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Kernel boot process

This chapter describes the linux kernel boot process. You will see here a couple of posts
which describe the full cycle of the kernel loading process:

From the bootloader to kernel - describes all stages from turning on the computer to
running the first instruction of the kernel;

First steps in the kernel setup code - describes first steps in the kernel setup code. You
will see heap initialization, query of different parameters like EDD, IST and etc...

Video mode initialization and transition to protected mode - describes video mode
initialization in the kernel setup code and transition to protected mode.

Transition to 64-bit mode - describes preparation for transition into 64-bit mode and
details of transition.

Kernel Decompression - describes preparation before kernel decompression and details
of direct decompression.


http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-1.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-4.html
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html

Kernel booting process. Part 1.

From the bootloader to the kernel

If you have read my previous blog posts, you can see that sometime ago | started to get
involved with low-level programming. | wrote some posts about x86_64 assembly
programming for Linux. At the same time, | started to dive into the Linux source code. | have
a great interest in understanding how low-level things work, how programs run on my
computer, how they are located in memory, how the kernel manages processes and
memory, how the network stack works at a low level and many many other things. So, |
decided to write yet another series of posts about the Linux kernel for x86_64.

Note that I'm not a professional kernel hacker and | don't write code for the kernel at work.
It's just a hobby. | just like low-level stuff, and it is interesting for me to see how these things
work. So if you notice anything confusing, or if you have any questions/remarks, ping me on
twitter OxAX, drop me an emalil or just create an issue. | appreciate it. All posts will also be
accessible at linux-insides and if you find something wrong with my English or the post
content, feel free to send a pull request.

Note that this isn't the official documentation, just learning and sharing knowledge.
Required knowledge

e Understanding C code
e Understanding assembly code (AT&T syntax)

Anyway, if you just start to learn some tools, | will try to explain some parts during this and
the following posts. Ok, simple introduction finishes and now we can start to dive into the
kernel and low-level stuff.

All code is actually for kernel - 3.18. If there are changes, | will update the posts accordingly.

The Magic Power Button, What happens next?

Despite that this is a series of posts about the Linux kernel, we will not start from the kernel
code (at least not in this paragraph). Ok, you press the magic power button on your laptop or
desktop computer and it starts to work. After the motherboard sends a signal to the power
supply, the power supply provides the computer with the proper amount of electricity. Once
the motherboard receives the power good signal, it tries to start the CPU. The CPU resets all
leftover data in its registers and sets up predefined values for each of them.


http://0xax.blogspot.com/search/label/asm
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Power_good_signal

80386 and later CPUs define the following predefined data in CPU registers after the
computer resets:

IP Oxfffo
CS selector Oxf000
CS base Oxffffeeo0

The processor starts working in real mode. Let's back up a little to try and understand
memory segmentation in this mode. Real mode is supported on all x86-compatible
processors, from the 8086 all the way to the modern Intel 64-bit CPUs. The 8086 processor
has a 20-bit address bus, which means that it could work with a 0-0x100000 address space
(1 megabyte). But it only has 16-bit registers, and with 16-bit registers the maximum address
is 26 - 1 or Oxffff (64 kilobytes). Memory segmentation is used to make use of all the
address space available. All memory is divided into small, fixed-size segments of 65536
bytes, or 64 KB. Since we cannot address memory above 64 KB with 16 bit registers, an
alternate method is devised. An address consists of two parts: a segment selector which has
an associated base address and an offset from this base address. In real mode, the
associated base address of a segment selector is segment Selector * 16 . Thus, to geta
physical address in memory, we need to multiply the segment selector part by 16 and add
the offset part:

PhysicalAddress = Segment Selector * 16 + Offset

For example if cs:1p is ex2e00:0x0016 , the corresponding physical address will be:

>>> hex(( << ) + )
'0x20010"'

But if we take the largest segment selector and offset: exffff:oxffff , it will be:

>>> hex(( << ) + )
'Ox10ffef!

which is 65520 bytes over first megabyte. Since only one megabyte is accessible in real
mode, oxieffef becomes oxeoffef with disabled A20.

Ok, now we know about real mode and memory addressing. Let's get back to discuss about
register values after reset:

The cs register consists of two parts: the visible segment selector and the hidden base
address. While the base address is normally formed by multiplying the segment selector
value by 16, during a hardware reset, the segment selector in the CS register is loaded with


https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/A20_line

0xf000 and the base address is loaded with 0xffff0000. The processor uses this special base
address until CS is changed.

The starting address is formed by adding the base address to the value in the EIP register:

>>> +
'oxfffffffo’

We get exfrfffffe which is 4GB - 16 bytes. This point is called the Reset vector. This is
the memory location at which the CPU expects to find the first instruction to execute after
reset. It contains a jump instruction which usually points to the BIOS entry point. For
example, if we look in the coreboot source code, we see:

.section ".reset"

.codel6
.globl reset_vector
reset_vector:

.byte 0xe9

.int _start - ( . + 2 )

Here we can see the jmp instruction opcode - Oxe9 and its destination address - _start - (
. + 2) ,and we can see that the reset section is 16 bytes and starts at exfffffffo :

SECTIONS {
_ROMTOP = Oxfffffffo;
. = _ROMTOP;
.reset . : {
*(.reset)
. =15 ;
BYTE (0x00);

Now the BIOS starts: after initializing and checking the hardware, it needs to find a bootable
device. A boot order is stored in the BIOS configuration, controlling which devices the BIOS
attempts to boot from. When attempting to boot from a hard drive, the BIOS tries to find a
boot sector. On hard drives partitioned with an MBR partition layout, the boot sector is stored
in the first 446 bytes of the first sector (which is 512 bytes). The final two bytes of the first
sector are ox55 and oxaa , which signals the BIOS that this device is bootable. For
example:


http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/JMP_%28x86_instruction%29
http://www.coreboot.org/
http://ref.x86asm.net/coder32.html#xE9

; Note: this example is written in Intel Assembly syntax
[BITS 16]
[ORG 0x7c00]

boot:
mov al, '!'
mov ah, 0Ox0Ge
mov bh, 0x00
mov bl, 0x07

int 0x10
jmp $

times 510-($-$$) db ©
db ©x55

db Oxaa

Build and run it with:

nasm -f bin boot.nasm && gemu-system-x86_64 boot

This will instruct QEMU to use the boot binary we just built as a disk image. Since the
binary generated by the assembly code above fulfills the requirements of the boot sector
(the origin is setto ex7cee , and we end with the magic sequence), QEMU will treat the
binary as the master boot record (MBR) of a disk image.

You will see:


http://qemu.org

SeaBI0S (version 1.7.5-20140531_171129-lamiak)

iPXE (http:rripxe.org) 00:03.0 CI980 PCIZ.10 PnP PMM+OYFI0BAO+O7EFOBAD CI80

Booting from Hard Disk...

In this example we can see that the code will be executed in 16 bit real mode and will start at
0x7c00 in memory. After starting it calls the 0x10 interrupt which just prints the ' symbol. It
fills the rest of the 510 bytes with zeros and finishes with the two magic bytes exaa and

OX55 .

You can see a binary dump of this with the objdump util:

nasm -f bin boot.nasm
objdump -D -b binary -mi386 -Maddri16,datal6,intel boot

A real-world boot sector has code to continue the boot process and the partition table
instead of a bunch of 0's and an exclamation mark :) From this point onwards, BIOS hands
over control to the bootloader.

NOTE: As you can read above the CPU is in real mode. In real mode, calculating the
physical address in memory is done as follows:

PhysicalAddress = Segment Selector * 16 + Offset

The same as mentioned before. We have only 16 bit general purpose registers, the
maximum value of a 16 bit register is exffff , so if we take the largest values, the result will
be:

>>> hex(( * 16) + )
'Ox10ffef!


http://www.ctyme.com/intr/rb-0106.htm

Where oxieffef isequalto imB + 64kB - 16b . But a 8086 processor, which is the first
processor with real mode, has a 20 bit address line and 2120 = 1048576 is 1MB. This

means the actual memory available is 1MB.

General real mode's memory map is:

0X00000000 OX00OOO3FF Real Mode Interrupt Vector Table
0X00000400 OXOOOO04FF BIOS Data Area
0X00000500 OXOOOO7BFF Unused

0x00007CO0 OX00007DFF Our Bootloader
OXO00O7ECO OXOOO9FFFF Unused

OXOO0OALCO00 OXOOOBFFFF Video RAM (VRAM) Memory
0Xx000BOOOO 0x000B7777 Monochrome Video Memory
0Xx000B8OOO OXOOOBFFFF Color Video Memory
OX000COOLO OXOOOC7FFF Video ROM BIOS
0x000C8000 OXOOOEFFFF BIOS Shadow Area
OXOOOFOOOO OXOOOFFFFF System BIOS

In the beginning of this post | wrote that the first instruction executed by the CPU is located
at address oexrrrrrFFe , which is much larger than oexrrrrr (1MB). How can the CPU
access this in real mode? This is in the coreboot documentation:

OXFFFE_Q000 - OXFFFF_FFFF: 128 kilobyte ROM mapped into address space

At the start of execution, the BIOS is not in RAM, but in ROM.

Bootloader

There are a number of bootloaders that can boot Linux, such as GRUB 2 and syslinux. The
Linux kernel has a Boot protocol which specifies the requirements for bootloaders to
implement Linux support. This example will describe GRUB 2.

Now that the BIOS has chosen a boot device and transferred control to the boot sector code,
execution starts from boot.img. This code is very simple due to the limited amount of space
available, and contains a pointer which is used to jump to the location of GRUB 2's core
image. The core image begins with diskboot.img, which is usually stored immediately after
the first sector in the unused space before the first partition. The above code loads the rest
of the core image into memory, which contains GRUB 2's kernel and drivers for handling
filesystems. After loading the rest of the core image, it executes grub_main.

grub_main initializes the console, gets the base address for modules, sets the root device,
loads/parses the grub configuration file, loads modules etc. At the end of execution,
grub_main moves grub to normal mode. grub_normal execute (from grub-


https://en.wikipedia.org/wiki/Intel_8086
http://www.coreboot.org/Developer_Manual/Memory_map
https://www.gnu.org/software/grub/
http://www.syslinux.org/wiki/index.php/The_Syslinux_Project
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/boot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/diskboot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/kern/main.c

core/normal/main.c ) completes the last preparation and shows a menu to select an
operating system. When we select one of the grub menu entries, grub_menu_execute_entry
runs, which executes the grub boot command, booting the selected operating system.

As we can read in the kernel boot protocol, the bootloader must read and fill some fields of
the kernel setup header, which starts at exe1f1 offset from the kernel setup code. The
kernel header arch/x86/boot/header.S starts from:

.globl hdr

hdr:
setup_sects: .byte 0
root_flags: .word ROOT_RDONLY

syssize: .long ©
ram_size: .word 0O
vid_mode: .word SVGA_MODE
root_dev: .word 0
boot_flag: .word OxAA55

The bootloader must fill this and the rest of the headers (only marked as write in the Linux
boot protocol, for example this) with values which it either got from command line or
calculated. We will not see a description and explanation of all fields of the kernel setup
header, we will get back to that when the kernel uses them. You can find a description of all
fields in the boot protocol.

As we can see in the kernel boot protocol, the memory map will be the following after
loading the kernel:


https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt#L354
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt#L156

| Protected-mode kernel |
100000  H-----mm e e e e e +

OABOO0 - - - mm e mm e e e e +
| Reserved for BIOS | Leave as much as possible unused

| Command line | (Can also be below the X+10000 mark)

X+10000 +-----mmmmmmm e oo +

| Stack/heap | For use by the kernel real-mode code.
X+08000 +------mmmmmm e oo +

| Kernel setup | The kernel real-mode code.

| Kernel boot sector | The kernel legacy boot sector.

X docccccocosossooonnsoooos +

| Boot loader | <- Boot sector entry point 0x7C00
001000  H----mmmmmmmm oo +

| Reserved for MBR/BIOS |
000800  H----m-mmm e e +

| Typically used by MBR |
000600  H-----------oooaoaao oo i

| BIOS use only |
000000  H-----------ooooaaaoo oo +

So when the bootloader transfers control to the kernel, it starts at:

0x1000 + X + sizeof(KernelBootSector) + 1

where x is the address of the kernel boot sector loaded. In my case x is oxieeee , as we
can see in a memory dump:

00010000:
00010010:
00010020:
00010030:
00010040:
00010050:

Direct floppy bo
ot is not suppor

00010060:
00010070:
00010080:
00010090:

000100a0:
RAR1AABHA -

ted. Use a boot
loader program i
nstead. . ..Remove
disk and press
any key to reboo

The bootloader has now loaded the Linux kernel into memory, filled the header fields and

jumped to it. Now we can move directly to the kernel setup code.

Start of Kernel Setup



Finally we are in the kernel. Technically the kernel hasn't run yet, we need to set up the
kernel, memory manager, process manager etc first. Kernel setup execution starts from
arch/x86/boot/header.S at _start. It is a little strange at first sight, as there are several
instructions before it.

A Long time ago the Linux kernel had its own bootloader, but now if you run for example:

gemu-system-x86_64 vmlinuz-3.18-generic

You will see:

SeaBI0S (wversion 1.7.5-20140531_171129-lamiak)

iPXE (http:rripxe.org) G0:03.0 CI980 PCIZ.10 PnP PMM+O?FI0BAO+OPEFOBA® CIBO

Booting from Hard Disk...
se a boot loader.

emove diszsk and press any key to reboot...

Actually header.s starts from MZ (see image above), error message printing and following
PE header:

#ifdef CONFIG_EFI_STUB
# "MZ", MS-DOS header
.byte ox4d

.byte 0x5a

#endif

pe_header:
.ascii "PE"
.word ©


https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L293
https://en.wikipedia.org/wiki/DOS_MZ_executable
https://en.wikipedia.org/wiki/Portable_Executable

It needs this to load an operating system with UEFI|. We won't see how this works right now,
we'll see this in one of the next chapters.

So the actual kernel setup entry point is:

// header.S line 292
.globl _start
_Start:

The bootloader (grub2 and others) knows about this point ( ex2ee offset from wmz ) and
makes a jump directly to this point, despite the fact that header.s starts from .bstext
section which prints an error message:

//

// arch/x86/boot/setup.ld

//

. = 0; // current position

.bstext : { *(.bstext) } // put .bstext section to position ©
.bsdata : { *(.bsdata) }

So the kernel setup entry point is:

.globl _start

_start:

.byte 0Oxeb

.byte start_of_setup-1f
1:

//

// rest of the header

//

Here we can see a jmp instruction opcode - oxeb tothe start_of_setup-if point. Nf
notation means 2f refers to the nextlocal 2: label. In our case itis label 1 which goes
right after jump. It contains the rest of the setup header. Right after the setup header we see
the .entrytext section which starts at the start_of_setup label.

Actually this is the first code that runs (aside from the previous jump instruction of course).
After the kernel setup got the control from the bootloader, the first jmp instruction is located
at oxzee (first 512 bytes) offset from the start of the kernel real mode. This we can read in
the Linux kernel boot protocol and also see in the grub2 source code:

segment = grub_linux_real_target >> 4;
state.gs = state.fs = state.es = state.ds = state.ss = segment;
state.cs = segment + ;


https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://github.com/torvalds/linux/blob/master/Documentation/x86/boot.txt#L156

It means that segment registers will have the following values after kernel setup starts:

fs = es = ds = ss = Ox1000
0x1020

gs
Cs

In my case when the kernel is loaded at oxi1e000 .

After the jump to start_of_setup , it needs to do the following:

Be sure that all values of all segment registers are equal

Set up correct stack if needed

Set up bss

Jump to C code at main.c

Let's look at the implementation.

Segment registers align

First of all it ensures that ds and es segment registers point to the same address and
clears the direction flag with the c1d instruction:

movw %ds, %ax
movw %ax, %es
cld

As | wrote earlier, grub2 loads kernel setup code at address oxi1eee0 and cs at exi1020
because execution doesn't start from the start of file, but from:

_start:
.byte Oxeb
.byte start_of_setup-1f

jump , which is at 512 bytes offset from the 4d 5a. It also needs to align cs from exie200
to exieeee as all other segment registers. After that we set up the stack:

pushw  %ds
pushw  $6f
lretw

push ds value to the stack with the address of the 6 label and execute 1retw instruction.
When we call 1retw , it loads address of label 6 into the instruction pointer register and
cs with the value of ds . After this ds and cs will have the same values.


https://en.wikipedia.org/wiki/.bss
https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L47
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L494
https://en.wikipedia.org/wiki/Program_counter

Stack Setup

Actually, almost all of the setup code is preparation for the C language environment in real
mode. The next step is checking the ss register value and making a correct stack if ss is

wrong:
movw %ss, %dx
cmpw %ax, %dx
movw %sp, %dx
je 2f

This can lead to 3 different scenarios:

e ss has valid value 0x10000 (as all other segment registers beside cs )
e ss isinvalid and can_use HeapP flag is set (see below)
e ss isinvalid and can_use_Heap flag is not set (see below)

Let's look at all three of these scenarios:

® ss has a correct address (0x10000). In this case we go to label 2:

2: andw $~3, %dx

jnz 3f
movw $oxfffc, %dx
3: movw %ax, %Ss

movzwl %dx, %esp
sti

Here we can see the alignment of dx (contains sp given by bootloader) to 4 bytes and a
check for whether or not it is zero. If it is zero, we put exfffc (4 byte aligned address
before maximum segment size - 64 KB) in dx . If it is not zero we continue to use sp given
by the bootloader (0xf7f4 in my case). After this we put the ax value to ss which stores
the correct segment address of exieeee and sets up a correct sp . We now have a correct
stack:


https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L467
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L481

From bootloader to kernel

esp

_end

Kernel setup

Kernel legacy boot sector (4d 5a) %ss - 0x10000

¢ In the second scenario, ( ss != ds ). First of all put the end (address of end of setup
code) value in dx and check the 1loadflags header field with the testb instruction to
see whether we can use the heap or not. loadflags is a bitmask header which is defined

as:
#define LOADED_HIGH (1<<0)
#define QUIET_FLAG (1<<5)

#define KEEP_SEGMENTS (1<<6)
#define CAN_USE_HEAP (1<<7)

And as we can read in the boot protocol:

Field name: loadflags
This field is a bitmask.

Bit 7 (write): CAN_USE_HEAP
Set this bit to 1 to indicate that the value entered in the
heap_end_ptr is valid. If this field is clear, some setup code
functionality will be disabled.

If the cAN_use_HEAP bit is set, put heap_end_ptr in dx which pointsto _end and add
sTAcK_s1ze (minimal stack size - 512 bytes) to it. After this if dx is not carry (it will not be
carry, dx = _end + 512), jump to label 2 as in the previous case and make a correct stack.

20


https://github.com/torvalds/linux/blob/master/arch/x86/boot/setup.ld#L52
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L321

From bootloader to kernel

esp - 0xfffc
_end
Kernel setup
Kernel legacy boot sector (4d 5a) %ss, %ds ... - 0x10000

e When can_use_HEAP is not set, we just use a minimal stack from _end to _end +

STACK_SIZE :

esp: _end+ STACK_SIZE

_end

Kernel setup

Kernel legacy boot sector (4d 5a) Uss - 0x10000

BSS Setup

The last two steps that need to happen before we can jump to the main C code, are setting
up the BSS area and checking the "magic" signature. First, signature checking:

cmpl $0x5a5aaab5, setup_sig
jne setup_bad

This simply compares the setup_sig with the magic number oexsa5aaass . If they are not
equal, a fatal error is reported.

