command:

$	git	checkout	master

$	git	pull	upstream	master

Note	that	the	remote	name	of	the	main	repository	is		upstream	.	To	add	a	new	remote	with
the	main	Linux	repository	you	can	execute:

git	remote	add	upstream	git@github.com:torvalds/linux.git

After	this	you	will	have	two	remotes:

~/dev/linux	(master)	$	git	remote	-v

origin				git@github.com:0xAX/linux.git	(fetch)

origin				git@github.com:0xAX/linux.git	(push)

upstream				https://github.com/torvalds/linux.git	(fetch)

upstream				https://github.com/torvalds/linux.git	(push)

One	is	of	your	fork	(origin)	and	the	second	is	for	the	main	repository	(upstream).

Linux	kernel	development

731

https://en.wikipedia.org/wiki/GNU_GRUB
https://kernel.org/
https://en.wikipedia.org/wiki/Version_control
https://github.com/torvalds/linux
https://github.com/0xAX/linux

Now	that	we	have	a	local	copy	of	the	Linux	kernel	source	code,	we	need	to	configure	and
build	it.	The	Linux	kernel	can	be	configured	in	different	ways.	The	simplest	way	is	to	just
copy	the	configuration	file	of	the	already	installed	kernel	that	is	located	in	the		/boot	
directory:

$	sudo	cp	/boot/config-$(uname	-r)	~/dev/linux/.config

If	your	current	Linux	kernel	was	built	with	the	support	for	access	to	the		/proc/config.gz		file,
you	can	copy	your	actual	kernel	configuration	file	with	this	command:

$	cat	/proc/config.gz	|	gunzip	>	~/dev/linux/.config

If	you	are	not	satisfied	with	the	standard	kernel	configuration	that	is	provided	by	the
maintainers	of	your	distro,	you	can	configure	the	Linux	kernel	manually.	There	are	a	couple
of	ways	to	do	it.	The	Linux	kernel	root	Makefile	provides	a	set	of	targets	that	allows	you	to
configure	it.	For	example		menuconfig		provides	a	menu-driven	interface	for	the	kernel
configuration:

The		defconfig		argument	generates	the	default	kernel	configuration	file	for	the	current
architecture,	for	example	x86_64	defconfig.	You	can	pass	the		ARCH		command	line
argument	to		make		to	build		defconfig		for	the	given	architecture:

$	make	ARCH=arm64	defconfig

Linux	kernel	development

732

https://github.com/torvalds/linux/blob/master/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/configs/x86_64_defconfig

The		allnoconfig	,		allyesconfig		and		allmodconfig		arguments	allow	you	to	generate	a	new
configuration	file	where	all	options	will	be	disabled,	enabled,	and	enabled	as	modules
respectively.	The		nconfig		command	line	arguments	that	provides		ncurses		based	program
with	menu	to	configure	Linux	kernel:

And	even		randconfig		to	generate	random	Linux	kernel	configuration	file.	I	will	not	write
about	how	to	configure	the	Linux	kernel	or	which	options	to	enable	because	it	makes	no
sense	to	do	so	for	two	reasons:	First	of	all	I	do	not	know	your	hardware	and	second,	if	you
know	your	hardware,	the	only	remaining	task	is	to	find	out	how	to	use	programs	for	kernel
configuration,	and	all	of	them	are	pretty	simple	to	use.

OK,	we	now	have	the	source	code	of	the	Linux	kernel	and	configured	it.	The	next	step	is	the
compilation	of	the	Linux	kernel.	The	simplest	way	to	compile	Linux	kernel	is	to	just	execute:

Linux	kernel	development

733

$	make

scripts/kconfig/conf		--silentoldconfig	Kconfig

#

#	configuration	written	to	.config

#

		CHK					include/config/kernel.release

		UPD					include/config/kernel.release

		CHK					include/generated/uapi/linux/version.h

		CHK					include/generated/utsrelease.h

		...

		...

		...

		OBJCOPY	arch/x86/boot/vmlinux.bin

		AS						arch/x86/boot/header.o

		LD						arch/x86/boot/setup.elf

		OBJCOPY	arch/x86/boot/setup.bin

		BUILD			arch/x86/boot/bzImage

		Setup	is	15740	bytes	(padded	to	15872	bytes).