If the magic number matches, knowing we have a set of correct segment registers and a
stack, we only need to set up the BSS section before jumping into the C code.

The BSS section is used to store statically allocated, uninitialized data. Linux carefully
ensures this area of memory is first blanked, using the following code:
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From bootloader to kernel

movw $__bss_start, %di
movw $_end+3, %cx

xorl %eax, %eax

subw %di, %Ccx

shrw $2, %cx

rep; stosl

First of all the  bss start address is moved into di and the _end + 3 address (+3 -
aligns to 4 bytes) is moved into cx . The eax registeris cleared (using a xor instruction),
and the bss section size ( cx - di ) is calculated and putinto cx . Then, cx is divided by
four (the size of a 'word'), and the stosl instruction is repeatedly used, storing the value of

eax (zero) into the address pointed to by di , automatically increasing di by four (this
occurs until cx reaches zero). The net effect of this code is that zeros are written through
all words in memory from _ bss_start t0 _end :

_end

__bss_start

Kernel setup

Kernel legacy boot sector (4d 5a)

%%ss - 0x10000

Jump to main

That's all, we have the stack and BSS so we can jump to the main() C function:

calll main

The main() function is located in arch/x86/boot/main.c. You can read about what this does
in the next part.

Conclusion

This is the end of the first part about Linux kernel insides. If you have questions or
suggestions, ping me in twitter OxAX, drop me email or just create issue. In the next part we
will see first C code which executes in Linux kernel setup, implementation of memory
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routines as memset , memcpy , earlyprintk implementation and early console initialization
and many more.

Please note that English is not my first language and | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.

Links

¢ Intel 80386 programmer's reference manual 1986
¢ Minimal Boot Loader for Intel® Architecture
e 8086

e 80386

e Reset vector

e Real mode

e Linux kernel boot protocol

e CoreBoot developer manual

e Ralf Brown's Interrupt List

e Power supply

e Power good signal


https://github.com/0xAX/linux-internals
http://css.csail.mit.edu/6.858/2014/readings/i386.pdf
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/Real_mode
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://www.coreboot.org/Developer_Manual
http://www.ctyme.com/intr/int.htm
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_good_signal

Kernel booting process. Part 2.

First steps in the kernel setup

We started to dive into linux kernel insides in the previous part and saw the initial part of the
kernel setup code. We stopped at the first call to the main function (which is the first
function written in C) from arch/x86/boot/main.c.

In this part we will continue to research the kernel setup code and

e see what protected mode is,

e some preparation for the transition into it,

¢ the heap and console initialization,

e memory detection, cpu validation, keyboard initialization
¢ and much much more.

So, Let's go ahead.

Protected mode

Before we can move to the native Intel64 Long Mode, the kernel must switch the CPU into
protected mode.

What is protected mode? Protected mode was first added to the x86 architecture in 1982
and was the main mode of Intel processors from the 80286 processor until Intel 64 and long
mode came.

The main reason to move away from Real mode is that there is very limited access to the
RAM. As you may remember from the previous part, there is only 220 bytes or 1 Megabyte,
sometimes even only 640 Kilobytes of RAM available in the Real mode.

Protected mode brought many changes, but the main one is the difference in memory
management. The 20-bit address bus was replaced with a 32-bit address bus. It allowed
access to 4 Gigabytes of memory vs 1 Megabyte of real mode. Also paging support was
added, which you can read about in the next sections.

Memory management in Protected mode is divided into two, almost independent parts:

e Segmentation
e Paging


https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c
http://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Intel_80286
http://wiki.osdev.org/Real_Mode
http://en.wikipedia.org/wiki/Paging

Here we will only see segmentation. Paging will be discussed in the next sections.
As you can read in the previous part, addresses consist of two parts in real mode:

e Base address of the segment
e Offset from the segment base

And we can get the physical address if we know these two parts by:

PhysicalAddress = Segment Selector * 16 + Offset

Memory segmentation was completely redone in protected mode. There are no 64 Kilobyte
fixed-size segments. Instead, the size and location of each segment is described by an
associated data structure called Segment Descriptor. The segment descriptors are stored in
a data structure called clobal Descriptor Table (GDT).

The GDT is a structure which resides in memory. It has no fixed place in the memory so, its
address is stored in the special epTrR register. Later we will see the GDT loading in the
Linux kernel code. There will be an operation for loading it into memory, something like:

lgdt gdt

where the 1gdt instruction loads the base address and limit(size) of global descriptor table
to the cepTR register. epTR is a 48-bit register and consists of two parts:

* size(16-bit) of global descriptor table;
e address(32-bit) of the global descriptor table.

As mentioned above the GDT contains segment descriptors Wwhich describe memory
segments. Each descriptor is 64-bits in size. The general scheme of a descriptor is:

31 24 19 16 7 0

I | IB| |A] [ I | I9]E|W]A] I

| BASE 31:24 |G|/|L|V| LIMIT |P|DPL|S| TYPE | BASE 23:16 | 4
I | ID] |L] 19:16 | | | [1|C|RI|A| I

I I

Don't worry, | know it looks a little scary after real mode, but it's easy. For example LIMIT
15:0 means that bit 0-15 of the Descriptor contain the value for the limit. The rest of it is in
LIMIT 19:16. So, the size of Limit is 0-19 i.e 20-bits. Let's take a closer look at it:



1. Limit[20-bits] is at 0-15,16-19 bits. It defines 1ength_of_segment - 1 . It depends on
6 (Granularity) bit.

o if ¢ (bit55)is 0 and segment limitis O, the size of the segment is 1 Byte

o if ¢ is 1and segmentlimitis 0, the size of the segment is 4096 Bytes

o if ¢ is 0 and segment limit is Oxfffff, the size of the segment is 1 Megabyte
o if ¢ is 1and segment limitis Oxfffff, the size of the segment is 4 Gigabytes

So, it means that if

o if Gis 0, Limit is interpreted in terms of 1 Byte and the maximum size of the
segment can be 1 Megabyte.

o if Gis 1, Limitis interpreted in terms of 4096 Bytes = 4 KBytes = 1 Page and the
maximum size of the segment can be 4 Gigabytes. Actually when G is 1, the value
of Limit is shifted to the left by 12 bits. So, 20 bits + 12 bits = 32 bits and 232 =4
Gigabytes.

2. Base[32-bits] is at (0-15, 32-39 and 56-63 bits). It defines the physical address of the
segment's starting location.

3. Type/Attribute (40-47 bits) defines the type of segment and kinds of access to it.

o s flag at bit 44 specifies descriptor type. If s is 0 then this segment is a system
segment, whereas if s is 1 then this is a code or data segment (Stack segments
are data segments which must be read/write segments).

To determine if the segment is a code or data segment we can check its Ex(bit 43) Attribute
marked as 0 in the above diagram. If it is O, then the segment is a Data segment otherwise it
is a code segment.

A segment can be of one of the following types:



Type Field | Descriptor Type | Description

_____________________________ |ocoscocssscassssa||sssscosssccosasaacs
Decimal | |

0 E W A | |
0 0 0 ® O | Data | Read-Only
1 0] 0] 0 1 | Data | Read-Only, accessed
2 0] 0] 1 0 | Data | Read/Write
3 0] 0] 1 1 | Data | Read/Write, accessed
4 0 1 0 0 | Data | Read-Only, expand-down
5 0 1 0 1 | Data | Read-Only, expand-down, accessed
6 0 1 1 0 | Data | Read/Write, expand-down
7 0 1 1 1 | Data | Read/Write, expand-down, accessed

c R A | |

8 1 0 0 0 | Code | Execute-Only
9 1 0 0 1 | Code | Execute-Only, accessed
10 1 0 1 0 | Code | Execute/Read
11 1 0 1 1 | Code | Execute/Read, accessed
12 1 1 0 0 | Code | Execute-Only, conforming
14 1 1 0 1 | Code | Execute-Only, conforming, accessed
13 1 1 1 0 | Code | Execute/Read, conforming
15 1 1 1 1 | Code | Execute/Read, conforming, accessed

As we can see the first bit(bit 43) is o for a data segmentand 1 for a code segment. The

next three bits(40, 41, 42, 43) are either ewa (Expansion Writable Accessible) or
CRA(Conforming Readable Accessible).

if E(bit 42) is 0, expand up other wise expand down. Read more here.

if W(bit 41)(for Data Segments) is 1, write access is allowed otherwise not. Note that
read access is always allowed on data segments.

A(bit 40) - Whether the segment is accessed by processor or not.

C(bit 43) is conforming bit(for code selectors). If C is 1, the segment code can be
executed from a lower level privilege e.g. user level. If C is 0, it can only be executed
from the same privilege level.

R(bit 41)(for code segments). If 1 read access to segment is allowed otherwise not.
Write access is never allowed to code segments.

. DPL[2-bits] (Descriptor Privilege Level) is at bits 45-46. It defines the privilege level of

the segment. It can be 0-3 where 0 is the most privileged.

P flag(bit 47) - indicates if the segment is present in memory or not. If P is 0, the
segment will be presented as invalid and the processor will refuse to read this segment.

AVL flag(bit 52) - Available and reserved bits. It is ignored in Linux.

L flag(bit 53) - indicates whether a code segment contains native 64-bit code. If 1 then
the code segment executes in 64 bit mode.
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5. D/B flag(bit 54) - Default/Big flag represents the operand size i.e 16/32 bits. If it is set
then 32 bit otherwise 16.

Segment registers contain segment selectors as in real mode. However, in protected mode,
a segment selector is handled differently. Each Segment Descriptor has an associated
Segment Selector which is a 16-bit structure:

Where,

¢ Index shows the index number of the descriptor in the GDT.

e TI(Table Indicator) shows where to search for the descriptor. If it is 0 then search in the
Global Descriptor Table(GDT) otherwise it will look in Local Descriptor Table(LDT).

e And RPL is Requester's Privilege Level.

Every segment register has a visible and hidden part.

e Visible - Segment Selector is stored here
e Hidden - Segment Descriptor(base, limit, attributes, flags)

The following steps are needed to get the physical address in the protected mode:

¢ The segment selector must be loaded in one of the segment registers

e The CPU tries to find a segment descriptor by GDT address + Index from selector and
load the descriptor into the hidden part of the segment register

e Base address (from segment descriptor) + offset will be the linear address of the
segment which is the physical address (if paging is disabled).

Schematically it will look like this:



selector = offset

— target

segment

- descriptor

GDT

GDTR

The algorithm for the transition from real mode into protected mode is:

Disable interrupts

Describe and load GDT with 1gdt instruction
Set PE (Protection Enable) bit in CRO (Control Register 0)
Jump to protected mode code

We will see the complete transition to protected mode in the linux kernel in the next part, but
before we can move to protected mode, we need to do some more preparations.

Let's look at arch/x86/boot/main.c. We can see some routines there which perform keyboard
initialization, heap initialization, etc... Let's take a look.

Copying boot parameters into the "zeropage"

We will start from the main routine in "main.c". First function which is called in main is
copy_boot params(void) . It copies the kernel setup header into the field of the boot_params
structure which is defined in the arch/x86/include/uapi/asm/bootparam.h.
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The boot_params structure contains the struct setup_header hdr field. This structure
contains the same fields as defined in linux boot protocol and is filled by the boot loader and
also at kernel compile/build time. copy_boot_params does two things:

1. Copies hdr from header.S to the boot_params structure in setup_header field

2. Updates pointer to the kernel command line if the kernel was loaded with the old
command line protocol.

Note that it copies hdr with memcpy function which is defined in the copy.S source file.
Let's have a look inside:

GLOBAL (memcpy)
pushw  %si
pushw  %di
movw %ax, %di
movw %dx, %si
pushw  %cXx
shrw $2, %cx
rep; movsl
popw %C X
andw $3, %cXx
rep; movsb

popw %di

popw %si

retl
ENDPROC (memcpy )

Yeah, we just moved to C code and now assembly again :) First of all we can see that
memcpy and other routines which are defined here, start and end with the two macros:
GLoBAL and ENDPRoc . GLOBAL is described in arch/x86/include/asm/linkage.h which

defines globl directive and the label for it. enpproc is described in include/linux/linkage.h

which marks the name symbol as a function name and ends with the size of the name
symbol.

Implementation of memcpy is easy. At first, it pushes values from the si and di registers
to the stack to preserve their values because they will change during the memcpy . memcpy
(and other functions in copy.S) use fastcall calling conventions. So it gets its incoming
parameters from the ax , dx and cx registers. Calling memcpy looOks like this:

(&boot_params.hdr, &hdr, sizeof hdr);

So,

e ax will contain the address of the boot_params.hdr
e dx will contain the address of hdr
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e cx Wwill contain the size of hdr in bytes.

memcpy puts the address of boot_params.hdr into di and saves the size on the stack.
After this it shifts to the right on 2 size (or divide on 4) and copies from si to di by 4
bytes. After this we restore the size of nhdr again, align it by 4 bytes and copy the rest of the
bytes from si to di byte by byte (if there is more). Restore si and di values from the
stack in the end and after this copying is finished.

Console initialization

After nhdr is copied into boot_params.hdr , the next step is console initialization by calling
the console_init function which is defined in arch/x86/boot/early serial_console.c.

It tries to find the earlyprintk option in the command line and if the search was successful,
it parses the port address and baud rate of the serial port and initializes the serial port. Value
of earlyprintk command line option can be one of these:

e serial,0x3f8,115200
e serial,ttyS0,115200
e ttyS0,115200

After serial port initialization we can see the first output:

if (cmdline_find_option_bool("debug"))
("early console in setup code\n");

The definition of puts isin tty.c. As we can see it prints character by character in a loop by
calling the putchar function. Let's look into the putchar implementation:

void __attribute__ ((section(".inittext"))) (int ch)
{
if (ch == '"\n'")
('\r');

bios_putchar(ch);

if (early_serial_base !'= 0)
serial_putchar(ch);

__attribute_ ((section(".inittext"))) means that this code will be in the .inittext
section. We can find it in the linker file setup.Id.
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First of all, putchar checks forthe \n symbol and if it is found, prints \r before. After
that it outputs the character on the VGA screen by calling the BIOS with the ex1e interrupt
call:

static void __attribute__ ((section(".inittext"))) bios_putchar(int ch)

{

struct biosregs ireg;

initregs(&iregq);

ireg.bx = ;
ireg.cx = H
ireg.ah = H

ireg.al = ch;
intcall( , &ireg, E;

Here initregs takesthe biosregs structure and first fills biosregs with zeros using the
memset function and then fills it with register values.

(reg, 0, sizeof *reg);
reg->eflags |= X86_EFLAGS_CF;
ds();
ds();
reg->fs = fs();
reg->gs = gs();

reg->ds

reg->es

Let's look at the memset implementation:

GLOBAL (memset)
pushw  %di
movw %ax, %di
movzbl %dl, %eax
imull $0x01010101, %eax
pushw  %cXx

shrw $2, %cX
rep; stosl
popw %CX
andw $3, %Cx
rep; stosb
popw %di
retl

ENDPROC (memset)

As you can read above, it uses the fastcall calling conventions like the memcpy function,
which means that the function gets parameters from ax , dx and cx registers.
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Generally memset is like a memcpy implementation. It saves the value of the di register
on the stack and puts the ax value into di which is the address of the biosregs
structure. Next is the movzbl instruction, which copies the d1 value to the low 2 bytes of
the eax register. The remaining 2 high bytes of eax will be filled with zeros.

The next instruction multiplies eax with oexe1010101 . It needs to because memset Wwill copy
4 bytes at the same time. For example, we need to fill a structure with ex7 with memset.
eax Will contain oexeeeeeee7 value in this case. So if we multiply eax with oxe1e1e101 , we
will get eox07070707 and now we can copy these 4 bytes into the structure. memset uses
rep; stosl instructions for copying eax into es:di .

The rest of the memset function does almost the same as memcpy .

After the biosregs structure is filled with memset , bios_putchar calls the 0x10 interrupt
which prints a character. Afterwards it checks if the serial port was initialized or not and
writes a character there with serial putchar and inb/outb instructions if it was set.

Heap initialization
After the stack and bss section were prepared in header.S (see previous part), the kernel
needs to initialize the heap with the init heap function.

First of all init_heap checks the can use HEar flag from the 1oadflags in the kernel setup
header and calculates the end of the stack if this flag was set:

char *stack_end;
if (boot_params.hdr.loadflags & CAN_USE_HEAP) {
asm("leal %P1(%%esp),%0"
: "=r" (stack_end) : "i" (-STACK_SIZE));

or in other words stack_end = esp - STACK_SIZE .

Then there is the heap_end calculation:

heap_end = (char *)((size_t)boot_params.hdr.heap_end_ptr + );

which means heap_end_ptr or _end + 512 ( ex200h ). The last check is whether heap_end
is greater than stack_end . Ifitis then stack_end is assigned to heap_end to make them
equal.

Now the heap is initialized and we can use it using the ceT_HEar method. We will see how it
is used, how to use it and how the it is implemented in the next posts.
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CPU validation

The next step as we can see is cpu validation by validate cpu from arch/x86/boot/cpu.c.

It calls the check cpu function and passes cpu level and required cpu level to it and checks
that the kernel launches on the right cpu level.

check_cpu(&cpu_level, &req_level, &err_flags);
if (cpu_level < reqg_level) {

return ;

check_cpu checks the cpu's flags, presence of long mode in case of x86_64(64-bit) CPU,
checks the processor's vendor and makes preparation for certain vendors like turning off
SSE+SSE2 for AMD if they are missing, etc.

Memory detection

The next step is memory detection by the detect memory function. detect_memory basically
provides a map of available RAM to the cpu. It uses different programming interfaces for
memory detection like oxe820 , oxese1 and oexss . We will see only the implementation of
0xE820 here.

Let's look into the detect_memory_es20 implementation from the arch/x86/boot/memory.c
source file. First of all, the detect_memory_es820 function initializes the biosregs structure as
we saw above and fills registers with special values for the oxes20 call:

initregs(&iregq);
ireg.ax = 0xe820;
ireg.cx = sizeof buf;

ireg.edx = SMAP;
ireg.di = (size_t)&buf;

e ax contains the number of the function (0xe820 in our case)

e cx register contains size of the buffer which will contain data about memory
e edx must contain the smap magic number

® es:di must contain the address of the buffer which will contain memory data
e ebx has to be zero.
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Next is a loop where data about the memory will be collected. It starts from the call of the
ox15 BIOS interrupt, which writes one line from the address allocation table. For getting the

next line we need to call this interrupt again (which we do in the loop). Before the next call
ebx must contain the value returned previously:

intcall( , &ireg, &oregq);
ireg.ebx = oreg.ebx;

Ultimately, it does iterations in the loop to collect data from the address allocation table and
writes this data into the e82eentry array:

¢ start of memory segment
e size of memory segment
e type of memory segment (which can be reserved, usable and etc...).