System	is	4342	kB

CRC	82703414

Kernel:	arch/x86/boot/bzImage	is	ready		(#73)

To	increase	the	speed	of	kernel	compilation	you	can	pass		-jN		command	line	argument	to
	make	,	where		N		specifies	the	number	of	commands	to	run	simultaneously:

$	make	-j8

If	you	want	to	build	Linux	kernel	for	an	architecture	that	differs	from	your	current,	the
simplest	way	to	do	it	pass	two	arguments:

	ARCH		command	line	argument	and	the	name	of	the	target	architecture;
	CROSS_COMPILER		command	line	argument	and	the	cross-compiler	tool	prefix;

For	example	if	we	want	to	compile	the	Linux	kernel	for	the	arm64	with	default	kernel
configuration	file,	we	need	to	execute	following	command:

$	make	-j4	ARCH=arm64	CROSS_COMPILER=aarch64-linux-gnu-	defconfig

$	make	-j4	ARCH=arm64	CROSS_COMPILER=aarch64-linux-gnu-

As	result	of	compilation	we	can	see	the	compressed	kernel	-		arch/x86/boot/bzImage	.	Now
that	we	have	compiled	the	kernel,	we	can	either	install	it	on	our	computer	or	just	run	it	in	an
emulator.

Installing	Linux	kernel

Linux	kernel	development

734

https://en.wikipedia.org/wiki/ARM_architecture#AArch64_features

As	I	already	wrote	we	will	consider	two	ways	how	to	launch	new	kernel:	In	the	first	case	we
can	install	and	run	the	new	version	of	the	Linux	kernel	on	the	real	hardware	and	the	second
is	launch	the	Linux	kernel	on	a	virtual	machine.	In	the	previous	paragraph	we	saw	how	to
build	the	Linux	kernel	from	source	code	and	as	a	result	we	have	got	compressed	image:

...

...

...

Kernel:	arch/x86/boot/bzImage	is	ready		(#73)

After	we	have	got	the	bzImage	we	need	to	install		headers	,		modules		of	the	new	Linux
kernel	with	the:

$	sudo	make	headers_install

$	sudo	make	modules_install

and	directly	the	kernel	itself:

$	sudo	make	install

From	this	moment	we	have	installed	new	version	of	the	Linux	kernel	and	now	we	must	tell
the		bootloader		about	it.	Of	course	we	can	add	it	manually	by	the	editing	of	the
	/boot/grub2/grub.cfg		configuration	file,	but	I	prefer	to	use	a	script	for	this	purpose.	I'm
using	two	different	Linux	distros:	Fedora	and	Ubuntu.	There	are	two	different	ways	to	update
the	grub	configuration	file.	I'm	using	following	script	for	this	purpose:

#!/bin/bash

source	"term-colors"

DISTRIBUTIVE=$(cat	/etc/*-release	|	grep	NAME	|	head	-1	|	sed	-n	-e	's/NAME\=//p')

echo	-e	"Distributive:	${Green}${DISTRIBUTIVE}${Color_Off}"

if	[["$DISTRIBUTIVE"	==	"Fedora"]]	;

then

				su	-c	'grub2-mkconfig	-o	/boot/grub2/grub.cfg'

else

				sudo	update-grub

fi

echo	"${Green}Done.${Color_Off}"

This	is	the	last	step	of	the	new	Linux	kernel	installation	and	after	this	you	can	reboot	your
computer	and	select	new	version	of	the	kernel	during	boot.

Linux	kernel	development

735

https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/GNU_GRUB

The	second	case	is	to	launch	new	Linux	kernel	in	the	virtual	machine.	I	prefer	qemu.	First	of
all	we	need	to	build	initial	ramdisk	-	initrd	for	this.	The		initrd		is	a	temporary	root	file
system	that	is	used	by	the	Linux	kernel	during	initialization	process	while	other	filesystems
are	not	mounted.	We	can	build		initrd		with	the	following	commands:

First	of	all	we	need	to	download	busybox	and	run		menuconfig		for	its	configuration:

$	mkdir	initrd

$	cd	initrd

$	curl	http://busybox.net/downloads/busybox-1.23.2.tar.bz2	|	tar	xjf	-

$	cd	busybox-1.23.2/

$	make	menuconfig

$	make	-j4

	busybox		is	an	executable	file	-		/bin/busybox		that	contains	a	set	of	standard	tools	like
coreutils.	In	the		busysbox		menu	we	need	to	enable:		Build	BusyBox	as	a	static	binary	(no
shared	libs)		option:

We	can	find	this	menu	in	the:

Busybox	Settings

-->	Build	Options

After	this	we	exit	from	the		busysbox		configuration	menu	and	execute	following	commands
for	building	and	installation	of	it:

Linux	kernel	development

736

https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/BusyBox
https://en.wikipedia.org/wiki/GNU_Core_Utilities

$	make	-j4

$	sudo	make	install

Now	that		busybox		is	installed,	we	can	begin	building	our		initrd	.	To	do	this,	we	go	to	the
previous		initrd		directory	and:

$	cd	..

$	mkdir	-p	initramfs

$	cd	initramfs

$	mkdir	-pv	{bin,sbin,etc,proc,sys,usr/{bin,sbin}}

$	cp	-av	../busybox-1.23.2/_install/*	.

copy		busybox		fields	to	the		bin	,		sbin		and	other	directories.	Now	we	need	to	create
executable		init		file	that	will	be	executed	as	a	first	process	in	the	system.	My		init		file	just
mounts	procfs	and	sysfs	filesystems	and	executed	shell:

#!/bin/sh

mount	-t	proc	none	/proc

mount	-t	sysfs	none	/sys

exec	/bin/sh

Now	we	can	create	an	archive	that	will	be	our		initrd	:

$	find	.	-print0	|	cpio	--null	-ov	--format=newc	|	gzip	-9	>	~/dev/initrd_x86_64.gz

We	can	now	run	our	kernel	in	the	virtual	machine.	As	I	already	wrote	I	prefer	qemu	for	this.
We	can	run	our	kernel	with	the	following	command:

$	qemu-system-x86_64	-snapshot	-m	8GB	-serial	stdio	-kernel	~/dev/linux/arch/x86_64/bo

ot/bzImage	-initrd	~/dev/initrd_x86_64.gz	-append	"root=/dev/sda1	ignore_loglevel"

Linux	kernel	development

737

https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/QEMU

From	now	we	can	run	the	Linux	kernel	in	the	virtual	machine	and	this	means	that	we	can
begin	to	change	and	test	the	kernel.

Consider	using	ivandaviov/minimal	to	automate	the	process	of	generating	initrd.

Getting	started	with	the	Linux	Kernel
Development
The	main	point	of	this	paragraph	is	to	answer	two	questions:	What	to	do	and	what	not	to	do
before	sending	your	first	patch	to	the	Linux	kernel.	Please,	do	not	confuse	this		to	do		with
	todo	.	I	have	no	answer	what	you	can	fix	in	the	Linux	kernel.	I	just	want	to	tell	you	my
workflow	during	experimenting	with	the	Linux	kernel	source	code.

First	of	all	I	pull	the	latest	updates	from	Linus's	repo	with	the	following	commands:

$	git	checkout	master

$	git	pull	upstream	master

After	this	my	local	repository	with	the	Linux	kernel	source	code	is	synced	with	the	mainline
repository.	Now	we	can	make	some	changes	in	the	source	code.	As	I	already	wrote,	I	have
no	advice	for	you	where	you	can	start	and	what		TODO		in	the	Linux	kernel.	But	the	best	place
for	newbies	is		staging		tree.	In	other	words	the	set	of	drivers	from	the	drivers/staging.	The

Linux	kernel	development

738

https://github.com/ivandavidov/minimal
https://github.com/torvalds/linux
https://github.com/torvalds/linux/tree/master/drivers/staging

maintainer	of	the		staging		tree	is	Greg	Kroah-Hartman	and	the		staging		tree	is	that	place
where	your	trivial	patch	can	be	accepted.	Let's	look	on	a	simple	example	that	describes	how
to	generate	patch,	check	it	and	send	to	the	Linux	kernel	mail	listing.

If	we	look	in	the	driver	for	the	Digi	International	EPCA	PCI	based	devices,	we	will	see	the
	dgap_sindex		function	on	line	295:

static	char	*dgap_sindex(char	*string,	char	*group)

{

				char	*ptr;

				if	(!string	||	!group)

								return	NULL;

				for	(;	*string;	string++)	{

								for	(ptr	=	group;	*ptr;	ptr++)	{

												if	(*ptr	==	*string)

																return	string;

								}

				}

				return	NULL;

}

This	function	looks	for	a	match	of	any	character	in	the	group	and	returns	that	position.
During	research	of	source	code	of	the	Linux	kernel,	I	have	noted	that	the	lib/string.c	source
code	file	contains	the	implementation	of	the		strpbrk		function	that	does	the	same	thing	as
	dgap_sinidex	.	It	is	not	a	good	idea	to	use	a	custom	implementation	of	a	function	that
already	exists,	so	we	can	remove	the		dgap_sindex		function	from	the
drivers/staging/dgap/dgap.c	source	code	file	and	use	the		strpbrk		instead.