You can see the result of this in the dmesg output, something like:

.000000] e820: BIOS-provided physical RAM map:

.000000] BINS-e820: [mem OXxOO000OOOOOOOEOOO0-OXOOOOEEOOOOEITLTT] usable
.000000] BIOS-e€820: [mem OXO000OOOOOO009fCcOO-OXOOOOOEOOOOEIFFFT] reserved
.000000] BIOS-e820: [mem OXO000OOOOOOOTOOOO-OXOOOO0CEEOOOFFFff] reserved
.000000] BIOS-e820: [mem OXO000OOOOOO01OO000-OXxO00000CE3Ffdffff] usable
.000000] BIOS-e820: [mem OX000000003ffeOOOO-OXO00000CO3Fffffff] reserved
.000000] BIOS-e820: [mem OX000000OOFffcOOOO-OXO0000CCOFFffffff] reserved

e I e B e T e T e B e |
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Keyboard initialization

The next step is the initialization of the keyboard with the call of the keyboard init()
function. At first keyboard_init initializes registers using the initregs function and calling
the 0x16 interrupt for getting the keyboard status.

initregs(&iregq);
ireg.ah = ;
intcall( , &ireg, &oreg);

boot_params.kbd_status = oreg.al;

After this it calls 0x16 again to set repeat rate and delay.

ireg.ax = 7
intcall( , &ireg, );
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Querying

The next couple of steps are queries for different parameters. We will not dive into details
about these queries, but will get back to it in later parts. Let's take a short look at these
functions:

The query mca routine calls the 0x15 BIOS interrupt to get the machine model number, sub-
model number, BIOS revision level, and other hardware-specific attributes:

int void

struct biosregs ireg, oreg;
ulé len;

initregs(&iregq);
ireg.ah = 5
intcall( , &ireg, &oreg);

if (oreg.eflags & X86_EFLAGS_CF)
return B

set_fs(oreg.es);
len = rdfsi6(oreg.bx);

if (len > sizeof(boot_params.sys_desc_table))
len = sizeof(boot_params.sys_desc_table);

copy_from_fs(&boot_params.sys_desc_table, oreg.bx, len);
return 0;

It fills the ah register with exce and calls the oxis BIOS interruption. After the interrupt
execution it checks the carry flag and if it is set to 1, the BIOS doesn't support MCA. If carry
flag is setto 0, Es:Bx will contain a pointer to the system information table, which looks like
this:
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Offset Size Description

00h WORD number of bytes following

02h BYTE model (see #00515)

03h BYTE submodel (see #00515)

04h BYTE BIOS revision: 0 for first release, 1 for 2nd, etc.
05h BYTE feature byte 1 (see #00510)
06h BYTE feature byte 2 (see #00511)
07h BYTE feature byte 3 (see #00512)
08h BYTE feature byte 4 (see #00513)

09h BYTE feature byte 5 (see #00514)

---AWARD BIOS---

OAh N BYTEs AWARD copyright notice

---Phoenix BIOS---

@Ah BYTE 2?2 (06h)

0Bh BYTE major version

oCh BYTE minor version (BCD)

ODh 4 BYTEs  ASCIZ string "PTL" (Phoenix Technologies Ltd)
---Quadram Quad386- - -

OAh 17 BYTEs  ASCII signature string "Quadram Quad386XT"
---Toshiba (Satellite Pro 435CDS at least)---

0Ah 7 BYTEs signature "TOSHIBA"

11h BYTE 2?2 (8h)

12h BYTE ??? (E7h) product ID??? (guess)

13h 3 BYTEs "JPN"

Next we call the set_fs routine and pass the value of the es register to it. The
implementation of set_fs is pretty simple:

static inline void set_fs(ul6 seg)

{

asm volatile("movw %0,%%fs" : : "rm" (seg));

This function contains inline assembly which gets the value of the seg parameter and puts
it into the fs register. There are many functions in boot.h like set_fs , for example
set_gs , fs, gs forreading avalueinitetc...

At the end of query mca it just copies the table pointed to by es:bx to the

boot_params.sys_desc_table .

The next step is getting Intel SpeedStep information by calling the query_ist function. First
of all it checks the CPU level and if it is correct, calls exi5 for getting info and saves the
result to boot_params .

The following query _apm_bios function gets Advanced Power Management information from
the BIOS. query apm_bios calls the oxi5 BIOS interruption too, but with ah = ox53 to
check apm installation. After the oxi5 execution, query_apm_bios functions check the pm
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signature (it must be oex504d ), carry flag (it must be 0 if Apm supported) and value of the
cx register (if it's 0x02, protected mode interface is supported).

Next it calls exi5 again, but with ax = exs3e4 for disconnecting the apm interface and
connecting the 32-bit protected mode interface. In the end it fills boot_params.apm_bios_info
with values obtained from the BIOS.

Note that query_apm bios will be executed only if CONFIG_APM OF CONFIG_APM_MODULE was
set in the configuration file:

#if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE)
query_apm_bios();
#endif

The last is the query edd function, which queries Enhanced pisk prive information from the
BIOS. Let's look into the query_edd implementation.

First of all it reads the edd option from the kernel's command line and if it was setto off
then query_edd justreturns.

If EDD is enabled, query_edd goes over BIOS-supported hard disks and queries EDD
information in the following loop:

for (devno = ; devno < +EDD_MBR_SIG_MAX; devno++) {
if ('!'get_edd_info(devno, &ei) && boot_params.eddbuf_entries < EDDMAXNR) {
(edp, &ei, sizeof ei);
edp++;
boot_params.eddbuf_entries++;

where oxge is the first hard drive and the value of Epp_mBR_s16_mAx macro is 16. It collects
data into the array of edd_info structures. get_edd_info checks that EDD is present by
invoking the ex13 interrupt with ah as oex41 and if EDD is present, get_edd_info again
calls the eox13 interrupt, but with ah as oex4s and si containing the address of the buffer
where EDD information will be stored.

Conclusion


https://github.com/torvalds/linux/blob/master/arch/x86/boot/edd.c#L122
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt#L1023
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This is the end of the second part about Linux kernel insides. In the next part we will see
video mode setting and the rest of preparations before transition to protected mode and
directly transitioning into it.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me a PR to linux-insides.

Links

e Protected mode

e Protected mode

e Long mode

* Nice explanation of CPU Modes with code

e How to Use Expand Down Segments on Intel 386 and Later CPUs
e carlyprintk documentation

e Kernel Parameters

e Serial console

e Intel SpeedStep

e APM

e EDD specification

e TLDP documentation for Linux Boot Process (old)
e Previous Part
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http://lxr.free-electrons.com/source/Documentation/x86/earlyprintk.txt
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/Documentation/serial-console.txt
http://en.wikipedia.org/wiki/SpeedStep
https://en.wikipedia.org/wiki/Advanced_Power_Management
http://www.t13.org/documents/UploadedDocuments/docs2004/d1572r3-EDD3.pdf
http://www.tldp.org/HOWTO/Linux-i386-Boot-Code-HOWTO/setup.html

Kernel booting process. Part 3.

Video mode initialization and transition to
protected mode

This is the third part of the kernel booting process series. In the previous part, we stopped
right before the call of the set_video routine from main.c. In this part, we will see:

¢ video mode initialization in the kernel setup code,
e preparation before switching into protected mode,
¢ transition to protected mode

NOTE If you don't know anything about protected mode, you can find some information
about it in the previous part. Also there are a couple of links which can help you.

As | wrote above, we will start from the set_video function which is defined in the
arch/x86/boot/video.c source code file. We can see that it starts by first getting the video
mode from the boot_params.hdr structure:

ul6é mode = boot_params.hdr.vid_mode;

which we filled in the copy_boot_params function (you can read about it in the previous post).
vid_mode is an obligatory field which is filled by the bootloader. You can find information
about it in the kernel boot protocol:

offset Proto Name Meaning
/Size
01FA/2 ALL vid_mode Video mode control

As we can read from the linux kernel boot protocol:

vga=<mode>
<mode> here is either an integer (in C notation, either
decimal, octal, or hexadecimal) or one of the strings
"normal" (meaning OXFFFF), "ext" (meaning OXFFFE) or "ask"
(meaning OXFFFD). This value should be entered into the
vid_mode field, as it is used by the kernel before the command
line is parsed.


https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L181
https://github.com/torvalds/linux/blob/master/arch/x86/boot/video.c#L315

So we can add vga option to the grub or another bootloader configuration file and it will
pass this option to the kernel command line. This option can have different values as
mentioned in the description. For example, it can be an integer number oxFrFp or ask . If
you pass ask to vga , you will see a menu like this:

SeaBI05 (version 1.7.5-20140531_171129-lamiak)

iPXE (http:/-/ipxe.org) 00:03.0 C980 PCIZ.10 PnP PMM+3FF90nA40+3FEFOA40 CI50

Booting from ROM...
early console in setup code
Press {ENTER> to =see wvideo modes awvailable, <SPACE> to continue, or wait 30 =ec
Mode: Resolution: Type:
B Foo 8OxZ5 UGA
Fo1 80x50 UGaA
Foz 80x43 UGA
Fo3 80xZ8 UGA
Fos5 80x30 UGaA
Fob 80x34 UGA

200 10xZ5 UESA
201 40x25 UESA
202 8025 UEShA
203 8OxZ5 UESA
207 80x25 UESA

1
2
3
4
o
6 FOY 80xb0 UGA
?
(]
9
a
b
E

nter a video mode or "scan” to scan for additional modes:

which will ask to select a video mode. We will look at its implementation, but before diving
into the implementation we have to look at some other things.

Kernel data types

Earlier we saw definitions of different data types like uie etc. in the kernel setup code. Let's
look at a couple of data types provided by the kernel:

Type char short int long u8 u16 u32 u64
Size 1 2 4 8 1 2 4 8

If you the read source code of the kernel, you'll see these very often and so it will be good to
remember them.

Heap API

After we get vid mode from boot params.hdr inthe set video function, we can see the
call to the RreseT_HEAP function. RESET_HEAP is a macro which is defined in boot.h. It is
defined as:


https://github.com/torvalds/linux/blob/master/arch/x86/boot/boot.h#L199

#define RESET_HEAP() ((void *)( HEAP = _end ))

If you have read the second part, you will remember that we initialized the heap with the
init_heap function. We have a couple of utility functions for heap which are defined in
boot.h . They are:

#define RESET_HEAP()

As we saw just above, it resets the heap by setting the Heap variable equal to _end , where
_end isjust extern char _end[];

Next is the GET_HEAP macro:

#define GET_HEAP(type, n) \
((type *)__get_heap(sizeof(type),__alignof__ (type), (n)))
for heap allocation. It calls the internal function _ get_heap with 3 parameters:

¢ size of a type in bytes, which need be allocated
e _ alignof_ (type) shows how variables of this type are aligned
e n tells how many items to allocate

Implementation of _ get_heap is:

static inline char *__get_heap(size_t s, size_t a, size_t n)

{
char *tmp;
HEAP = (char *)(((size_t)HEAP+(a-1)) & ~(a-1));
tmp = HEAP;
HEAP += s*n;
return tmp;
}

and further we will see its usage, something like:

saved.data = GET_HEAP(ul6, saved.x * saved.y);

Let's try to understand how _ get_heap works. We can see here that Heap (which is equal
to _end after ReseT_HEAP() ) is the address of aligned memory according to the a
parameter. After this we save the memory address from Heap to the tmp variable, move

HEAP to the end of the allocated block and return tmp which is the start address of
allocated memory.


https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L116

And the last function is:

static inline bool

{
return (int)(heap_end - HEAP) >= (int)n;

which subtracts value of the Heap from the heap_end (we calculated it in the previous part)
and returns 1 if there is enough memory for n .

That's all. Now we have a simple API for heap and can setup video mode.

Set up video mode

Now we can move directly to video mode initialization. We stopped at the ReseT_Heapr() call
in the set_video function. Next is the call to store_mode_params which stores video mode
parameters in the boot_params.screen_info structure which is defined in
include/uapi/linux/screen_info.h.

If we look at the store_mode_params function, we can see that it starts with the call to the
store_cursor_position function. As you can understand from the function name, it gets
information about cursor and stores it.

First of all store_cursor_position initializes two variables which have type biosregs with
AH = ox3 , and calls exie BIOS interruption. After the interruption is successfully executed,
it returns row and column in the oL and bpH registers. Row and column will be stored in
the orig_x and orig_y fields from the boot_params.screen_info structure.

After store_cursor_position is executed, the store_video_mode function will be called. It
just gets the current video mode and stores it in boot_params.screen_info.orig_video_mode .

After this, it checks the current video mode and sets the video_segment . After the BIOS
transfers control to the boot sector, the following addresses are for video memory:

OXxB0O0OO : OXO000 32 Kb Monochrome Text Video Memory
OXxB800 : OX0000 32 Kb Color Text video Memory

So we set the video_segment variable to exeeee if the current video mode is MDA, HGC, or
VGA in monochrome mode and to exssee if the current video mode is in color mode. After
setting up the address of the video segment, font size needs to be stored in

boot_params.screen_info.orig_video_points With:


https://github.com/0xAX/linux/blob/master/include/uapi/linux/screen_info.h

set_fs(0);
font_size = rdfsi16( );
boot_params.screen_info.orig_video_points = font_size;

First of all we put 0 in the Fs register with the set_fs function. We already saw functions
like set_fs inthe previous part. They are all defined in boot.h. Next we read the value
which is located at address oex485 (this memory location is used to get the font size) and

save the font size in boot_params.screen_info.orig_video_points .

rdfsi6(0x44a);
(adapter == ADAPTER_CGA) ? 25 : rdfs8(0x484)+1;

<
1

Next we get the amount of columns by address ex44a and rows by address ox484 and
store them in boot_params.screen_info.orig_video_cols and

boot_params.screen_info.orig_video_lines . After this, execution of store_mode_params is
finished.

Next we can see the save_screen function which just saves screen content to the heap.
This function collects all data which we got in the previous functions like rows and columns
amount etc. and stores it in the saved_screen structure, which is defined as:

static struct saved_screen {
int x, vy;
int curx, cury;
ulé *data;

} saved;

It then checks whether the heap has free space for it with:

if ('heap_free(saved.x*saved.y*sizeof(ul16)+512))
return;

and allocates space in the heap if it is enough and stores saved_screen init.

The next call is probe_cards(0) from arch/x86/boot/video-mode.c. It goes over all
video_cards and collects the number of modes provided by the cards. Here is the interesting
moment, we can see the loop:

for (card = video_cards; card < video_cards_end; card++) {


https://github.com/0xAX/linux/blob/master/arch/x86/boot/boot.h
https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L33

but video_cards is not declared anywhere. Answer is simple: Every video mode presented
in the x86 kernel setup code has definition like this:

static __videocard video_vga = {

.card_name = "VGA",
.probe = vga_probe,
.set_mode = vga_set_mode,

3

where _ videocard iS a macro:

#define _ videocard struct card_info __attribute__ ((used,section(".videocards")))

which means that card_info structure:

struct card_info {
const char *card_name;
int (*set_mode)(struct mode_info *mode);
int (*probe)(void);
struct mode_info *modes;
int nmodes;
int unsafe;
ul6é xmode_first;
ul6é xmode_n;

be

is inthe .videocards segment. Let's look in the arch/x86/boot/setup.ld linker script, where
we can find:

.videocards : {
video_cards = .;
*(.videocards)
video_cards_end = .;

It means that video_cards is just a memory address and all card_info structures are

placed in this segment. It means that all card_info structures are placed between
video_cards and video_cards_end , SO we can use it in a loop to go over all of it. After
probe_cards executes we have all structures like static _ videocard video_vga Wwith filled
nmodes (number of video modes).

After probe_cards execution is finished, we move to the main loop in the set_video
function. There is an infinite loop which tries to set up video mode with the set_mode
function or prints a menu if we passed vid_mode=ask to the kernel command line or video


https://github.com/0xAX/linux/blob/master/arch/x86/boot/setup.ld

mode is undefined.

The set_mode function is defined in video-mode.c and gets only one parameter, mode ,
which is the number of video modes (we got it from the menu or in the start of setup_video ,
from the kernel setup header).

The set_mode function checks the mode and calls the raw_set _mode function. The
raw_set_mode calls the set_mode function for the selected card i.e. card->set_mode(struct
mode_info*) . We can get access to this function from the card_info structure. Every video
mode defines this structure with values filled depending upon the video mode (for example
for vga itisthe video vga.set_mode function. See above example of card_info structure
for vga ). video_vga.set_mode iS vga_set_mode , Which checks the vga mode and calls the

respective function:

static int struct

{

vga_set_basic_mode();

force_x = mode->x;

force_y = mode->y;

switch (mode->mode) {

case VIDEO_80x25:
break;

case VIDEO_8POINT:
vga_set_8font();
break;

case VIDEO_80x43:
vga_set_80x43();
break;

case VIDEO_80x28:
vga_set_14font();
break;

case VIDEO_80x30:
vga_set_80x30();
break;

case VIDEO_80x34:
vga_set_80x34();
break;

case VIDEO_80x60:
vga_set_80x60();
break;

}

return 0;

Every function which sets up video mode just calls the exie BIOS interrupt with a certain
value in the aH register.


https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L147

After we have set video mode, we pass it to boot_params.hdr.vid_mode .

Next vesa store_edid is called. This function simply stores the EDID (Extended Display
Identification Data) information for kernel use. After this store_mode_params is called again.
Lastly, if do_restore is set, the screen is restored to an earlier state.

After this we have set video mode and now we can switch to the protected mode.

Last preparation before transition into
protected mode

We can see the last function call - go_to_protected _mode -in main.c. As the comment says:
Do the last things and invoke protected mode , SO let's see these last things and switch into
protected mode.

go_to_protected_mode is defined in arch/x86/boot/pm.c. It contains some functions which
make the last preparations before we can jump into protected mode, so let's look at it and try
to understand what they do and how it works.

First is the call to the realmode_switch_hook functionin go_to_protected_mode . This function
invokes the real mode switch hook if it is present and disables NMI. Hooks are used if the
bootloader runs in a hostile environment. You can read more about hooks in the boot
protocol (see ADVANCED BOOT LOADER HOOKS).

The realmode_switch hook presents a pointer to the 16-bit real mode far subroutine which
disables non-maskable interrupts. After realmode_switch hook (it isn't present for me) is
checked, disabling of Non-Maskable Interrupts(NMI) occurs:

asm volatile("cli");
outb(0x80, 0x70); /* Disable NMI */
io_delay();

At first there is an inline assembly instruction with a c1i instruction which clears the
interrupt flag ( 1r ). After this, external interrupts are disabled. The next line disables NMI
(non-maskable interrupt).

An interrupt is a signal to the CPU which is emitted by hardware or software. After getting
the signal, the CPU suspends the current instruction sequence, saves its state and transfers
control to the interrupt handler. After the interrupt handler has finished it's work, it transfers
control to the interrupted instruction. Non-maskable interrupts (NMI) are interrupts which are
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always processed, independently of permission. It cannot be ignored and is typically used to
signal for non-recoverable hardware errors. We will not dive into details of interrupts now,
but will discuss it in the next posts.

Let's get back to the code. We can see that second line is writing exse (disabled bit) byte to
ox7e (CMOS Address register). After that, a call to the io_delay function occurs.
io_delay causes a small delay and looks like:

static inline void io_delay(void)

{
const ul6 DELAY_PORT = 0x80;

asm volatile("outb %%al,%@" : : "dN" (DELAY_PORT));

Outputting any byte to the port exse should delay exactly 1 microsecond. So we can write
any value (value from AL register in our case) to the eoxse port. After this delay
realmode_switch_hook function has finished execution and we can move to the next function.

The next function is enable_a20 , which enables A20 line. This function is defined in
arch/x86/boot/a20.c and it tries to enable the A20 gate with different methods. The first is the

a20_test_short function which checks if A20 is already enabled or not with the a2e_test
function:

static int int

{
int ok = 0;
int saved, ctr;

set_fs( );
set_gs( )

saved = ctr = rdfs32(A20_TEST_ADDR);

while (loops--) {
wrfs32(++ctr, A20_TEST_ADDR);
io_delay();
ok = rdgs32(A20_TEST_ADDR+ ) N ctr;
if (ok)
break;

}

wrfs32(saved, A20_TEST_ADDR);
return ok;


http://en.wikipedia.org/wiki/A20_line
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First of all we put exeeee inthe Frs registerand oexffff inthe es register. Next we read
the value in address A2e_TesT_aAbbr (itis ox2ee ) and put this value into the saved variable
and ctr .