First	of	all	let's	create	new		git		branch	based	on	the	current	master	that	synced	with	the
Linux	kernel	mainline	repo:

$	git	checkout	-b	"dgap-remove-dgap_sindex"

And	now	we	can	replace	the		dgap_sindex		with	the		strpbrk	.	After	we	did	all	changes	we
need	to	recompile	the	Linux	kernel	or	just	dgap	directory.	Do	not	forget	to	enable	this	driver
in	the	kernel	configuration.	You	can	find	it	in	the:

Device	Drivers

-->	Staging	drivers

---->	Digi	EPCA	PCI	products

Linux	kernel	development

739

https://en.wikipedia.org/wiki/Greg_Kroah-Hartman
https://lkml.org/
https://github.com/torvalds/linux/tree/master/drivers/staging/dgap
https://github.com/torvalds/linux/blob/master/lib/string.c#L473
https://github.com/torvalds/linux/blob/master/drivers/staging/dgap/dgap.c
https://github.com/torvalds/linux/tree/master/drivers/staging/dgap

Now	is	time	to	make	commit.	I'm	using	following	combination	for	this:

$	git	add	.

$	git	commit	-s	-v

After	the	last	command	an	editor	will	be	opened	that	will	be	chosen	from		$GIT_EDITOR		or
	$EDITOR		environment	variable.	The		-s		command	line	argument	will	add		Signed-off-by	
line	by	the	committer	at	the	end	of	the	commit	log	message.	You	can	find	this	line	in	the	end
of	each	commit	message,	for	example	-	00cc1633.	The	main	point	of	this	line	is	the	tracking
of	who	did	a	change.	The		-v		option	show	unified	diff	between	the	HEAD	commit	and	what
would	be	committed	at	the	bottom	of	the	commit	message.	It	is	not	necessary,	but	very
useful	sometimes.	A	couple	of	words	about	commit	message.	Actually	a	commit	message
consists	from	two	parts:

The	first	part	is	on	the	first	line	and	contains	short	description	of	changes.	It	starts	from	the
	[PATCH]		prefix	followed	by	a	subsystem,	driver	or	architecture	name	and	after		:		symbol
short	description.	In	our	case	it	will	be	something	like	this:

[PATCH]	staging/dgap:	Use	strpbrk()	instead	of	dgap_sindex()

After	short	description	usually	we	have	an	empty	line	and	full	description	of	the	commit.	In
our	case	it	will	be:

Linux	kernel	development

740

https://github.com/torvalds/linux/commit/00cc1633816de8c95f337608a1ea64e228faf771

The	<linux/string.h>	provides	strpbrk()	function	that	does	the	same	that	the

dgap_sindex().	Let's	use	already	defined	function	instead	of	writing	custom.

And	the		Sign-off-by		line	in	the	end	of	the	commit	message.	Note	that	each	line	of	a
commit	message	must	no	be	longer	than		80		symbols	and	commit	message	must	describe
your	changes	in	details.	Do	not	just	write	a	commit	message	like:		Custom	function	removed	,
you	need	to	describe	what	you	did	and	why.	The	patch	reviewers	must	know	what	they
review.	Besides	this	commit	messages	in	this	view	are	very	helpful.	Each	time	when	we
can't	understand	something,	we	can	use	git	blame	to	read	description	of	changes.

After	we	have	committed	changes	time	to	generate	patch.	We	can	do	it	with	the		format-
patch		command:

$	git	format-patch	master

0001-staging-dgap-Use-strpbrk-instead-of-dgap_sindex.patch

We've	passed	name	of	the	branch	(master		in	this	case)	to	the		format-patch		command	that
will	generate	a	patch	with	the	last	changes	that	are	in	the		dgap-remove-dgap_sindex		branch
and	not	are	in	the		master		branch.	As	you	can	note,	the		format-patch		command	generates
file	that	contains	last	changes	and	has	name	that	is	based	on	the	commit	short	description.	If
you	want	to	generate	a	patch	with	the	custom	name,	you	can	use		--stdout		option:

$	git	format-patch	master	--stdout	>	dgap-patch-1.patch

The	last	step	after	we	have	generated	our	patch	is	to	send	it	to	the	Linux	kernel	mailing	list.
Of	course,	you	can	use	any	email	client,		git		provides	a	special	command	for	this:		git
send-email	.	Before	you	send	your	patch,	you	need	to	know	where	to	send	it.	Yes,	you	can
just	send	it	to	the	Linux	kernel	mailing	list	address	which	is		linux-kernel@vger.kernel.org	,
but	it	is	very	likely	that	the	patch	will	be	ignored,	because	of	the	large	flow	of	messages.	The
better	choice	would	be	to	send	the	patch	to	the	maintainers	of	the	subsystem	where	you
have	made	changes.	To	find	the	names	of	these	maintainers	use	the		get_maintainer.pl	
script.	All	you	need	to	do	is	pass	the	file	or	directory	where	you	wrote	code.

$./scripts/get_maintainer.pl	-f	drivers/staging/dgap/dgap.c

Lidza	Louina	<lidza.louina@gmail.com>	(maintainer:DIGI	EPCA	PCI	PRODUCTS)

Mark	Hounschell	<markh@compro.net>	(maintainer:DIGI	EPCA	PCI	PRODUCTS)

Daeseok	Youn	<daeseok.youn@gmail.com>	(maintainer:DIGI	EPCA	PCI	PRODUCTS)

Greg	Kroah-Hartman	<gregkh@linuxfoundation.org>	(supporter:STAGING	SUBSYSTEM)

driverdev-devel@linuxdriverproject.org	(open	list:DIGI	EPCA	PCI	PRODUCTS)

devel@driverdev.osuosl.org	(open	list:STAGING	SUBSYSTEM)

linux-kernel@vger.kernel.org	(open	list)

Linux	kernel	development

741

http://git-scm.com/docs/git-blame

You	will	see	the	set	of	the	names	and	related	emails.	Now	we	can	send	our	patch	with:

$	git	send-email	--to	"Lidza	Louina	<lidza.louina@gmail.com>"	\

		--cc	"Mark	Hounschell	<markh@compro.net>"																			\

		--cc	"Daeseok	Youn	<daeseok.youn@gmail.com>"																\

		--cc	"Greg	Kroah-Hartman	<gregkh@linuxfoundation.org>"						\

		--cc	"driverdev-devel@linuxdriverproject.org"															\

		--cc	"devel@driverdev.osuosl.org"																											\

		--cc	"linux-kernel@vger.kernel.org"

That's	all.	The	patch	is	sent	and	now	you	only	have	to	wait	for	feedback	from	the	Linux
kernel	developers.	After	you	send	a	patch	and	a	maintainer	accepts	it,	you	will	find	it	in	the
maintainer's	repository	(for	example	patch	that	you	saw	in	this	part)	and	after	some	time	the
maintainer	will	send	a	pull	request	to	Linus	and	you	will	see	your	patch	in	the	mainline
repository.

That's	all.

Some	advice
In	the	end	of	this	part	I	want	to	give	you	some	advice	that	will	describe	what	to	do	and	what
not	to	do	during	development	of	the	Linux	kernel:

Think,	Think,	Think.	And	think	again	before	you	decide	to	send	a	patch.

Each	time	when	you	have	changed	something	in	the	Linux	kernel	source	code	-	compile
it.	After	any	changes.	Again	and	again.	Nobody	likes	changes	that	don't	even	compile.

The	Linux	kernel	has	a	coding	style	guide	and	you	need	to	comply	with	it.	There	is	great
script	which	can	help	to	check	your	changes.	This	script	is	-	scripts/checkpatch.pl.	Just
pass	source	code	file	with	changes	to	it	and	you	will	see:

$./scripts/checkpatch.pl	-f	drivers/staging/dgap/dgap.c

WARNING:	Block	comments	use	*	on	subsequent	lines

#94:	FILE:	drivers/staging/dgap/dgap.c:94:

+/*

+					SUPPORTED	PRODUCTS

CHECK:	spaces	preferred	around	that	'|'	(ctx:VxV)

#143:	FILE:	drivers/staging/dgap/dgap.c:143:

+				{	PPCM,								PCI_DEV_XEM_NAME,					64,	(T_PCXM|T_PCLITE|T_PCIBUS)	},

Also	you	can	see	problematic	places	with	the	help	of	the		git	diff	:

Linux	kernel	development

742

https://git.kernel.org/cgit/linux/kernel/git/gregkh/staging.git/commit/?h=staging-testing&id=b9f7f1d0846f15585b8af64435b6b706b25a5c0b
https://github.com/torvalds/linux/blob/master/Documentation/CodingStyle
https://github.com/torvalds/linux/blob/master/scripts/checkpatch.pl

Linus	doesn't	accept	github	pull	requests

If	your	change	consists	from	some	different	and	unrelated	changes,	you	need	to	split
the	changes	via	separate	commits.	The		git	format-patch		command	will	generate
patches	for	each	commit	and	the	subject	of	each	patch	will	contain	a		vN		prefix	where
the		N		is	the	number	of	the	patch.	If	you	are	planning	to	send	a	series	of	patches	it	will
be	helpful	to	pass	the		--cover-letter		option	to	the		git	format-patch		command.	This
will	generate	an	additional	file	that	will	contain	the	cover	letter	that	you	can	use	to
describe	what	your	patchset	changes.	It	is	also	a	good	idea	to	use	the		--in-reply-to	
option	in	the		git	send-email		command.	This	option	allows	you	to	send	your	patch
series	in	reply	to	your	cover	message.	The	structure	of	the	your	patch	will	look	like	this
for	a	maintainer:

|-->	cover	letter

		|---->	patch_1

		|---->	patch_2

You	need	to	pass		message-id		as	an	argument	of	the		--in-reply-to		option	that	you	can
find	in	the	output	of	the		git	send-email	:

It's	important	that	your	email	be	in	the	plain	text	format.	Generally,		send-email		and		format-
patch		are	very	useful	during	development,	so	look	at	the	documentation	for	the	commands
and	you'll	find	some	useful	options	such	as:	git	send-email	and	git	format-patch.

Do	not	be	surprised	if	you	do	not	get	an	immediate	answer	after	you	send	your	patch.
Maintainers	can	be	very	busy.

The	scripts	directory	contains	many	different	useful	scripts	that	are	related	to	Linux
kernel	development.	We	already	saw	two	scripts	from	this	directory:	the		checkpatch.pl	
and	the		get_maintainer.pl		scripts.	Outside	of	those	scripts,	you	can	find	the

Linux	kernel	development

743

https://github.com/torvalds/linux/pull/17#issuecomment-5654674
https://en.wikipedia.org/wiki/Plain_text
http://git-scm.com/docs/git-send-email
http://git-scm.com/docs/git-format-patch
https://github.com/torvalds/linux/tree/master/scripts

stackusage	script	that	will	print	usage	of	the	stack,	extract-vmlinux	for	extracting	an
uncompressed	kernel	image,	and	many	others.	Outside	of	the		scripts		directory	you
can	find	some	very	useful	scripts	by	Lorenzo	Stoakes	for	kernel	development.

Subscribe	to	the	Linux	kernel	mailing	list.	There	are	a	large	number	of	letters	every	day
on		lkml	,	but	it	is	very	useful	to	read	them	and	understand	things	such	as	the	current
state	of	the	Linux	kernel.	Other	than		lkml		there	are	set	mailing	listings	which	are
related	to	the	different	Linux	kernel	subsystems.

If	your	patch	is	not	accepted	the	first	time	and	you	receive	feedback	from	Linux	kernel
developers,	make	your	changes	and	resend	the	patch	with	the		[PATCH	vN]		prefix
(where		N		is	the	number	of	patch	version).	For	example:

[PATCH	v2]	staging/dgap:	Use	strpbrk()	instead	of	dgap_sindex()

Also	it	must	contain	a	changelog	that	describes	all	changes	from	previous	patch	versions.	Of
course,	this	is	not	an	exhaustive	list	of	requirements	for	Linux	kernel	development,	but	some
of	the	most	important	items	were	addressed.

Happy	Hacking!

Conclusion
I	hope	this	will	help	others	join	the	Linux	kernel	community!	If	you	have	any	questions	or
suggestions,	write	me	at	email	or	ping	me	on	twitter.

Please	note	that	English	is	not	my	first	language,	and	I	am	really	sorry	for	any
inconvenience.	If	you	find	any	mistakes	please	let	me	know	via	email	or	send	a	PR.

Links
blog	posts	about	assembly	programming	for	x86_64
Assembler
distro
package	manager
grub
kernel.org
version	control	system
arm64
bzImage
qemu

Linux	kernel	development

744

https://github.com/torvalds/linux/blob/master/scripts/stackusage
https://github.com/torvalds/linux/blob/master/scripts/extract-vmlinux
https://github.com/lorenzo-stoakes/kernel-scripts
https://twitter.com/ljsloz
http://vger.kernel.org/vger-lists.html
https://twitter.com/0xAX
http://0xax.github.io/categories/assembly/
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/GNU_GRUB
https://kernel.org/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/ARM_architecture#AArch64_features
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/QEMU

initrd
busybox
coreutils
procfs
sysfs
Linux	kernel	mail	listing	archive
Linux	kernel	coding	style	guide
How	to	Get	Your	Change	Into	the	Linux	Kernel
Linux	Kernel	Newbies
plain	text

Linux	kernel	development

745

https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/BusyBox
https://en.wikipedia.org/wiki/GNU_Core_Utilities
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://lkml.org/
https://github.com/torvalds/linux/blob/master/Documentation/CodingStyle
https://github.com/torvalds/linux/blob/master/Documentation/SubmittingPatches
http://kernelnewbies.org/
https://en.wikipedia.org/wiki/Plain_text

Useful	links

Linux	boot
Linux/x86	boot	protocol
Linux	kernel	parameters

Protected	mode
64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

Serial	programming
8250	UART	Programming
Serial	ports	on	OSDEV

VGA
Video	Graphics	Array	(VGA)

IO
IO	port	programming

GCC	and	GAS
GCC	type	attributes
Assembler	Directives

Important	data	structures
task_struct	definition

Useful	links

746

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://en.wikibooks.org/wiki/Serial_Programming/8250_UART_Programming#UART_Registers
http://wiki.osdev.org/Serial_Ports
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://www.tldp.org/HOWTO/text/IO-Port-Programming
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
http://www.chemie.fu-berlin.de/chemnet/use/info/gas/gas_toc.html#TOC65
http://lxr.free-electrons.com/source/include/linux/sched.h#L1274

Other	architectures
PowerPC	and	Linux	Kernel	Inside

Useful	links
Linux	x86	Program	Start	Up
Memory	Layout	in	Program	Execution	(32	bits)

Useful	links

747

http://www.systemcomputing.org/ppc/
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://fgiasson.com/articles/memorylayout.txt

Thank	you	to	all	contributors:
Akash	Shende
Jakub	Kramarz
ckrooss
ecksun
Maciek	Makowski
Thomas	Marcelis
Chris	Costes
nathansoz
RubanDeventhiran
fuzhli
andars
Alexandru	Pana
Bogdan	Rădulescu
zil
codelitt
gulyasm
alx741
Haddayn
Daniel	Campoverde	Carrión
Guillaume	Gomez
Leandro	Moreira
Jonatan	Pålsson
George	Horrell
Ciro	Santilli
Kevin	Soules
Fabio	Pozzi
Kevin	Swinton
Leandro	Moreira
LYF610400210
Cam	Cope
Miquel	Sabaté	Solà
Michael	Aquilina
Gabriel	Sullice
Michael	Drüing
Alexander	Polakov
Anton	Davydov

Contributors

748

https://github.com/akash0x53
https://github.com/jkramarz
https://github.com/ckrooss
https://github.com/ecksun
https://github.com/mmakowski
https://github.com/ThomasMarcelis
https://github.com/ccostes
https://github.com/nathansoz
https://github.com/RubanDeventhiran
https://github.com/fuzhli
https://github.com/andars
https://github.com/alexpana
https://github.com/bogdanr
https://github.com/zil
https://github.com/codelitt
https://github.com/gulyasm
https://github.com/alx741
https://github.com/Haddayn
https://github.com/alx741
https://github.com/GuillaumeGomez
https://github.com/leandromoreira
https://github.com/jonte
https://github.com/georgehorrell
https://github.com/cirosantilli
https://github.com/eax64
https://github.com/fabiopozzi
https://github.com/kevinjswinton
https://github.com/leandromoreira
https://github.com/LYF610400210
https://github.com/ccope
https://github.com/mssola
https://github.com/MichaelAquilina
https://github.com/gabesullice
https://github.com/darkstar
https://github.com/polachok
https://github.com/davydovanton