Next we write an updated ctr value into fs:gs with the wrfs32 function, then delay for
1ms, and then read the value from the s register by address A2e_TEST ADDR+0x10 , if it's
not zero we already have enabled the A20 line. If A20 is disabled, we try to enable it with a
different method which you can find in the a2e.c . For example with call of exis5 BIOS
interrupt with AH=ex2041 etc.

If the enabled_a2e function finished with fail, print an error message and call function die .
You can remember it from the first source code file where we started -
arch/x86/boot/header.S:

die:
hlt
jmp die
.size die, .-die

After the A20 gate is successfully enabled, the reset _coprocessor function is called:

outb (0, );
outb(o, )i

This function clears the Math Coprocessor by writing e to exfe and then resets it by
writing o to exf1 .

After this, the mask_all_interrupts function is called:

outb( , );
outb( / )i

This masks all interrupts on the secondary PIC (Programmable Interrupt Controller) and
primary PIC except for IRQ2 on the primary PIC.

And after all of these preparations, we can see the actual transition into protected mode.

Set up Interrupt Descriptor Table

Now we set up the Interrupt Descriptor table (IDT). setup_idt :


https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S

static void setup_idt(void)

{
static const struct gdt_ptr null_idt = {0, 0};

asm volatile("lidtl %0" : : "m" (null_idt));

which sets up the Interrupt Descriptor Table (describes interrupt handlers and etc.). For now
the IDT is not installed (we will see it later), but now we just the load IDT with the 1idt1
instruction. null_idt contains address and size of IDT, but now they are just zero.

null_idt isa gdt_ptr structure, it as defined as:

struct gdt_ptr {
ulé len;
u32 ptr;
} __attribute__ ((packed));

where we can see the 16-bit length( 1en ) of the IDT and the 32-bit pointer to it (More details
about the IDT and interruptions will be seen in the next posts). __attribute_ ((packed))
means that the size of gdt_ptr is the minimum required size. So the size of the gdt_ptr
will be 6 bytes here or 48 bits. (Next we will load the pointer to the gdt_ptr tothe cpTR
register and you might remember from the previous post that it is 48-bits in size).

Set up Global Descriptor Table

Next is the setup of the Global Descriptor Table (GDT). We can see the setup_gdt function
which sets up GDT (you can read about it in the Kernel booting process. Part 2.). There is a
definition of the boot_gdt array in this function, which contains the definition of the three
segments:

static const u64 boot_gdt[] __attribute_ ((aligned(16))) = {

[GDT_ENTRY_BOOT_CS] = GDT_ENTRY( , 0, ),
[GDT_ENTRY_BOOT_DS] = GDT_ENTRY( , 0, ),
[GDT_ENTRY_BOOT_TSS] = GDT_ENTRY( , , ),

i

For code, data and TSS (Task State Segment). We will not use the task state segment for
now, it was added there to make Intel VT happy as we can see in the comment line (if you're
interested you can find commit which describes it - here). Let's look at boot_gdt . First of all
note that it has the __attribute_ ((aligned(16))) attribute. It means that this structure will
be aligned by 16 bytes. Let's look at a simple example:


https://github.com/torvalds/linux/commit/88089519f302f1296b4739be45699f06f728ec31

#include <stdio.h>
struct aligned {
int a;

}__attribute_ ((aligned(16)));

struct nonaligned {

int b;
}i
int void
{
struct aligned a,;
struct nonaligned na;
("Not aligned - %zu \n", sizeof(na));
("Aligned - %zu \n", sizeof(a));
return 0,
}

Technically a structure which contains one int field must be 4 bytes, but here aligned
structure will be 16 bytes:

$ gcc test.c -o test && test
Not aligned - 4
Aligned - 16

GDT_ENTRY_B0OT_CS has index - 2 here, GDT_ENTRY_BOOT_DS iS GDT_ENTRY_BOOT_CS + 1 and
etc. It starts from 2, because first is a mandatory null descriptor (index - 0) and the second is
not used (index - 1).

GDT_ENTRY iS @ macro which takes flags, base and limit and builds GDT entry. For example
let's look at the code segment entry. epT_EnTRY takes following values:

e base-0
e limit - Oxfffff
e flags - Oxc09b

What does this mean? The segment's base address is 0, and the limit (size of segment) is -
oxffff (1 MB). Let's look at the flags. Itis exceob and it will be:

1100 0000 1001 1011

in binary. Let's try to understand what every bit means. We will go through all bits from left to
right:



(G) granularity bit

(D) if 0 16-bit segment; 1 = 32-bit segment
- (L) executed in 64 bit mode if 1

e 0 - (AVL) available for use by system software
e 0000 - 4 bit length 19:16 bits in the descriptor
e 1-(P)segment presence in memory

1
e 1
0

e 00 - (DPL) - privilege level, 0 is the highest privilege
e 1-(S) code or data segment, not a system segment
e 101 - segment type execute/read/

e 1 -accessed bit

You can read more about every bit in the previous post or in the Intel® 64 and |A-32
Architectures Software Developer's Manuals 3A.

After this we get the length of the GDT with:

gdt.len = sizeof(boot_gdt)-1;

We get the size of boot_gdt and subtract 1 (the last valid address in the GDT).

Next we get a pointer to the GDT with:

gdt.ptr = (u32)&boot_gdt + (ds() << 4);

Here we just get the address of boot_gdt and add it to the address of the data segment left-
shifted by 4 bits (remember we're in the real mode now).

Lastly we execute the 1gdt1 instruction to load the GDT into the GDTR register:

asm volatile("lgdtl %0" : : "m" (gdt));

Actual transition into protected mode

This is the end of the go_to_protected_mode function. We loaded IDT, GDT, disable
interruptions and now can switch the CPU into protected mode. The last step is calling the
protected_mode_jump function with two parameters:

protected_mode_jump(boot_params.hdr.code32_start, (u32)&boot_params + (ds() << 4));

which is defined in arch/x86/boot/pmjump.S. It takes two parameters:


http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S#L26

e address of protected mode entry point
e address of boot_params

Let's look inside protected mode_jump . As | wrote above, you can find it in
arch/x86/boot/pmjump.s . The first parameter will be in the eax register and second is in

edx .

First of all we put the address of boot_params inthe esi register and the address of code
segment register cs (0x1000) in bx . After this we shift bx by 4 bits and add the address
of label 2 to it (we will have the physical address of label 2 inthe bx after this) and jump
to label 1 . Next we put data segment and task state segmentinthe cs and di registers
with:

movw $__BOOT_DS, %cx
movw $__BOOT_TSS, %di

As you can read above ebT_ENTRY_B00T _cs has index 2 and every GDT entry is 8 byte, so

cs willbe 2 * 8 = 16 BOOT_DS is 24 etc.

Next we set the pe (Protection Enable) bit in the cre control register:

movl %cro, %edx
orb $X86_CRO_PE, %dl
mov1l %edx, %cro

and make a long jump to protected mode:

.byte 0x66, Oxea
2: .long in_pm32
.word __BOOT_CS

where

e ox66 is the operand-size prefix which allows us to mix 16-bit and 32-bit code,
e oxea -isthejump opcode,

e in pm32 is the segment offset

e oot _cs is the code segment.

After this we are finally in the protected mode:

.code32
.section ".text32", "ax"



Let's look at the first steps in protected mode. First of all we set up the data segment with:

movl %ecx, %ds
movl %ecx, %es
movl %ecx, %fs
movl %ecx, %gs
movl %ecx, %ss

If you paid attention, you can remember that we saved $_ BooT_ps inthe cx register. Now
we fill it with all segment registers besides c¢s ( cs is already _ BooT_cs ). Next we zero
out all general purpose registers besides eax with:

xorl %ecx, %ecx
xorl %edx, %edx
xorl %ebx, %ebx

xorl %ebp, %ebp
xorl %edi, %edi

And jump to the 32-bit entry point in the end:

jmpl *%eax

Remember that eax contains the address of the 32-bit entry (we passed it as first
parameter into protected_mode_jump ).

That's all. We're in the protected mode and stop at it's entry point. We will see what happens
next in the next part.

Conclusion

This is the end of the third part about linux kernel insides. In next part we will see first steps
in the protected mode and transition into the long mode.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes, please send me a PR with corrections at

linux-insides.

Links

e VGA


http://en.wikipedia.org/wiki/Long_mode
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals
http://en.wikipedia.org/wiki/Video_Graphics_Array

Video mode initialization and transition to protected mode

¢ VESA BIOS Extensions
e Data structure alignment
e Non-maskable interrupt
e A20

e GCC designated inits

e GCC type attributes

e Previous part
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https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Designated-Inits.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html

Kernel booting process. Part 4.

Transition to 64-bit mode

This is the fourth part of the kernel booting process where we will see first steps in
protected mode, like checking that cpu supports long mode and SSE, paging, initializes the
page tables and at the end we will discus the transition to long mode.

NOTE: there will be much assembly code in this part, so if you are not familiar with
that, you might want to consult a book about it

In the previous part we stopped at the jump to the 32-bit entry point in
arch/x86/boot/pmjump.S:

jmpl *%eax

You will recall that eax register contains the address of the 32-bit entry point. We can read
about this in the linux kernel x86 boot protocol:

When using bzImage, the protected-mode kernel was relocated to 0x100000

Let's make sure that it is true by looking at the register values at the 32-bit entry point:

eax 0X100000 1048576
ecx 0x0 0

edx 0x0 0

ebx 0x0 0

esp Ox1ff5c Ox1ff5c
ebp 0x0 0x0

esi 0x14470 83056

edi 0x0 0

eip 0X100000 0X100000
eflags 0x46 [ PF ZF ]
cs 0x10 16

Ss 0x18 24

ds 0x18 24

es 0x18 24

fs 0x18 24

gs 0x18 24


http://en.wikipedia.org/wiki/Protected_mode
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http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
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https://en.wikipedia.org/wiki/Long_mode
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-3.md
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S
https://www.kernel.org/doc/Documentation/x86/boot.txt

We can see here that cs register contains - exie (as you will remember from the previous
part, this is the second index in the Global Descriptor Table), eip registeris oxieeeee and
base address of all segments including the code segment are zero. So we can get the
physical address, it will be o:0x100000 oOr just exieeeee , as specified by the boot protocol.
Now let's start with the 32-bit entry point.

32-bit entry point

We can find the definition of the 32-bit entry point in the
arch/x86/boot/compressed/head 64.S assembly source code file:

__HEAD
.code3d2
ENTRY(startup_32)

ENDPROC (startup_32)

First of all why compressed directory? Actually bzimage is a gzipped vmlinux + header +
kernel setup code . We saw the kernel setup code in all of the previous parts. So, the main
goal of the head_64.s is to prepare for entering long mode, enter into it and then
decompress the kernel. We will see all of the steps up to kernel decompression in this part.

There were two files in the arch/x86/boot/compressed directory:

e head 32.S
e head 64.S

but we will see only head_64.s because, as you may remember, this book is only xse_64
related; head_32.s is not used in our case. Let's look at
arch/x86/boot/compressed/Makefile. There we can see the following target:

vmlinux-objs-y := $(obj)/vmlinux.lds $(obj)/head_$(BITS).o $(obj)/misc.o \
$(obj)/string.o $(obj)/cmdline.o \
$(obj)/piggy.o $(obj)/cpuflags.o

Note $(obj)/head_$(BITS).o . This means that we will select which file to link based on what
$(BITS) is setto, either head 32.0 or head 64.0. $(B1Ts) is defined elsewhere in
arch/x86/Makefile based on the .config file:


https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
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ifeq ($(CONFIG_X86_32),y)
BITS := 32

else
BITS := 64

endif

Now we know where to start, so let's do it.

Reload the segments if needed

As indicated above, we start in the arch/x86/boot/compressed/head 64.S assembly source
code file. First we see the definition of the special section attribute before the startup_32
definition:

__HEAD
.code32
ENTRY(startup_32)

The _ Heap is macro which is defined in include/linux/init.h header file and expands to the
definition of the following section:

#define __ HEAD .section ".head.text", "ax"

with .head.text name and ax flags. In our case, these flags show us that this section is
executable or in other words contains code. We can find definition of this section in the
arch/x86/boot/compressed/vmlinux.lds.S linker script:

SECTIONS
{
. = 0;
.head.text : {
_head = . ;
HEAD_TEXT
_ehead = . ;


https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
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If you are not familiar with syntax of enu Lb linker scripting language, you can find more
information in the documentation. In short, the . symbol is a special variable of linker -
location counter. The value assigned to it is an offset relative to the offset of the segment. In
our case we assign zero to location counter. This means that that our code is linked to run
from the o offsetin memory. Moreover, we can find this information in comments:

Be careful parts of head_64.S assume startup_32 is at address 0.

Ok, now we know where we are, and now is the best time to look inside the startup_32
function.

In the beginning of the startup_32 function, we can see the c1d instruction which clears
the br bitin the flags register. When direction flag is clear, all string operations like stos,
scas and others will increment the index registers esi or edi . We need to clear direction
flag because later we will use strings operations for clearing space for page tables, etc.

After we have cleared the br bit, next step is the check of the «eep_seements flag from
loadflags kernel setup header field. If you remember we already saw loadflags in the
very first part of this book. There we checked can_use Heap flag to get ability to use heap.
Now we need to check the keep_seemMenTs flag. This flags is described in the linux boot

protocol documentation:

Bit 6 (write): KEEP_SEGMENTS
Protocol: 2.07+
- If 0, reload the segment registers in the 32bit entry point.
- If 1, do not reload the segment registers in the 32bit entry point.
Assume that %cs %ds %ss %es are all set to flat segments with
a base of 0 (or the equivalent for their environment).

So, if the keep_secMENTS bit is not set in the loadflags , we need toreset ds , ss and es
segment registers to a flat segment with base o . That we do:

testb $(1 << 6), BP_loadflags(%esi)

jnz

cli

movl $(__BOOT_DS), %eax
movl %eax, %ds

movl %eax, %es

movl %eax, %Ss

Remember that the _ BooT ps is exis (index of data segment in the Global Descriptor
Table). If keep_seGMENTS is set, we jump to the nearest 1f label or update segment
registers with _ oot _ps if it is not set. It is pretty easy, but here is one interesting moment.


https://sourceware.org/binutils/docs/ld/Scripts.html#Scripts
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If you've read the previous part, you may remember that we already updated these segment
registers right after we switched to protected mode in arch/x86/boot/pmjump.S. So why do
we need to care about values of segment registers again? The answer is easy. The Linux
kernel also has a 32-bit boot protocol and if a bootloader uses it to load the Linux kernel all
code before the startup_32 will be missed. In this case, the startup 32 will be first entry
point of the Linux kernel right after bootloader and there are no guarantees that segment
registers will be in known state.

After we have checked the keep_secMENTS flag and put the correct value to the segment
registers, the next step is to calculate difference between where we loaded and compiled to
run. Remember that setup.1d.s contains following definition: . = o at the start of the

.head.text section. This means that the code in this section is compiled to run from o
address. We can see this in  objdump output:

arch/x86/boot/compressed/vmlinux: file format elf64-x86-64

Disassembly of section .head.text:

0000000000000 <startup_32>:
0: fc cld
1: f6 86 11 02 00 00 40 testb $0x40,0x211(%rsi)

The objdump util tells us that the address of the startup_32 is o . But actually it is not so.
Our current goal is to know where actually we are. It is pretty simple to do in long mode,
because it support rip relative addressing, but currently we are in protected mode. We will
use common pattern to know the address of the startup_32 . We need to define a label and
make a call to this label and pop the top of the stack to a register:

call label
label: pop %reg

After this a register will contain the address of a label. Let's look to the similar code which
search address of the startup_32 in the Linux kernel:

leal (BP_scratch+4) (%esi), %esp
call 1f

1: popl %ebp
subl $1b, %ebp

As you remember from the previous part, the esi register contains the address of the
boot params structure which was filled before we moved to the protected mode. The
boot_params structure contains a special field scratch with offset exie4 . These four bytes
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field will be temporary stack for call instruction. We are getting the address of the

scratch field + 4 bytes and putting it in the esp register. We add 4 bytes to the base of
the Bp_scratch field because, as just described, it will be a temporary stack and the stack
grows from top to down in x8e_64 architecture. So our stack pointer will point to the top of
the stack. Next we can see the pattern that I've described above. We make a call to the 1f
label and put the address of this label to the ebp register, because we have return address
on the top of stack after the ca11 instruction will be executed. So, for now we have an
address of the 1f label and now it is easy to get address of the startup_32 . We just need
to subtract address of label from the address which we got from the stack:

startup_32 (0x0) Fom o +
| |
| |
| |
I I
I I
I I
I I
I I

1f (ox0 + 1f offset) +---------------------- + %ebp - real physical address
I I
I I
fpocccocococococococcococococoooas +

startup_32 is linked to run at address oxe and this means that 1f has the address oxo
+ offset to 1f , approximately ex21 bytes. The ebp register contains the real physical
address of the 1f label. So, if we subtract 1f from the ebp we will get the real physical
address of the startup_32 . The Linux kernel boot protocol describes that the base of the
protected mode kernel is exiee000 . We can verify this with gdb. Let's start the debugger
and put breakpoint to the 1f address, which is ex1eee21 . If this is correct we will see
0x100021 inthe ebp register:


https://www.kernel.org/doc/Documentation/x86/boot.txt
https://en.wikipedia.org/wiki/GNU_Debugger

$ gdb

(gdb)$ target remote :1234
Remote debugging using :1234
0x0000fffe in 2?7 ()

(gdb)$ br *0x100022
Breakpoint 1 at 0x100022
(gdb)$ c

Continuing.

Breakpoint 1, 0x00100022 in ?? ()

(gdb)$ i r

eax 0x18 0x18

ecx 0x0 0x0

edx 0x0 0x0

ebx 0x0 0x0

esp 0x144a8 0x144a8
ebp 0x100021 0x100021
esi 0x142c0 0x142c0
edi 0x0 0x0

eip 0Xx100022 0X100022
eflags 0x46 [ PF ZF ]

cs 0x10 0x10

Ss 0x18 0x18

ds 0x18 0x18

es 0x18 0x18

fs 0x18 0x18

gs 0x18 0x18

If we execute the next instruction, subl $1b, %ebp , we will see:

nexti

ebp 0x100000 0x100000

Ok, that's true. The address of the startup_32 is oxieeeee . After we know the address of
the startup_32 label, we can prepare for the transition to long mode. Our next goal is to
setup the stack and verify that the CPU supports long mode and SSE.

Stack setup and CPU verification

We could not setup the stack while we did not know the address of the startup_32 label.
We can imagine the stack as an array and the stack pointer register esp must point to the
end of this array. Of course we can define an array in our code, but we need to know its
actual address to configure the stack pointer in a correct way. Let's look at the code:


https://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

movl $boot_stack_end, %eax
addl %ebp, %eax
movl %eax, %esp

The boot_stack_end label, defined in the same arch/x86/boot/compressed/head 64.S
assembly source code file and located in the .bss section:

.bss

.balign 4
boot_heap:

.fill BOOT_HEAP_SIZE, 1, O
boot_stack:

.fill BOOT_STACK_SIZE, 1, 0
boot_stack_end:

First of all, we put the address of boot_stack_end intothe eax register, so the eax

register contains the address of boot_stack_end where it was linked, which is oxe +

boot_stack_end . To get the real address of boot_stack_end , we need to add the real address

of the startup_32 . As you remember, we have found this address above and put it to the
ebp register. In the end, the register eax will contain real address of the boot_stack_end

and we just need to put to the stack pointer.