Arpan	Kapoor
Brandon	Fosdick
Ashleigh	Newman-Jones
Terrell	Russell
Mario
Ewoud	Kohl	van	Wijngaarden
Jochen	Maes
Brother-Lal
Brian	McKenna
Josh	Triplett
James	Flowers
Alexander	Harding
Dzmitry	Plashchynski
Simarpreet	Singh
umatomba
Vaibhav	Tulsyan
Brandon	Wamboldt
Maxime	Leboeuf
Maximilien	Richer
marmeladema
Anisse	Astier
TheCodeArtist
Ehsun	N
Adam	Shannon
Donny	Nadolny
Ehsun	N
Waqar	Ahmed
Ian	Miell
DongLiang	Mu
Johan	Manuel
Brian	Rak
Robin	Peiremans
xiaoqiang	zhao
aouelete
Dennis	Birkholz
Anton	Tyurin
Bogdan	Kulbida
Matt	Hudgins
Ruth	Grace	Wong
Jeremy	Lacomis

Contributors

749

https://github.com/arpankapoor
https://github.com/bfoz
https://github.com/anewmanjones
https://github.com/trel
https://github.com/bedna-KU
https://github.com/ekohl
https://github.com/sejo
https://github.com/Brother-Lal
https://github.com/puffnfresh
https://github.com/joshtriplett
https://github.com/comjf
https://github.com/aeharding
https://github.com/plashchynski
https://github.com/simar7
https://github.com/umatomba
https://github.com/xennygrimmato
https://github.com/brandonwamboldt
https://github.com/leboeuf
https://github.com/halfa
https://github.com/marmeladema
https://github.com/anisse
https://github.com/TheCodeArtist
https://github.com/imehsunn
https://github.com/adamdecaf
https://github.com/dnadolny
https://github.com/imehsunn
https://github.com/Waqar144
https://github.com/ianmiell
https://github.com/mudongliang
https://github.com/29jm
https://github.com/brakthehack
https://github.com/rpeiremans
https://github.com/hitmoon
https://github.com/aouelete
https://github.com/dennisbirkholz
https://github.com/noxiouz
https://github.com/kulbida
https://github.com/mhudgins
https://github.com/ruthgrace
https://github.com/jlacomis

Dubyah
Matthieu	Tardy
michaelian	ennis
Amitay	Stern
Matt	Todd
Piyush	Pangtey
Alfred	Agrell
Jakub	Wilk
Justus	Adam
Roy	Wellington	Ⅳ
Jonathan	Rennison
Mack	Stump
Pushpinder	Singh
Xiaoqin	Hu
Jeremy	Cline

Contributors

750

https://github.com/Dubyah
https://github.com/c0riolis
https://github.com/mennis
https://github.com/amist
https://github.com/mtodd
https://github.com/pangteypiyush
https://github.com/Alcaro
https://github.com/jwilk
https://github.com/JustusAdam
https://github.com/thanatos
https://github.com/JGRennison
https://github.com/rmbreak
https://github.com/PrinceDhaliwal
https://github.com/huxq
https://github.com/jeremycline

	Introduction
	Booting
	From bootloader to kernel
	First steps in the kernel setup code
	Video mode initialization and transition to protected mode
	Transition to 64-bit mode
	Kernel decompression

	Initialization
	First steps in the kernel
	Early interrupts handler
	Last preparations before the kernel entry point
	Kernel entry point
	Continue architecture-specific boot-time initializations
	Architecture-specific initializations, again...
	End of the architecture-specific initializations, almost...
	Scheduler initialization
	RCU initialization
	End of initialization

	Interrupts
	Introduction
	Start to dive into interrupts
	Interrupt handlers
	Initialization of non-early interrupt gates
	Implementation of some exception handlers
	Handling Non-Maskable interrupts
	Dive into external hardware interrupts
	Initialization of external hardware interrupts structures
	Softirq, Tasklets and Workqueues
	Last part

	System calls
	Introduction to system calls
	How the Linux kernel handles a system call
	vsyscall and vDSO
	How the Linux kernel runs a program

	Timers and time management
	Introduction
	Clocksource framework
	The tick broadcast framework and dyntick
	Introduction to timers
	Clockevents framework
	x86 related clock sources
	Time related system calls

	Synchronization primitives
	Introduction to spinlocks
	Queued spinlocks
	Semaphores
	Mutex
	Reader/Writer semaphores

	Memory management
	Memblock
	Fixmaps and ioremap
	kmemcheck

	Concepts
	Per-CPU variables
	Cpumasks
	The initcall mechanism

	Data Structures in the Linux Kernel
	Doubly linked list
	Radix tree
	Bit arrays

	Theory
	Paging
	Elf64
	Inline assembly

	Misc
	How the kernel is compiled
	Linkers
	Linux kernel development

	Useful links
	Contributors