After we have set up the stack, next step is CPU verification. As we are going to execute
transition to the 1ong mode , we need to check that the CPU supports 1ong mode and ssE .
We will do it by the call of the verify _cpu function:

call verify_cpu
testl %eax, %eax
jnz no_longmode

This function defined in the arch/x86/kernel/verify _cpu.S assembly file and just contains a
couple of calls to the cpuid instruction. This instruction is used for getting information about
the processor. In our case it checks 1ong mode and sse support and returns e on
success or 1 on fail in the eax register.

If the value of the eax is not zero, we jump to the no_longmode label which just stops the
CPU by the call of the nit instruction while no hardware interrupt will not happen:

no_longmode:
1:

hlt

jmp 1b
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If the value of the eax register is zero, everything is ok and we are able to continue.

Calculate relocation address

The next step is calculating relocation address for decompression if needed. First we need
to know what it means for a kernel to be relocatable . We already know that the base
address of the 32-bit entry point of the Linux kernel is oex1eeee0 , but that is a 32-bit entry
point. The default base address of the Linux kernel is determined by the value of the

CONFIG_PHYSICAL_START kernel configuration option. Its default value is ox1eee000 Or 1 MB .
The main problem here is that if the Linux kernel crashes, a kernel developer must have a

rescue kernel for kdump which is configured to load from a different address. The Linux
kernel provides special configuration option to solve this problem: conFIG_RELOCATABLE . AS
we can read in the documentation of the Linux kernel:

This builds a kernel image that retains relocation information
so it can be loaded someplace besides the default 1MB.

Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
it has been loaded at and the compile time physical address
(CONFIG_PHYSICAL_START) is used as the minimum location.

In simple terms this means that the Linux kernel with the same configuration can be booted
from different addresses. Technically, this is done by compiling the decompressor as position
independent code. If we look at arch/x86/boot/compressed/Makefile, we will see that the
decompressor is indeed compiled with the -fpic flag:

KBUILD_CFLAGS += -fno-strict-aliasing -fPIC

When we are using position-independent code an address is obtained by adding the
address field of the command and the value of the program counter. We can load code
which uses such addressing from any address. That's why we had to get the real physical
address of startup_32 . Now let's get back to the Linux kernel code. Our current goal is to
calculate an address where we can relocate the kernel for decompression. Calculation of
this address depends on conF1G_RELOCATABLE kernel configuration option. Let's look at the
code:
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#ifdef CONFIG_RELOCATABLE
movl %ebp, %ebx

movl BP_kernel_alignment(%esi), %eax
decl %eax
addl %eax, %ebx
notl %eax
andl %eax, %ebx
cmpl $LOAD_PHYSICAL_ADDR, %ebx
jge 1f
#endif

movl $LOAD_PHYSICAL_ADDR, %ebx

addl $z_extract_offset, %ebx

Remember that the value of the ebp register is the physical address of the startup_32
label. If the conF1c_RrRELOcATABLE kernel configuration option is enabled during kernel
configuration, we put this address in the ebx register, align it to a multiple of 2me and
compare it with the Loap_pHYsICAL ADDR value. The LoAD_PHYSICAL_ADDR macro is defined in
the arch/x86/include/asm/boot.h header file and it looks like this:

#define LOAD_PHYSICAL_ADDR ((CONFIG_PHYSICAL_START \
+ (CONFIG_PHYSICAL_ALIGN - 1)) \
& ~(CONFIG_PHYSICAL_ALIGN - 1))

As we can see it just expands to the aligned conFic_PHYSICAL_ALIGN Value which represents
the physical address of where to load the kernel. After comparison of the

LOAD_PHYSICAL_ADDR and value of the ebx register, we add the offset from the startup_3s2
where to decompress the compressed kernel image. If the conFIc_RELOCATABLE option is not
enabled during kernel configuration, we just put the default address where to load kernel and
add z_extract_offset toit.

After all of these calculations we will have ebp which contains the address where we
loaded it and ebx set to the address of where kernel will be moved after decompression.

Preparation before entering long mode

When we have the base address where we will relocate the compressed kernel image, we
need to do one last step before we can transition to 64-bit mode. First we need to update the
Global Descriptor Table:

leal gdt (%ebp), %eax
movl %eax, gdt+2(%ebp)
lgdt gdt (%ebp)
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Here we put the base address from ebp register with gdt offset into the eax register.
Next we put this address into ebp register with offset gdt+2 and load the clobal
Descriptor Table Wwith the 1gdt instruction. To understand the magic with gdt offsets we
need to look at the definition of the 6lobal pescriptor Table . We can find its definition in the
same source code file:

.data
gdt:
.word gdt_end - gdt
.long gdt
.word 0
.quad 0Xx0000000000000000 /* NULL descriptor */
.quad 0x00af9a0eeeoOffff /* __KERNEL_CS */
.quad 0x00cf92000000f fff /* __KERNEL_DS */
.quad 0x0080890000000000 /* TS descriptor */
.quad 0X0000000000000000 /* TS continued */
gdt_end:

We can see that it is located in the .data section and contains five descriptors: null
descriptor, kernel code segment, kernel data segment and two task descriptors. We already
loaded the Global Descriptor Table in the previous part, and now we're doing almost the
same here, but descriptors with cs.L = 1 and cs.p = o for executionin e4 bit mode. As
we can see, the definition of the gdt starts from two bytes: gdt_end - gdt which
represents last byte in the gdt table or table limit. The next four bytes contains base
address of the gdt . Remember that the clobal pescriptor Table is stored in the 48-bits
6dbTR Which consists of two parts:

e size(16-bit) of global descriptor table;
e address(32-bit) of the global descriptor table.

So, we put address of the gdt tothe eax register and then we put it to the .long gdt or
gdt+2 in our assembly code. From now we have formed structure for the epTrR register
and can load the Global Descriptor Table Wwith the 1gtd instruction.

After we have loaded the Global Descriptor Table , we must enable PAE mode by putting
the value of the cr4 registerinto eax , setting 5 bit in it and loading it again into cr4 :

movl %Ccr4, %eax
orl $X86_CR4_PAE, %eax
movl %eax, %cra

Now we are almost finished with all preparations before we can move into 64-bit mode. The
last step is to build page tables, but before that, here is some information about long mode.
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Long mode

Long mode is the native mode for x86_64 processors. First let's look at some differences
between xge_64 andthe xs6 .

The e64-bit mode provides features such as:

e New 8 general purpose registers from rs to ris + all general purpose registers are
64-bit now;
64-bit instruction pointer - Rrip ;

¢ New operating mode - Long mode;
64-Bit Addresses and Operands;
RIP Relative Addressing (we will see an example of it in the next parts).

Long mode is an extension of legacy protected mode. It consists of two sub-modes:

® 64-bit mode;
e compatibility mode.

To switch into 64-bit mode we need to do following things:

e Enable PAE;

¢ Build page tables and load the address of the top level page table into the cr3
register;

e Enable EFER.LME ;

e Enable paging.

We already enabled raAe by setting the pae bitin the cra control register. Our next goal
is to build the structure for paging. We will see this in next paragraph.

Early page table initialization

So, we already know that before we can move into 64-bit mode, we need to build page
tables, so, let's look at the building of early 46 boot page tables.

NOTE: I will not describe the theory of virtual memory here. If you need to know more
about it, see links at the end of this part.

The Linux kernel uses 4-level paging, and we generally build 6 page tables:

e One PML4 Or Page Map Level 4 table with one entry;
e One PDP oOr Page Directory Pointer table with four entries;
e Four Page Directory tables with a total of 2048 entries.
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Let's look at the implementation of this. First of all we clear the buffer for the page tables in
memory. Every table is 4096 bytes, so we need clear 24 kilobyte buffer:

leal pgtable(%ebx), %edi

xorl %eax, %eax
movl $((4096*6)/4), %ecx
rep stosl

We put the address of pgtable plus ebx (rememberthat ebx contains the address to
relocate the kernel for decompression) in the edi register, clear the eax register and set
the ecx registerto 6144 . The rep stosl instruction will write the value of the eax to
edi , increase value of the edi register by 4 and decrease the value of the ecx register
by 1 . This operation will be repeated while the value of the ecx register is greater than
zero. That's why we put 6144 in ecx .

pgtable is defined at the end of arch/x86/boot/compressed/head 64.S assembly file and is:

.section ".pgtable", "a",@nobits
.balign 4096

pgtable:
.fill 6*4096, 1, 0

As we can see, it is located in the .pgtable section and its size is 24 kilobytes.

After we have got buffer for the pgtable structure, we can start to build the top level page
table - pmL4 - with:

leal pgtable + 0(%ebx), %edi
leal 0x1007 (%edi), %eax
mov1l %eax, 0(%edi)

Here again, we put the address of the pgtable relative to ebx orin other words relative to
address of the startup_32 tothe edi register. Next we put this address with offset
ox1007 inthe eax register. The oxi1007 is 4e96 bytes which is the size of the pmL4 plus
7 . The 7 here represents flags of the pmL4 entry. In our case, these flags are
PRESENT+RW+USER . In the end we just write first the address of the first pop entry to the
PML4 .

In the next step we will build four Ppage pirectory entries inthe page Directory Pointer
table with the same PresenT+rRw+USE flags:
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leal pgtable + 0x1000(%ebx), %edi
leal 0x1007(%edi), %eax
movl $4, %ecx
1: movl %eax, Ox00(%edi)
addl $0x00001000, %eax
addl $8, %edi
decl %ecx
jnz 1b

We put the base address of the page directory pointer which is 4096 or exieee offset from
the pgtable tablein edi and the address of the first page directory pointer entry in eax
register. Put 4 inthe ecx register, it will be a counter in the following loop and write the
address of the first page directory pointer table entry to the edi register. After this edi will
contain the address of the first page directory pointer entry with flags ex7 . Next we just
calculate the address of following page directory pointer entries where each entry is 8
bytes, and write their addresses to eax . The last step of building paging structure is the
building of the 2048 page table entries with 2-mByte pages:

leal pgtable + 0x2000(%ebx), %edi
movl $0x00000183, %eax
mov1l $2048, %ecx
1: movl %eax, 0(%edi)
addl $0x00200000, %eax
addl $8, %edi
decl %ecx
jnz 1b

Here we do almost the same as in the previous example, all entries will be with flags -
$0x00000183 - PRESENT + WRITE + MBZ . In the end we will have 2048 pages with 2-mByte
page or:

>>> &

46 page table. We just finished to build our early page table structure which maps 4
gigabytes of memory and now we can put the address of the high-level page table - pmL4 -
in cr3 control register:

leal pgtable(%ebx), %eax
movl %eax, %Cr3

That's all. All preparation are finished and now we can see transition to the long mode.



Transition to the 64-bit mode

First of all we need to set the Eerer.LME flag in the MSR to exceeecoese :

movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr

Here we put the msr_erer flag (which is defined in arch/x86/include/uapi/asm/msr-index.h)
in the ecx register and call rdmsr instruction which reads the MSR register. After rdmsr
executes, we will have the resulting data in edx:eax which depends on the ecx value. We
check the erer_LMe bit with the bts1 instruction and write data from eax tothe wsr
register with the wrmsr instruction.

In the next step we push the address of the kernel segment code to the stack (we defined it
in the GDT) and put the address of the startup_64 routine in eax .

pushl $__KERNEL_CS
leal startup_64(%ebp), %eax

After this we push this address to the stack and enable paging by setting pc and pe bits
inthe cro register:

movl $(X86_CRO_PG | X86_CRO_PE), %eax
movl %eax, %Cro

and execute:

lret

instruction. Remember that we pushed the address of the startup_64 function to the stack
in the previous step, and after the 1ret instruction, the CPU extracts the address of it and
jumps there.

After all of these steps we're finally in 64-bit mode:
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.code64
.0rg 0x200
ENTRY (startup_64)

That's all!

Conclusion

This is the end of the fourth part linux kernel booting process. If you have questions or
suggestions, ping me in twitter OxAX, drop me email or just create an issue.

In the next part we will see kernel decompression and many more.

Please note that English is not my first language and | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Kernel booting process. Part 5.

Kernel decompression

This is the fifth part of the kernel booting process series. We saw transition to the 64-bit
mode in the previous part and we will continue from this point in this part. We will see the
last steps before we jump to the kernel code as preparation for kernel decompression,
relocation and directly kernel decompression. So... let's start to dive in the kernel code

again.

Preparation before kernel decompression

We stopped right before the jump on the 64-bit entry point - startup_e4 which is located in
the arch/x86/boot/compressed/head_64.S source code file. We already saw the jump to the

startup_64 inthe startup_32 :

pushl $__KERNEL_CS
leal startup_64(%ebp), %eax

pushl %eax
lret

in the previous part, startup_e4 starts to work. Since we loaded the new Global Descriptor
Table and there was CPU transition in other mode (64-bit mode in our case), we can see the
setup of the data segments:

.code64
.org 0x200
ENTRY(startup_64)

xorl %eax, %eax
movl %eax, %ds
movl %eax, %es
movl %eax, %Ss
movl %eax, %fs

movl %eax, %Qgs
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in the beginning of the startup_64 . All segment registers besides cs now point to the ds
which is exis (if you don't understand why itis exis , read the previous part).

The next step is computation of difference between where the kernel was compiled and
where it was loaded:

#ifdef CONFIG_RELOCATABLE
leaq startup_32(%rip), %rbp
mov1l BP_kernel alignment(%rsi), %eax
decl %eax
addq %rax, %rbp
notq %rax
andq %rax, %rbp
cmpq $LOAD_PHYSICAL_ADDR, %rbp
jge 1f

#endif
movq $LOAD_PHYSICAL_ADDR, %rbp

leaq z_extract_offset(%rbp), %rbx

rbp contains the decompressed kernel start address and after this code executes rbx
register will contain address to relocate the kernel code for decompression. We already saw
code like this in the startup_32 (you can read about it in the previous part - Calculate
relocation address), but we need to do this calculation again because the bootloader can
use 64-bit boot protocol and startup_32 just will not be executed in this case.

In the next step we can see setup of the stack pointer and resetting of the flags register:

leaq boot_stack_end(%rbx), %rsp

pushq $0
popfq

As you can see above, the rbx register contains the start address of the kernel
decompressor code and we just put this address with boot_stack_end offset to the rsp
register which represents pointer to the top of the stack. After this step, the stack will be
correct. You can find definition of the boot_stack_end in the end of
arch/x86/boot/compressed/head 64.S assembly source code file:

.bss

.balign 4
boot_heap:

.fill BOOT_HEAP_SIZE, 1, ©
boot_stack:

.fill BOOT_STACK_SIZE, 1, 0
boot_stack_end:
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It located in the end of the .bss section, right before the .pgtable . If you will look into
arch/x86/boot/compressed/vmlinux.lds.S linker script, you will find Definition of the .bss
and .pgtable there.

As we set the stack, now we can copy the compressed kernel to the address that we got
above, when we calculated the relocation address of the decompressed kernel. Before
details, let's look at this assembly code:

pushqg %rsi
leaq (_bss-8)(%rip), %rsi
leaq (_bss-8)(%rbx), %rdi

movq $_bss, %rcx
shrq $3, %rcx
std

rep movsq

cld

popq %rsi

First of all we push rsi to the stack. We need preserve the value of rsi , because this
register now stores a pointer to the boot_params which is real mode structure that contains
booting related data (you must remember this structure, we filled it in the start of kernel
setup). In the end of this code we'll restore the pointer to the boot_params into rsi again.

The next two 1eaq instructions calculates effective addresses of the rip and rbx with
_bss - 8 oOffsetand putittothe rsi and rdi . Why do we calculate these addresses?
Actually the compressed kernel image is located between this copying code (from
startup_32 to the current code) and the decompression code. You can verify this by looking
at the linker script - arch/x86/boot/compressed/vmlinux.lds.S:

. =0
.head.text : {
_head = . ;
HEAD_TEXT
_ehead = . ;
}
.rodata..compressed : {
*(.rodata..compressed)
}
.text : {
_text = .; /* Text */
*(.text)
*(.text.*)
_etext = . ;
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Note that .head.text section contains startup_32 . You may remember it from the previous
part:

__HEAD
.code32
ENTRY(startup_32)

The .text section contains decompression code:

.text
relocated:

/*
* Do the decompression, and jump to the new kernel..
*/

And .rodata..compressed contains the compressed kernel image. So rsi will contain the
absolute address of _bss - 8 ,and rdi will contain the relocation relative address of _bss
- 8 . As we store these addresses in registers, we put the address of _bss inthe rcx
register. As you can see in the vmlinux.lds.s linker script, it's located at the end of all
sections with the setup/kernel code. Now we can start to copy data from rsi to rdi, 8
bytes at the time, with the movsq instruction.

Note that there is an std instruction before data copying: it sets the br flag, which means
that rsi and rdi will be decremented. In other words, we will copy the bytes backwards.
At the end, we clear the br flag with the c1d instruction, and restore boot_params
structure to rsi .

Now we have the address of the .text section address after relocation, and we can jump
to it:

leaq relocated(%rbx), %rax
jmp *%rax

Last preparation before kernel decompression



In the previous paragraph we saw that the .text section starts with the relocated label.
The first thing it does is clearing the bss section with:

xorl %eax, %eax
leaq _bss(%rip), %rdi
leaq _ebss(%rip), %rcx
subq %rdi, %rcx

shrq $3, %rcx
rep stosq

We need to initialize the .bss section, because we'll soon jump to C code. Here we just
clear eax , putthe address of bss in rdi and _ebss in rcx , and fill it with zeros with
the rep stosqg instruction.

At the end, we can see the call to the decompress_kernel function:

pushq %rsi

movq $z_run_size, %r9
pushq %r9

movq %rsi, %rdi

leaq boot_heap(%rip), %rsi
leaq input_data(%rip), %rdx

movl $z_input_len, %ecx
movq %rbp, %r8

movq $z_output_len, %r9
call decompress_kernel

popq %ro9

popq %rsi

Again we set rdi to a pointer to the boot_params structure and call decompress_kernel
from arch/x86/boot/compressed/misc.c with seven arguments:

® rmode - pointerto the boot params structure which is filled by bootloader or during
early kernel initialization;

® heap - pointertothe boot_heap which represents start address of the early boot heap;

e input_data - pointer to the start of the compressed kernel or in other words pointer to
the arch/x86/boot/compressed/vmlinux.bin.bz2

e input_len - size of the compressed kernel;

e output - start address of the future decompressed kernel;

® output_len - size of decompressed kernel;

® run_size -amount of space needed to run the kernel including .bss and .brk
sections.

All arguments will be passed through the registers according to System V Application Binary
Interface. We've finished all preparation and can now look at the kernel decompression.
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Kernel decompression

As we saw in previous paragraph, the decompress_kernel function is defined in the
arch/x86/boot/compressed/misc.c source code file and takes seven arguments. This function
starts with the video/console initialization that we already saw in the previous parts. We need
to do this again because we don't know if we started in real mode or a bootloader was used,
or whether the bootloader used the 32 or 64-bit boot protocol.

After the first initialization steps, we store pointers to the start of the free memory and to the
end of it

free_mem_ptr heap;
free_mem_end_ptr = heap + BOOT_HEAP_SIZE;

where the heap is the second parameter of the decompress_kernel function which we got in
the arch/x86/boot/compressed/head_64.S:

leaq boot_heap(%rip), %rsi

As you saw above, the boot_heap is defined as:

boot_heap:
.fill BOOT_HEAP_SIZE, 1, 0

where the BooT_HEAP_sIzE is macro which expands to exseee ( ex4eeeee in a case of
bzip2 kernel) and represents the size of the heap.

After heap pointers initialization, the next step is the call of the choose_kernel_location
function from arch/x86/boot/compressed/aslir.c source code file. As we can guess from the
function name, it chooses the memory location where the kernel image will be
decompressed. It may look weird that we need to find or even choose location where to
decompress the compressed kernel image, but the Linux kernel supports kASLR which
allows decompression of the kernel into a random address, for security reasons. Let's open
the arch/x86/boot/compressed/asir.c source code file and look at choose_kernel location .

First, choose_kernel_location tries to find the kasir option in the Linux kernel command
line if CONFIG_HIBERNATION is set, and nokaslr otherwise:
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#ifdef CONFIG_HIBERNATION
if ('cmdline_find_option_bool("kaslr")) {
debug_putstr("KASLR disabled by default...\n");
goto out;

}
#else
if (cmdline_find_option_bool("nokaslr")) {
debug_putstr("KASLR disabled by cmdline...\n");
goto out;

}
#endif

If the conrF1e_HIBERNATION kernel configuration option is enabled during kernel configuration
and there is no kaslr option in the Linux kernel command line, it prints KASLR disabled by
default... and jumps to the out label:

out:
return (unsigned char *)choice;

which just returns the output parameter which we passed to the choose_kernel location ,
unchanged. If the conrF1ie_HIBERNATION kernel configuration option is disabled and the
nokaslr option is in the kernel command line, we jump to out again.

For now, let's assume the kernel was configured with randomization enabled and try to
understand what kasLr is. We can find information about it in the documentation:

kaslr/nokaslr [X86]

Enable/disable kernel and module base offset ASLR
(Address Space Layout Randomization) if built into
the kernel. When CONFIG_HIBERNATION is selected,
KASLR is disabled by default. When KASLR is enabled,
hibernation will be disabled.

It means that we can pass the kaslr option to the kernel's command line and get a random
address for the decompressed kernel (you can read more about ASLR here). So, our current
goal is to find random address where we can safely to decompress the Linux kernel. |
repeat: safely . What does it mean in this context? You may remember that besides the
code of decompressor and directly the kernel image, there are some unsafe places in
memory. For example, the initrd image is in memory too, and we must not overlap it with the
decompressed kernel.
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The next function will help us to find a safe place where we can decompress kernel. This
function is mem_avoid_init . It defined in the same source code file, and takes four
arguments that we already saw in the decompress_kernel function:

® input_data - pointer to the start of the compressed kernel, or in other words, the
pointer to arch/x86/boot/compressed/vmlinux.bin.bz2

e input_len - the size of the compressed kernel;

e output -the start address of the future decompressed kernel;

® output_len -the size of decompressed kernel.

The main point of this function is to fill array of the mem_vector structures:

#define MEM_AVOID_MAX 5

static struct mem_vector mem_avoid[MEM_AVOID_MAX];

where the mem_vector structure contains information about unsafe memory regions:

struct mem_vector {
unsigned long start;
unsigned long size;

be

The implementation of the mem_avoid_init is pretty simple. Let's look on the part of this
function:

initrd_start = (u64)real_mode->ext_ramdisk_image << ;

initrd_start |= real_mode->hdr.ramdisk_image;

I
initrd_size = (u64)real_mode->ext_ramdisk_size << ;
initrd_size |= real_mode->hdr.ramdisk_size;
mem_avoid[1].start = initrd_start;

mem_avoid[1].size = initrd_size;

Here we can see calculation of the initrd start address and size. The ext_ramdisk_image iS
the high 32-bits of the ramdisk_image field from the setup header, and ext_ramdisk_size
is the high 32-bits of the ramdisk_size field from the boot protocol:
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Offset Proto Name Meaning
/Size

0218/4 2.00+ ramdisk_image initrd load address (set by boot loader)
021C/4 2.00+ ramdisk_size initrd size (set by boot loader)

And ext_ramdisk_image and ext_ramdisk_size can be found in the
Documentation/x86/zero-page.txt:

Offset Proto Name Meaning
/Size

0C0/004 ALL ext_ramdisk_image ramdisk_image high 32bits
0C4/004 ALL ext_ramdisk_size ramdisk_size high 32bits

So we're taking ext_ramdisk_image and ext_ramdisk_size , shifting them lefton 32 (now
they will contain low 32-bits in the high 32-bit bits) and getting start address of the initrd
and size of it. After this we store these values in the mem_avoid array.

The next step after we've collected all unsafe memory regions in the mem_avoid array will be

searching for a random address that does not overlap with the unsafe regions, using the
find_random_addr function. First of all we can see the alignment of the output address in the
find_random_addr function:

minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);

You can remember conFIG_PHYSICAL_ALIGN configuration option from the previous part. This
option provides the value to which kernel should be aligned and it is ex2e0000 by default.
Once we have the aligned output address, we go through the memory regions which we got
with the help of the BIOS €820 service and collect regions suitable for the decompressed
kernel image:

for (1 = 0; 1 < real_mode->e820_entries; i++) {
process_e820_entry(&real_mode->e820_map[i], minimum, size);
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Recall that we collected es2e_entries in the second part of the Kernel booting process part
2. The process_e820_entry function does some checks that an es2e memory region is not
non-RAM , that the start address of the memory region is not bigger than maximum allowed

aslr offset, and that the memory region is above the minimum load location:

struct mem_vector region, img;

if (entry->type != E820_RAM)
return;

if (entry->addr >= CONFIG_RANDOMIZE_ BASE_MAX_OFFSET)
return;

if (entry->addr + entry->size < minimum)

return;

After this, we store an es2e memory region start address and the size in the mem_vector
structure (we saw definition of this structure above):

region.start = entry->addr;
region.size = entry->size;

As we store these values, we align the region.start as we did it in the find_random_addr
function and check that we didn't get an address that is outside the original memory region:

region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);

if (region.start > entry->addr + entry->size)

return;

In the next step, we reduce the size of the memory region to not include rejected regions at
the start, and ensure that the last address in the memory region is smaller than

CONFIG_RANDOMIZE BASE_MAX_OFFSET , SO that the end of the kernel image will be less than the
maximum aslr offset:

region.size -= region.start - entry->addr;

if (region.start + region.size > CONFIG_RANDOMIZE_BASE_MAX_OFFSET)
region.size = CONFIG_RANDOMIZE_BASE_MAX_OFFSET - region.start;

Finally, we go through all unsafe memory regions and check that the region does not overlap
unsafe areas, such as kernel command line, initrd, etc...:
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for (img.start = region.start, img.size = image_size ;
mem_contains(&region, &img) ;
img.start += CONFIG_PHYSICAL_ALIGN) {
if (mem_avoid_overlap(&img))
continue;
slots_append(img.start);

If the memory region does not overlap unsafe regions we call the slots_append function
with the start address of the region. silots_append function just collects start addresses of
memory regions to the slots array:

slots[slot_max++] = addr;

which is defined as:

static unsigned long slots[CONFIG_RANDOMIZE_ BASE_MAX_OFFSET /
CONFIG_PHYSICAL_ALIGN];
static unsigned long slot_max;

After process_e820_entry is done, we will have an array of addresses that are safe for the
decompressed kernel. Then we call slots_fetch_random function to get a random item from
this array:

if (slot_max == 0)

return 0;

return slots[get_random_long() % slot_max];

where get_random_long function checks different CPU flags as x86_FEATURE_RDRAND OF

x86_FEATURE_TSC and chooses a method for getting random number (it can be the RDRAND
instruction, the time stamp counter, the programmable interval timer, etc...). After retrieving
the random address, execution of the choose_kernel_location is finished.

Now let's back to misc.c. After getting the address for the kernel image, there need to be
some checks to be sure that the retrieved random address is correctly aligned and address
is not wrong.

After all these checks we will see the familiar message:

Decompressing Linux. ..
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and call the __decompress function which will decompress the kernel. The __decompress
function depends on what decompression algorithm was chosen during kernel compilation:

#ifdef CONFIG_KERNEL_GZIP
#include "../../../../1ib/decompress_inflate.c"
#endif

#ifdef CONFIG_KERNEL_BZIP2
#include "../../../../1ib/decompress_bunzip2.c"
#endif

#ifdef CONFIG_KERNEL_LZMA
#include "../../../../1lib/decompress_unlzma.c"
#endif

#ifdef CONFIG_KERNEL_XZ
#include "../../../../1lib/decompress_unxz.c"
#endif

#ifdef CONFIG_KERNEL_LZO
#include "../../../../1lib/decompress_unlzo.c"
#endif

#ifdef CONFIG_KERNEL_LZ4
#include "../../../../1lib/decompress_unlz4.c"
#endif

After kernel is decompressed, the last two functions are parse_elf and

handle_relocations . The main point of these functions is to move the uncompressed kernel
image to the correct memory place. The fact is that the decompression will decompress in-
place, and we still need to move kernel to the correct address. As we already know, the
kernel image is an ELF executable, so the main goal of the parse_elf function is to move
loadable segments to the correct address. We can see loadable segments in the output of
the readelf program:
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readelf -1 vmlinux

E1f file type is EXEC (Executable file)
Entry point 0x1000000

There are 5 program headers,

Program Headers:

starting at offset 64

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD OXx0000000000200000 OXFFffffff81000000 OXOOOEOOECO1OOOEOO
OxX0000000000893000 OXOEOOOOEOOE393000 R E 200000
LOAD OXx0000000000a93000 OXFFffffff81893000 OXxOOOEOOEOO01893000
OX000000000016d00O OXOOEOOEOOEO16dOBO RW 200000
LOAD OX0000000000COOOOO OXOEOOOOOOOEOOEOOO OXOEOOOOE0O1acEOLO
OXx00000000000152d8 OXxO0OEOOEOOECO0152d8 RW 200000
LOAD OXx0000000000c16000 OXFFffffff81a16000 OXxOOOEOOE001al6000
OX0000000000138000 OXOOEOOEEOOO29bOBO RWE 200000

The goal of the parse_elf function is to load these segments to the output address we

got from the choose_kernel_location function. This function starts with checking the ELF

signature:

E1f64_Ehdr ehdr;

E1f64_Phdr *phdrs, *phdr;
(&ehdr, output, sizeof(ehdr));
if (ehdr.e_ident[EI_MAGO®] != ELFMAGO ||
ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
ehdr.e_ident[EI_MAG3] != ELFMAG3) {

error("Kernel is not a valid ELF file");

return;

and if it's not valid, it prints an error message and halts. If we got a valid eLr file, we go
through all program headers from the given eLr file and copy all loadable segments with
correct address to the output buffer:
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for (1 = 0; 1 < ehdr.e_phnum; i++) {
phdr = &phdrs[i];

switch (phdr->p_type) {
case PT_LOAD:
#ifdef CONFIG_RELOCATABLE
dest = output;
dest += (phdr->p_paddr - LOAD_PHYSICAL_ADDR);

#else
dest = (void *)(phdr->p_paddr);
#endif
(dest,
output + phdr->p_offset,
phdr->p_filesz);
break;
default: break;
}
}

That's all. From now on, all loadable segments are in the correct place. The last
handle_relocations function adjusts addresses in the kernel image, and is called only if the
kASLR was enabled during kernel configuration.

After the kernel is relocated, we return back from the decompress_kernel to
arch/x86/boot/compressed/head _64.S. The address of the kernel will be in the rax register
and we jump to it:

jmp *%rax

That's all. Now we are in the kernel!

Conclusion

This is the end of the fifth and the last part about linux kernel booting process. We will not
see posts about kernel booting anymore (maybe updates to this and previous posts), but
there will be many posts about other kernel internals.

Next chapter will be about kernel initialization and we will see the first steps in the Linux
kernel initialization code.

If you have any questions or suggestions write me a comment or ping me in twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Kernel decompression

Links

e address space layout randomization
e initrd

e long mode

e bzip2

e RDdRand instruction

e Time Stamp Counter

e Programmable Interval Timers

e Previous part

86


https://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Long_mode
http://www.bzip.org/
http://en.wikipedia.org/wiki/RdRand
http://en.wikipedia.org/wiki/Time_Stamp_Counter
http://en.wikipedia.org/wiki/Intel_8253
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md

Kernel initialization process

You will find here a couple of posts which describe the full cycle of kernel initialization from

its first step after the kernel has been decompressed to the start of the first process run by

the kernel itself.

Note That there will not be a description of the all kernel initialization steps. Here will be only

generic kernel part, without interrupts handling, ACPI, and many other parts. All parts which |

have missed, will be described in other chapters.

First steps after kernel decompression - describes first steps in the kernel.

Early interrupt and exception handling - describes early interrupts initialization and early

page fault handler.

Last preparations before the kernel entry point - describes the last preparations before

the call of the start_kernel .

Kernel entry point - describes first steps in the kernel generic code.

Continue of architecture-specific initializations - describes architecture-specific

initialization.

Architecture-specific initializations, again... - describes continue of the architecture-

specific initialization process.

The End of the architecture-specific initializations, almost... - describes the end of the
setup_arch related stuff.

Scheduler initialization - describes preparation before scheduler initialization and

initialization of it.

RCU initialization - describes the initialization of the RCU.

End of the initialization - the last part about linux kernel initialization.
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Kernel initialization. Part 1.

First steps in the kernel code

The previous post was a last part of the Linux kernel booting process chapter and now we
are starting to dive into initialization process of the Linux kernel. After the image of the Linux
kernel is decompressed and placed in a correct place in memory, it starts to work. All
previous parts describe the work of the Linux kernel setup code which does preparation
before the first bytes of the Linux kernel code will be executed. From now we are in the
kernel and all parts of this chapter will be devoted to the initialization process of the kernel
before it will launch process with pid 1 . There are many things to do before the kernel will
start first init process. Hope we will see all of the preparations before kernel will start in
this big chapter. We will start from the kernel entry point, which is located in the
arch/x86/kernel/head 64.S and and will move further and further. We will see first
preparations like early page tables initialization, switch to a new descriptor in kernel space
and many many more, before we will see the start_kernel function from the init/main.c will
be called.

In the last part of the previous chapter we stopped at the jmp instruction from the
arch/x86/boot/compressed/head 64.S assembly source code file:

jmp *%rax

At this moment the rax register contains address of the Linux kernel entry point which that
was obtained as a result of the call of the decompress_kernel function from the
arch/x86/boot/compressed/misc.c source code file. So, our last instruction in the kernel
setup code is a jump on the kernel entry point. We already know where is defined the entry
point of the linux kernel, so we are able to start to learn what does the Linux kernel does
after the start.

First steps in the kernel

Okay, we got the address of the decompressed kernel image from the decompress_kernel
function into rax register and just jumped there. As we already know the entry point of the
decompressed kernel image starts in the arch/x86/kernel/head 64.S assembly source code
file and at the beginning of it, we can see following definitions:
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__HEAD

.code64

.globl startup_64
startup_64:

We can see definition of the startup_s4 routine that is defined in the __HEAD section,
which is just a macro which expands to the definition of executable .head.text section:

#define __HEAD .section ".head.text", "ax"

We can see definition of this section in the arch/x86/kernel/vmlinux.lds.S linker script:

.text : AT(ADDR(.text) - LOAD_OFFSET) {
_text = .,

} :text = 0x9090

Besides the definition of the .text section, we can understand default virtual and physical
addresses from the linker script. Note that address of the _text is location counter which is
defined as:

. = __ START_KERNEL;

for the x86_64. The definition of the _ sTART_KERNEL macro is located in the
arch/x86/include/asm/page_types.h header file and represented by the sum of the base
virtual address of the kernel mapping and physical start:

#define __ START_KERNEL (__START_KERNEL_map + _ PHYSICAL_START)

#define __ PHYSICAL_START ALIGN(CONFIG_PHYSICAL_START, CONFIG_PHYSICAL_ALIGN)

Or in other words:

e Base physical address of the Linux kernel - ox10e0000 ;
e Base virtual address of the Linux kernel - oxffffffff81000000 .

Now we know default physical and virtual addresses of the startup_64 routine, but to know
actual addresses we must to calculate it with the following code:
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leaq _text(%rip), %rbp
subq $_text - __ START_KERNEL_map, %rbp

Yes, it defined as exieeeeeo , but it may be different, for example if kKASLR is enabled. So
our current goal is to calculate delta between oexi1000000 and where we actually loaded.
Here we just put the rip-relative addresstothe rbp register and then subtract $ text -
_ START_KERNEL_map from it. We know that compiled virtual address of the _text is

oxffffffffs1000000 and the physical address of itis exieeeeee . The _ START_KERNEL_map
macro expands to the oxffffffffgeeeeeee address, so at the second line of the assembly
code, we will get following expression:

rbp = 0x1000000 - (OXFfffffff81000000 - Oxffffffff80000000)

So, after the calculation, the rbp will contain e which represents difference between
addresses where we actually loaded and where the code was compiled. In our case zero
means that the Linux kernel was loaded by default address and the kKASLR was disabled.

After we got the address of the startup_64 , we need to do a check that this address is
correctly aligned. We will do it with the following code:

testl $~PMD_PAGE_MASK, %ebp
jnz bad_address

Here we just compare low part of the rbp register with the complemented value of the
PMD_PAGE_MASK . The PMD_PAGE_MASK indicates the mask for page middle directory (read
paging about it) and defined as:

#define PMD_PAGE_MASK (~(PMD_PAGE_SIZE-1))
#define PMD_PAGE_SIZE (_AC(1, UL) << PMD_SHIFT)
#define PMD_SHIFT 21

As we can easily calculate, pmp_raAce_size is 2 megabytes. Here we use standard formula
for checking alignment and if text address is not aligned for 2 megabytes, we jump to
bad_address label.

After this we check address that it is not too large by the checking of highest 18 bits:

leaq _text(%rip), %rax
shrq $MAX_PHYSMEM_BITS, %rax
jnz bad_address
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The address must not be greater than 46 -bits:

#define MAX_PHYSMEM_BITS 46

Okay, we did some early checks and now we can move on.

Fix base addresses of page tables

The first step before we start to setup identity paging is to fixup following addresses:

addq %rbp, early_ level4 pgt + (L4_START_KERNEL*8)(%rip)
addq %rbp, level3_kernel_pgt + (510*8)(%rip)
addq %rbp, level3_kernel_pgt + (511*8)(%rip)
addq %rbp, level2_fixmap_pgt + (506*8)(%rip)

All of early level4 pgt , level3_kernel pgt and other address may be wrong if the

startup_64 is not equal to default oxieeeeee address. The rbp register contains the delta
address so we add to the certain entries of the early_levela pgt ,the 1level3_kernel pgt
and the 1evel2 fixmap_pgt . Let's try to understand what these labels mean. First of all let's
look at their definition:

NEXT_PAGE (early_level4_pgt)
.fill 511,8,0
.quad level3_kernel pgt - _ START_KERNEL_map + _PAGE_TABLE

NEXT_PAGE (level3_kernel_pgt)
Lfill L3_START_KERNEL, 8,0
.quad level2_kernel pgt - _ START_KERNEL_map + _KERNPG_TABLE
.quad level2_fixmap_pgt - _ START_KERNEL_map + _PAGE_TABLE

NEXT_PAGE (level2_kernel_pgt)
PMDS(0, _ PAGE_KERNEL_LARGE_EXEC,
KERNEL_IMAGE_SIZE/PMD_SIZE)

NEXT_PAGE (level2_fixmap_pgt)
.fill 506, 8,0
.quad levell fixmap_pgt - _ START_KERNEL_map + _PAGE_TABLE
.fill 5,8,0

NEXT_PAGE(levell_ fixmap_pgt)
.fill 512,8,0



Looks hard, but it isn't. First of all let's look at the early levels pgt . It starts with the (4096 -
8) bytes of zeros, it means that we don't use the first 511 entries. And after this we can see
one level3 kernel pgt entry. Note that we subtract _ START KERNEL map + _PAGE_TABLE from
it. As we know __ START_KERNEL_map iS a base virtual address of the kernel text, so if we
subtract _ sTART KERNEL_map , we will get physical address of the 1evel3 kernel pgt . Now
let's look at _PAGe_TABLE , it is just page entry access rights:

#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
_PAGE_ACCESSED | _PAGE_DIRTY)

You can read more about it in the paging part.

The 1evel3 kernel pgt - stores two entries which map kernel space. At the start of it's
definition, we can see that it is filled with zeros L3_START_KERNEL or 510 times. Here the
L3_START_KERNEL is the index in the page upper directory which contains
__START_KERNEL_map address and it equals s1e . After this, we can see the definition of the
two 1level3 kernel pgt entries: level2 kernel pgt and level2 fixmap_pgt . Firstis simple,
it is page table entry which contains pointer to the page middle directory which maps kernel
space and it has:

#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \
_PAGE_DIRTY)

access rights. The second - 1evel2 fixmap_pgt is a virtual addresses which can refer to any
physical addresses even under kernel space. They represented by the one
level2 fixmap_pgt entry and 1e megabytes hole for the vsyscalls mapping. The next
level2 kernel pgt callsthe pbvs macro which creates si12 megabytes from the
__START_KERNEL_map for kernel .text (after these s12 megabytes will be modules memory
space).

Now, after we saw definitions of these symbols, let's get back to the code which is described
at the beginning of the section. Remember that the rbp register contains delta between the
address of the startup_64 symbol which was got during kernel linking and the actual
address. So, for this moment, we just need to add add this delta to the base address of
some page table entries, that they'll have correct addresses. In our case these entries are:

addq %rbp, early_level4 pgt + (L4_START_KERNEL*8)(%rip)
addq %rbp, level3_kernel_pgt + (510*8)(%rip)
addq %rbp, level3_kernel_pgt + (511*8)(%rip)
addq %rbp, level2 fixmap_pgt + (506*8)(%rip)
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or the last entry of the early levels pgt which is the 1evel3 kernel pgt , last two entries of
the 1evel3_kernel_pgt which are the 1level2_kernel_pgt andthe 1level2 fixmap_pgt and
five hundreds seventh entry of the 1evel2 fixmap_pgt which is 1leveli fixmap_pgt page
directory.

After all of this we will have:

early level4 pgt[511] -> level3_kernel pgt[0]
level3_kernel pgt[510] -> level2_ kernel pgt[0]
level3_kernel pgt[511] -> level2 fixmap_pgt[0]
level2_kernel pgt[0] -> 512 MB kernel mapping
level2 fixmap_pgt[507] -> levell fixmap_pgt

Note that we didn't fixup base address of the early level4 pgt and some of other page
table directories, because we will see this during of building/filling of structures for these
page tables. As we corrected base addresses of the page tables, we can start to build it.

Identity mapping setup

Now we can see the set up of identity mapping of early page tables. In Identity Mapped
Paging, virtual addresses are mapped to physical addresses that have the same value, 1 :
1 . Let's look at it in detail. First of all we get the rip-relative address ofthe _text and
_early_level4 pgt and puttheyinto rdi and rbx registers:

leaq _text(%rip), %rdi
leaq early level4d pgt(%rip), %rbx

After this we store address of the _text inthe rax and get the index of the page global
directory entry which stores _text address, by shifting _text address on the

PGDIR_SHIFT

movq %rdi, %rax
shrq $PGDIR_SHIFT, %rax

leaq (4096 + _KERNPG_TABLE) (%rbx), %rdx
movq %rdx, 0(%rbx,%rax,8)
movq %rdx, 8(%rbx,%rax,8)

where PGDIR SHIFT iS 39 . PGDIR_SHFT indicates the mask for page global directory bits in
a virtual address. There are macro for all types of page directories:



#define PGDIR_SHIFT 39
#define PUD_SHIFT 30
#define PMD_SHIFT 21

After this we put the address of the first 1level3 kernel pgt inthe rdx with the
_KERNPG_TABLE access rights (see above) and fill the early level4 pgt with the 2
level3_kernel_pgt entries.

After this we add 4096 (size of the early levelsa pgt )to the rdx (it now contains the
address of the first entry of the 1level3 kernel pgt ) and put rdi (it now contains physical
address of the _text )to the rax . And after this we write addresses of the two page upper
directory entries to the 1level3 kernel pgt :

addq $4096, %rdx

movq %rdi, %rax

shrq $PUD_SHIFT, %rax

andl $(PTRS_PER_PUD-1), %eax
movq %rdx, 4096 (%rbx,%rax,8)
incl %eax

andl $(PTRS_PER_PUD-1), %eax
movq %rdx, 4096(%rbx,%rax,8)

In the next step we write addresses of the page middle directory entries to the
level2_kernel pgt and the last step is correcting of the kernel text+data virtual addresses:

leaq level2 kernel pgt(%rip), %rdi
leaq 4096(%rdi), %rs8

1: testq $1, 0(%rdi)
jz 2f
addq %rbp, 0(%rdi)
2: addq $8, %rdi

cmp %r8, %rdi
jne 1b

Here we put the address of the 1evel2 kernel pgt tothe rdi and address of the page
table entry to the rs register. Next we check the present bit in the 1level2 kernel pgt and
if it is zero we're moving to the next page by adding 8 bytes to rdi which contains address
of the level2z kernel pgt . After this we compare it with rs (contains address of the page
table entry) and go back to label 1 or move forward.

In the next step we correct phys_base physical address with rbp (contains physical
address of the _text ), put physical address of the early level4 pgt and jump to label 1 :



addq %rbp, phys_base(%rip)
movq $(early_leveld _pgt - _ START_KERNEL_map), %rax
jmp 1f

where phys_base matches the first entry of the 1evel2 kernel pgt whichis 512 MB kernel
mapping.

Last preparation before jump at the kernel
entry point

After that we jump to the label 1 we enable paAe , pee (Paging Global Extension) and put
the physical address of the phys_base (see above)to the rax register and fill cr3 register
with it:

movl $(X86_CR4_PAE | X86_CR4_PGE), %ecx
movq %rcx, %era

addq phys_base(%rip), %rax

movq %rax, %cr3

In the next step we check that CPU supports NX bit with:

movl $0x80000001, %eax
cpuid
movl %edx, %edi

We put oxseeeeee1 value to the eax and execute cpuid instruction for getting the
extended processor info and feature bits. The result will be in the edx register which we put
tothe edi .

Now we put oxceeeeese or Msr_EFER tothe ecx and call rdmsr instruction for the reading
model specific register.

movl $MSR_EFER, %ecx
rdmsr

The result will be in the edx:eax . General view of the Erer is following:
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We will not see all fields in details here, but we will learn about this and other msrs in a
special part about it. As we read erFer tothe edx:eax , we check _EFER ScE or zero bit
which is system call Extensions With btsl instruction and set it to one. By the setting
sce bit we enable syscaLL and sysreT instructions. In the next step we check 20th bit in
the edi , remember that this register stores result of the cpuid (see above). If 20 bitis
set ( nx bit) we just write ErFer_sce to the model specific register.

btsl $_EFER_SCE, %eax

btl $20, %edi

jnc 1f

btsl $_EFER_NX, %eax

btsq $_PAGE_BIT_NX,early pmd_flags(%rip)
1: wrmsr

If the NX bit is supported we enable _ErFer _Nx and write it too, with the wrmsr instruction.
After the NX bit is set, we set some bits in the cre control register, namely:

® Xx86_CRO_PE - system is in protected mode;

e x86_CRo_MP - controls interaction of WAIT/FWAIT instructions with TS flag in CRO;

e x86_CRO_ET - on the 386, it allowed to specify whether the external math coprocessor
was an 80287 or 80387;

® Xx86_CRO_NE - enable internal x87 floating point error reporting when set, else enables
PC style x87 error detection;

e x86_crRo_WP - when set, the CPU can't write to read-only pages when privilege level is
0;

e x86_CRo_AM - alignment check enabled if AM set, AC flag (in EFLAGS register) set, and
privilege level is 3;

® X86_CRO_PG - enable paging.

by the execution following assembly code:
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#define CRO_STATE (X86_CRO_PE | X86_CRO_MP | X86_CRO_ET | \
X86_CRO_NE | X86_CRO_WP | X86_CRO_AM | \

X86_CRO_PG)
movl $CRO_STATE, %eax
movq %rax, %cro

We already know that to run any code, and even more C code from assembly, we need to
setup a stack. As always, we are doing it by the setting of stack pointer to a correct place in
memory and resetting flags register after this:

movq stack_start(%rip), %rsp
pushq $0
popfq

The most interesting thing here is the stack_start . It defined in the same source code file
and looks like:

GLOBAL(stack_start)
.quad init_thread_union+THREAD_SIZE-8

The cLoeAL is already familiar to us from. It defined in the arch/x86/include/asm/linkage.h
header file expands to the global symbol definition:

#define GLOBAL(name) \
.globl name; \
name:

The THREAD_size macro is defined in the arch/x86/include/asm/page 64 types.h header file
and depends on value of the KASAN_STACK_ORDER Macro:

#define THREAD_SIZE_ORDER (2 + KASAN_STACK_ORDER)
#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)

We consider when the kasan is disabled and the pace _size is 4e96 bytes. So the

THREAD_SIZE Will expands to 16 kilobytes and represents size of the stack of a thread. Why
is thread ? You may already know that each process may have parent processes and child
processes. Actually, a parent process and child process differ in stack. A new kernel stack is
allocated for a new process. In the Linux kernel this stack is represented by the union with
the thread_info structure.

And as we can see the init_thread_union is represented by the thread_union , which
defined as:
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union thread_union {
struct thread_info thread_info;
unsigned long [THREAD_SIZE/sizeof(long)];

3

and init_thread_union looks like:

union thread_union init_thread_union _ _init_task_data =
{ INIT_THREAD_INFO(init_task) };

Where the 1nIT_THREAD_INFO macro takes task_struct structure which represents process
descriptor in the Linux kernel and does some basic initialization of the given task_struct

structure:

#define INIT_THREAD_INFO(tsk) \

{ \
.task = &tsk, \
.flags =0, \
.cpu =0, \
.addr_limit = KERNEL_DS, \

}

So, the thread_union contains low-level information about a process and process's stack
and placed in the bottom of stack:

| I
| I
| I
| Kernel stack [
I I
I I
I I

Note that we reserve 8 bytes at the to of stack. This is necessary to guarantee illegal
access of the next page memory.

After the early boot stack is set, to update the Global Descriptor Table with 1gdt instruction:

lgdt early_gdt_descr(%rip)
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where the early_gdt_descr is defined as:

early_gdt_descr:

.word GDT_ENTRIES*8-1
early_gdt_descr_base:

.quad INIT_PER_CPU_VAR(gdt_page)

We need to reload Global Descriptor Table because now kernel works in the low
userspace addresses, but soon kernel will work in it's own space. Now let's look at the
definition of early gdt_descr . Global Descriptor Table contains 32 entries:

#define GDT_ENTRIES 32

for kernel code, data, thread local storage segments and etc... it's simple. Now let's look at
the early gdt_descr_base . First of gdt_page defined as:

struct gdt_page {
struct desc_struct gdt[GDT_ENTRIES];
} __attribute_ ((aligned(PAGE_SIZE)));

in the arch/x86/include/asm/desc.h. It contains one field gdt which is array of the
desc_struct structure which is defined as:

struct desc_struct {

union {
struct {
unsigned int a;
unsigned int b;
}
struct {
ulé limito;
ulé baseo;
unsigned basel: 8, type: 4, s: 1, dpl: 2, p: 1;
unsigned limit: 4, avl: 1, 1: 1, d: 1, g: 1, base2: §8;
}
}

} __attribute__ ((packed));

and presents familiar to us ept descriptor. Also we can note that gdt_page structure
aligned to pace_size whichis 4e96 bytes. It means that gdt will occupy one page. Now
let's try to understand what is INIT_PER_CPU_VAR . INIT_PER_CPU_VAR iS a macro which
defined in the arch/x86/include/asm/percpu.h and just concats init_per_cpu__ with the
given parameter:
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#define INIT_PER_CPU_VAR(var) init_per_cpu__##var

After the 1nIT_PER cPu_VvAR macro will be expanded, we will have init_per_cpu_ gdt_page .
We can see in the linker script:

#define INIT_PER_CPU(x) init_per_cpu__##x = x + __per_cpu_load
INIT_PER_CPU(gdt_page);

As we got init_per_cpu__gdt_page in INIT_PER_CPU_VAR and INIT_PER cPu macro from
linker script will be expanded we will get offset from the _ per_cpu_load . After this
calculations, we will have correct base address of the new GDT.

Generally per-CPU variables is a 2.6 kernel feature. You can understand what it is from its
name. When we create per-cpu variable, each CPU will have will have its own copy of this
variable. Here we creating gdt_page per-CPU variable. There are many advantages for
variables of this type, like there are no locks, because each CPU works with its own copy of
variable and etc... So every core on multiprocessor will have its own cepT table and every
entry in the table will represent a memory segment which can be accessed from the thread
which ran on the core. You can read in details about per-cpu variables in the Theory/per-
cpu post.

As we loaded new Global Descriptor Table, we reload segments as we did it every time:

xorl %eax, %eax
movl %eax,%ds
movl %eax,%ss
movl %eax, %es
movl %eax, %fs
movl %eax,%gs

After all of these steps we set up gs register that it post to the irgstack which represents
special stack where interrupts will be handled on:

movl $MSR_GS_BASE, %ecx

movl initial gs(%rip), %eax
mov1l initial gs+4(%rip), %edx
wrmsr

where MSR_GS_BASE is:

#define MSR_GS_BASE OXxc0000101
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We need to put msr_es_BAse tothe ecx register and load data from the eax and edx
(which are point to the initial_gs ) with wrmsr instruction. We don'tuse cs, fs, ds
and ss segment registers for addressing in the 64-bit mode, but fs and gs registers can
be used. fs and gs have a hidden part (as we saw it in the real mode for cs ) and this
part contains descriptor which mapped to Model Specific Registers. So we can see above

0xc0000101 IS a gs.base MSR address. When a system call or interrupt occurred, there is
no kernel stack at the entry point, so the value of the wmsr_es_Base will store address of the
interrupt stack.

In the next step we put the address of the real mode bootparam structure to the rdi
(remember rsi holds pointer to this structure from the start) and jump to the C code with:

movq initial code(%rip), %rax
pushqg $0

pushqg $__KERNEL_CS

pushq %rax

1retq

Here we put the address of the initial code tothe rax and push fake address,
__KERNEL_cs and the address of the initial code to the stack. After this we can see
lretq instruction which means that after it return address will be extracted from stack (now
there is address of the initial code ) and jump there. initial code is defined in the same
source code file and looks:

.balign 8
GLOBAL(initial_code)
.quad x86_64_start_kernel

As we can see initial_code contains address of the xs86_64_start_kernel , which is
defined in the arch/x86/kerne/head64.c and looks like this:

asmlinkage __visible void __init char {

It has one argument is a real mode_data (remember that we passed address of the real
mode data to the rdi register previously).

This is first C code in the kernel!
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Next to start_kernel

We need to see last preparations before we can see "kernel entry point" - start_kernel
function from the init/main.c.

First of all we can see some checks in the xs6_64_start_kernel function:

BUILD_BUG_ON(MODULES_VADDR < __ START_KERNEL_map);

BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);

BUILD_BUG_ON( (__START_KERNEL_map & ~PMD_MASK) != 0);

BUILD_BUG_ON( (MODULES_VADDR & ~PMD_MASK) != 0);

BUILD_BUG_ON( ! (MODULES_VADDR > __ START_KERNEL));

BUILD_BUG_ON( ! (((MODULES_END - 1) & PGDIR_MASK) == (__START_KERNEL & PGDIR_MASK)));

BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);

There are checks for different things like virtual addresses of modules space is not fewer
than base address of the kernel text - _ sTAT_KerNEL_map , that kernel text with modules is
not less than image of the kernel and etc... BuILD_BuG_on is a macro which looks as:

#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))

Let's try to understand how this trick works. Let's take for example first condition:
MODULES_VADDR < _ START_KERNEL_map . !!conditions is the same that condition !'= @ . Soit
means if MODULES_VADDR < __ START_KERNEL_map iS true, we willget 1 inthe 1:(condition) or
zero if not. After 2*11(condition) we willgetor 2 or e . In the end of calculations we can
get two different behaviors:

e We will have compilation error, because try to get size of the char array with negative
index (as can be in our case, because MobuLES_VADDR can't be less than
__START_KERNEL_map Will be in our case);

¢ No compilation errors.

That's all. So interesting C trick for getting compile error which depends on some constants.

In the next step we can see call of the cr4_init_shadow function which stores shadow copy
of the cr4 per cpu. Context switches can change bits in the cr4 so we need to store cr4
for each CPU. And after this we can see call of the reset_early_page_tables function where
we resets all page global directory entries and write new pointer to the PGT in cr3 :


https://github.com/torvalds/linux/blob/master/init/main.c#L489

for (1 = 0; 1 < PTRS_PER_PGD-1; i++)
early_level4_pgt[i].pgd = 0O;

next_early_pgt = 0;

write_cr3(__pa_nodebug(early_leveld _pgt));

Soon we will build new page tables. Here we can see that we go through all Page Global
Directory Entries ( PTRs_PER_PGD iS 512 ) in the loop and make it zero. After this we set

next_early pgt to zero (we will see details about it in the next post) and write physical
address of the early leveld pgt tothe cr3 . _ pa_nodebug is a macro which will be
expanded to:

((unsigned long)(x) - __START_KERNEL_map + phys_base)

After this we clear _bss fromthe _ bss stop to _ bss_start and the next step will be
setup of the early 1pT handlers, but it's big concept so we will see it in the next part.

Conclusion

This is the end of the first part about linux kernel initialization.

If you have questions or suggestions, feel free to ping me in twitter 0xAX, drop me email or
just create issue.

In the next part we will see initialization of the early interruption handlers, kernel space
memory mapping and a lot more.

Please note that English is not my first language and | am really sorry for any
inconvenience. If you found any mistakes please send me PR to linux-insides.

Links

e Model Specific Register

e Paging

e Previous part - Kernel decompression
e NX

e ASLR
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Kernel initialization. Part 2.

Early interrupt and exception handling

In the previous part we stopped before setting of early interrupt handlers. At this moment we
are in the decompressed Linux kernel, we have basic paging structure for early boot and our
current goal is to finish early preparation before the main kernel code will start to work.

We already started to do this preparation in the previous first part of this chapter. We
continue in this part and will know more about interrupt and exception handling.

Remember that we stopped before following loop:

for (1 = 0; 1 < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early idt_handler_array[i]);

from the arch/x86/kernel/head64.c source code file. But before we started to sort out this
code, we need to know about interrupts and handlers.

Some theory

An interrupt is an event caused by software or hardware to the CPU. For example a user
have pressed a key on keyboard. On interrupt, CPU stops the current task and transfer

control to the special routine which is called - interrupt handler. An interrupt handler handles
and interrupt and transfer control back to the previously stopped task. We can split interrupts
on three types:

e Software interrupts - when a software signals CPU that it needs kernel attention. These
interrupts are generally used for system calls;

e Hardware interrupts - when a hardware event happens, for example button is pressed
on a keyboard;

e Exceptions - interrupts generated by CPU, when the CPU detects error, for example
division by zero or accessing a memory page which is not in RAM.

Every interrupt and exception is assigned a unique number which called - vector number .
vector number can be any number from o to 255 . There is common practice to use first
32 vector numbers for exceptions, and vector numbers from 32 to 255 are used for

user-defined interrupts. We can see it in the code above - NuM_EXCEPTION_VECTORS , Which

defined as:
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#define NUM_EXCEPTION_VECTORS 32

CPU uses vector number as an index in the 1interrupt Descriptor Table (we will see
description of it soon). CPU catch interrupts from the APIC or through it's pins. Following
table shows 0-31 exceptions:

e e
ié-----[ #DE |Divide Error | Fault |NO |DIV and IDIV
e
%;-----[ #DB |Reserved |F/T |NO
e
%;-----[ =oo | NMI |INT |NO |external NMI
e
%é----_[ #BP |Breakpoint |Trap |NO | INT 3
e
%;----_[ #OF |Overflow |Trap |NO |INTO instruction
e
%;-_--_[ #BR |Bound Range Exceeded]|Fault|NO |BOUND instruction
]
{é-_--_[ #UD |Invalid Opcode | Fault |[NO |UD2 instruction
]
%;-_-__i #NM |Device Not Available|Fault|NO |Floating point or [F]WAIT
e
%;-_-__i #DF |Double Fault | Abort | YES |Ant instrctions which can gener
ate NMI|


http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

|10 | #TS |Invalid TSS | Fault | YES | Task switch or TSS access

[11 | #NP | Segment Not Present |Fault]|NO |Accessing segment register

I
%;;----I #SS |Stack-Segment Fault |Fault]|YES |Stack operations

I
%;é----I #GP |General Protection |Fault]|YES |Memory reference

I
%ié----I #PF |Page fault | Fault | YES |Memory reference

I
%;;----I --- |Reserved |NO

I
%;é----I #MF |x87 FPU fp error | Fault |NO |Floating point or [F]Wait

I
%;;----I #AC |Alignment Check | Fault | YES |Data reference
e
%;é----I #MC |Machine Check | Abort |NO
e
%;é----I #XM |SIMD fp exception | Fault |[NO |SSE[2,3] instructions
e
%;é----I #VE |virtualization exc. |Fault]|NO |EPT violations



To react on interrupt CPU uses special structure - Interrupt Descriptor Table or IDT. IDT is an
array of 8-byte descriptors like Global Descriptor Table, but IDT entries are called gates .
CPU multiplies vector number on 8 to find index of the IDT entry. But in 64-bit mode IDT is
an array of 16-byte descriptors and CPU multiplies vector number on 16 to find index of the
entry in the IDT. We remember from the previous part that CPU uses special epbTrR register
to locate Global Descriptor Table, so CPU uses special register 1pTrR for Interrupt
Descriptor Table and 1idt instruction for loading base address of the table into this
register.

64-bit mode IDT entry has following structure:

63 48 47 46 44 42 39 34 32
| I I [ I [ |
| offset 31..16 | P | P | @ |Type |00 O | @ | 0| IST |
| I T I [ |
31 15 16 0
| I |
| Segment Selector | Offset 15..0 |
I I I
Where:

e offset -is oOffsetto entry point of an interrupt handler;

e ppL - Descriptor Privilege Level,

e p - Segment Present flag;

® segment selector -a code segment selectorin GDT or LDT

e 1sT - provides ability to switch to a new stack for interrupts handling.

And the last Type field describes type of the 1pT entry. There are three different kinds of
handlers for interrupts:



e Task descriptor
¢ |nterrupt descriptor
e Trap descriptor

Interrupt and trap descriptors contain a far pointer to the entry point of the interrupt handler.
Only one difference between these types is how CPU handles 1F flag. If interrupt handler
was accessed through interrupt gate, CPU clear the 1F flag to prevent other interrupts
while current interrupt handler executes. After that current interrupt handler executes, CPU
sets the 1F flag again with iret instruction.

Other bits in the interrupt gate reserved and must be 0. Now let's look how CPU handles
interrupts:

e CPU save flags register, cs , and instruction pointer on the stack.

¢ |[f interrupt causes an error code (like #pF for example), CPU saves an error on the
stack after instruction pointer;

e After interrupt handler executed, iret instruction used to return from it.

Now let's back to code.

Fill and load IDT

We stopped at the following point:

for (1 = 0; 1 < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early idt_handler_array[i]);

Here we call set_intr_gate in the loop, which takes two parameters:

e Number of an interrupt or vector number ;
e Address of the idt handler.

and inserts an interrupt gate to the 1pT table which is represented by the &idt_descr

array. First of all let's look on the early idt_handler_array array. Itis an array which is

defined in the arch/x86/include/asm/segment.h header file contains addresses of the first
32 exception handlers:

#define EARLY_IDT_HANDLER_SIZE 9
#define NUM_EXCEPTION_VECTORS 32

extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZ
El;


https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/segment.h

The early idt_handler_array iS 288 bytes array which contains address of exception entry
points every nine bytes. Every nine bytes of this array consist of two bytes optional
instruction for pushing dummy error code if an exception does not provide it, two bytes
instruction for pushing vector number to the stack and five bytes of jump to the common
exception handler code.

As we can see, We're filling only first 32 1bpT entries in the loop, because all of the early
setup runs with interrupts disabled, so there is no need to set up interrupt handlers for
vectors greater than 32 . The early idt _handler_array array contains generic idt handlers
and we can find its definition in the arch/x86/kernel/head_64.S assembly file. For now we will
skip it, but will look it soon. Before this we will look on the implementation of the

set_intr_gate mMacro.

The set_intr_gate macro is defined in the arch/x86/include/asm/desc.h header file and

looks:
#define set_intr_gate(n, addr) \
do { \
BUG_ON( (unsigned)n > OXFF); \
_set_gate(n, GATE_INTERRUPT, (void *)addr, 0, O, \
__KERNEL_CS); \
_trace_set_gate(n, GATE_INTERRUPT, (void *)trace_##addr, \
®, 0, __KERNEL_CS);
} while (0)

First of all it checks with that passed interrupt number is not greater than 255 with Buc_on
macro. We need to do this check because we can have only 256 interrupts. After this, it
make a call of the _set_gate function which writes address of an interrupt gate to the 1p7 :

static inline void _set_gate(int gate, unsigned type, void *addr,
unsigned dpl, unsigned ist, unsigned seg)

{
gate_desc s;
pack_gate(&s, type, (unsigned long)addr, dpl, ist, seg);
write_idt_entry(idt_table, gate, &s);
write_trace_idt_entry(gate, &s);

}

At the start of _set_gate function we can see call of the pack_gate function which fills
gate_desc structure with the given values:
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static inline void unsigned unsigned long

unsigned unsigned unsigned
{
gate->offset_low = PTR_LOW(func);
gate->segment = _ KERNEL_CS;
gate->ist = ist;
gate->p =1;
gate->dpl = dpl;
gate->zero0® =0,
gate->zerol =0,
gate->type = type;
gate->offset_middle = PTR_MIDDLE(func);
gate->offset_high = PTR_HIGH(func);
}

As | mentioned above, we fill gate descriptor in this function. We fill three parts of the
address of the interrupt handler with the address which we got in the main loop (address of
the interrupt handler entry point). We are using three following macros to split address on
three parts:

#define PTR_LOW(X) ((unsigned long long)(x) & OXFFFF)
#define PTR_MIDDLE(Xx) (((unsigned long long)(x) >> 16) & OXFFFF)
#define PTR_HIGH(x) ((unsigned long long)(x) >> 32)

With the first pTR_Low macro we get the first 2 bytes of the address, with the second

pTR_MIDDLE We get the second 2 bytes of the address and with the third pTR_HIGH macro
we get the last 4 bytes of the address. Next we setup the segment selector for interrupt
handler, it will be our kernel code segment - _ kerneL_cs . In the next step we fill 1nterrupt
Stack Table and Dpescriptor Privilege Level (highest privilege level) with zeros. And we
set GAT_INTERRUPT type in the end.

Now we have filled IDT entry and we can call native write_idt_entry function which just
copies filled 1pT entry to the 1pT :

static inline void int const

(&idt[entry], gate, sizeof(*gate));

After that main loop will finished, we will have filled idt_table array of gate_desc
structures and we can load 1Interrupt Descriptor table Wwith the call of the:

load_idt((const struct desc_ptr *)&idt_descr);



Where idt_descr is:

struct desc_ptr idt_descr = { NR_VECTORS * - 1, (unsigned long) idt_table };

and load_idt justexecutes 1idt instruction:

asm volatile("lidt %@"::"m" (*dtr));

You can note that there are calls of the _trace_* functions in the _set gate and other
functions. These functions fills 1pT gates in the same manner that _set_gate but with one
difference. These functions use trace_idt_table the 1Interrupt Descriptor Table instead of
idt_table for tracepoints (we will cover this theme in the another part).

Okay, now we have filled and loaded 1nterrupt Descriptor Table , we know how the CPU
acts during an interrupt. So now time to deal with interrupts handlers.

Early interrupts handlers

As you can read above, we filled 1bp7T with the address of the early_idt_handler_array . We
can find it in the arch/x86/kernel/head_64.S assembly file:

.globl early idt_handler_array
early_idt_handlers:

i=o0

.rept NUM_EXCEPTION_VECTORS

.1f (EXCEPTION_ERRCODE_MASK >> i) & 1

pushqg $0

.endif

pushg $i

jmp early_idt_handler_common

i=i+1

.fill early_idt_handler_array + i*EARLY_IDT_HANDLER_SIZE - ., 1, Oxcc

.endr

We can see here, interrupt handlers generation for the first 32 exceptions. We check here,
if exception has an error code then we do nothing, if exception does not return error code,
we push zero to the stack. We do it for that would stack was uniform. After that we push
exception number on the stack and jump on the early_idt_handler_array Wwhich is generic
interrupt handler for now. As we may see above, every nine bytes of the

early idt_handler_array array consists from optional push of an error code, push of vector
number and jump instruction. We can see it in the output of the objdump ultil:


https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S

$ objdump -D vmlinux

ffffffff81fe5000 <early_idt_handler_array>:

ffFfffffa1fe5000: 6a 00 pushg $06x0

ffFfffffa1fe5002: 6a 00 pushg $06x0

FEFFFFff81fe5004: e9 17 01 00 00 jmpg  fFFFFFFF81fe5120 <early idt_han
dler_common>

ffffffffe1fe5009: 6a 00 pushq  $0x0

frfFffffa1fe500b: 6a 01 pushg  $ox1

frffffff8ife500d: €9 Oe 01 00 00 jmpg  ffffffff8ife5120 <early_idt_han
dler_common>

fFfFfffe1fes012: 6a 00 pushq $0x0

frFfFfffe1fe5014: 6a 02 pushq  $0x2

As i wrote above, CPU pushes flag register, cs and rip on the stack. So before
early_idt_handler Will be executed, stack will contain following data:

| %rflags
| %cs

I
I
| %rip |
I

| rsp --> error code

Now let's look on the early idt_handler_common implementation. It locates in the same
arch/x86/kernel/nead_64.S assembly file and first of all we can see check for NMI. We don't
need to handle it, so just ignore it in the early_idt_handler_common :

cmpl $2, (%rsp)
je .Lis_nmi

where is_nmi :

is_nmi:
addq $16,%rsp
INTERRUPT_RETURN

drops an error code and vector number from the stack and call 1INTERRUPT_RETURN Which is
just expands to the iretq instruction. As we checked the vector number and it is not wmr1 ,
we check early recursion_flag to preventrecursion in the early idt_handler_common and if
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it's correct we save general registers on the stack:

pushqg %rax
pushqg %rcx
pushqg %rdx
pushq %rsi
pushqg %rdi
pushqg %r8

pushq %r9

pushq %ri10
pushq %rii

We need to do it to prevent wrong values of registers when we return from the interrupt
handler. After this we check segment selector in the stack:

cmpl $_ KERNEL_CS, 96(%rsp)
jne 11f

which must be equal to the kernel code segment and if it is not we jump on label 11 which
prints panIc message and makes stack dump.

After the code segment was checked, we check the vector number, and if itis #pF or Page
Fault, we put value from the cr2 tothe rdi register and call early make pgtable (well
see it soon):

cmpl $14,72(%rsp)

jnz 10f
GET_CR2_INTO(%rdi)

call early_make_pgtable
andl %eax, %eax

jz 20f

If vector number is not #pPr , we restore general purpose registers from the stack:

popg %rii
popg %rio
popg %r9

popg %r8

popq %rdi
popq %rsi
popq %rdx
popg %rcx
popg %rax

and exit from the handler with iret .


https://en.wikipedia.org/wiki/Page_fault

It is the end of the first interrupt handler. Note that it is very early interrupt handler, so it
handles only Page Fault now. We will see handlers for the other interrupts, but now let's look
on the page fault handler.

Page fault handling

In the previous paragraph we saw first early interrupt handler which checks interrupt number
for page fault and calls ear1ly_make pgtable for building new page tables if it is. We need to
have #prF handler in this step because there are plans to add ability to load kernel above

46 and make access to boot_params structure above the 4G.

You can find implementation of the early make pgtable in the arch/x86/kernel/head64.c and
takes one parameter - address from the cr2 register, which caused Page Fault. Let's look
on it:

int __init unsigned long

{
unsigned long physaddr = address - __ PAGE_OFFSET;

unsigned long i;

pgdval t pgd, *pgd_p;
pudval t pud, *pud_p;
pmdval t pmd, *pmd_p;

It starts from the definition of some variables which have *val t types. All of these types
are just:

typedef unsigned long pgdval_t;

Also we will operate with the *_t (not val) types, for example pgd_t and etc... All of these
types defined in the arch/x86/include/asm/pgtable types.h and represent structures like this:

typedef struct { pgdval_t pgd; } pgd_t;

For example,

extern pgd_t early_level4 pgt[PTRS_PER_PGD];
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Here early level4 pgt presents early top-level page table directory which consists of an
array of pgd_t types and pgd points to low-level page entries.

After we made the check that we have no invalid address, we're getting the address of the
Page Global Directory entry which contains #pF address and put it's value to the pgd
variable:

pgd_p = &early leveld pgt[pgd_index(address)].pgd;
pgd = *pgd_p;

In the next step we check pgd , if it contains correct page global directory entry we put
physical address of the page global directory entry and put it to the pud_p with:

pud_p = (pudval t *)((pgd & PTE_PFN_MASK) + _ START_KERNEL_map - phys_base);

where PTE_PFN_MASK iS a macro:

#define PTE_PFN_MASK ((pteval_t)PHYSICAL_PAGE_MASK)

which expands to:

(~(PAGE_SIZE-1)) & ((1 << 46) - 1)

or

0b11121211112221441322212122224123231123333111333311

which is 46 bits to mask page frame.

If pgd does not contain correct address we check that next_early pgt is not greater than
EARLY_DYNAMIC_PAGE_TABLES Whichis 64 and present a fixed number of buffers to set up
new page tables on demand. If next_early pgt is greater than EARLY_DYNAMIC PAGE_TABLES
we reset page tables and start again. If next_early pgt is less than
EARLY_DYNAMIC_ PAGE_TABLES , We create new page upper directory pointer which points to the
current dynamic page table and writes it's physical address with the _kerpec_TABLE access
rights to the page global directory:



if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
reset_early_page_tables();
goto again;

}

pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];

for (1 = 0; 1 < PTRS_PER_PUD; i++)
pud_p[i] = 0;
*pgd_p = (pgdval_t)pud_p - __ START_KERNEL_map + phys_base + _KERNPG_TABLE;

After this we fix up address of the page upper directory with:

pud_p += pud_index(address);
pud = *pud_p;

In the next step we do the same actions as we did before, but with the page middle directory.
In the end we fix address of the page middle directory which contains maps kernel text+data
virtual addresses:

pmd = (physaddr & PMD_MASK) + early_pmd_flags;
pmd_p[pmd_index(address)] = pmd;

After page fault handler finished it's work and as result our early level4 pgt contains
entries which point to the valid addresses.

Conclusion

This is the end of the second part about linux kernel insides. If you have questions or
suggestions, ping me in twitter OxAX, drop me email or just create issue. In the next part we
will see all steps before kernel entry point - start_kernel function.

Please note that English is not my first language and | am really sorry for any
inconvenience. If you found any mistakes please send me PR to linux-insides.

Links

e GNU assembly .rept
e APIC

e NMI

e Page table

e [nterrupt handler
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Early interrupts handler

e Page Fault,
e Previous part

118


https://en.wikipedia.org/wiki/Page_fault
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html

Kernel initialization. Part 3.

Last preparations before the kernel entry point

This is the third part of the Linux kernel initialization process series. In the previous part we
saw early interrupt and exception handling and will continue to dive into the linux kernel
initialization process in the current part. Our next point is 'kernel entry point' - start_kernel
function from the init/main.c source code file. Yes, technically it is not kernel's entry point but
the start of the generic kernel code which does not depend on certain architecture. But
before we call the start_kernel function, we must do some preparations. So let's continue.

boot_params again

In the previous part we stopped at setting Interrupt Descriptor Table and loading it in the
1pTR register. At the next step after this we can see a call of the copy_bootdata function:

copy_bootdata(__va(real_mode_data));

This function takes one argument - virtual address of the real_mode_data . Remember that
we passed the address of the boot_params structure from
arch/x86/include/uapi/asm/bootparam.h to the x86_64 start_kernel function as first
argument in arch/x86/kernel/head _64.S:

/* rsi is pointer to real mode structure with interesting info.
pass it to C */
movq %rsi, %rdi

Now let's look at _ va macro. This macro defined in init/main.c:

#define _ va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

where PAGE_OFFSET iS _ PAGE_OFFSET Which is oexffffsseeeeeeeeee and the base virtual
address of the direct mapping of all physical memory. So we're getting virtual address of the
boot_params structure and pass it to the copy_bootdata function, where we copy
real mod_data tothe boot_params which is declared in the arch/x86/kernel/setup.h


https://github.com/0xAX/linux-insides/blob/master/Initialization/linux-initialization-2.md
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L114
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.h

extern struct boot_params boot_params;

Let's look at the copy_boot_data implementation:

static void __init char

{

char * command_line;
unsigned long cmd_line_ptr;

(&boot_params, real_mode_data, sizeof boot_params);
sanitize_boot_params(&boot_params);
cmd_line_ptr = get_cmd_line_ptr();
if (emd_line_ptr) {
command_line = _ va(cmd_line_ptr);
(boot_command_line, command_line, COMMAND_LINE SIZE);

First of all, note that this function is declared with __init prefix. It means that this function
will be used only during the initialization and used memory will be freed.

We can see declaration of two variables for the kernel command line and copying
real_mode_data tothe boot_params with the memcpy function. The next call of the
sanitize_boot_params function which fills some fields of the boot_params structure like
ext_ramdisk_image and etc... if bootloaders which fail to initialize unknown fields in
boot_params to zero. After this we're getting address of the command line with the call of

the get_cmd_line_ptr function:

unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << ;
return cmd_line_ptr;

which gets the 64-bit address of the command line from the kernel boot header and returns
it. In the last step we check cmd_line_ptr , getting its virtual address and copy it to the
boot_command_line Which is just an array of bytes:

extern char __initdata boot_command_line[];

After this we will have copied kernel command line and boot_params structure. In the next
step we can see call of the 1oad_ucode_bsp function which loads processor microcode, but
we will not see it here.



After microcode was loaded we can see the check of the console_loglevel and the

early printk function which prints kernel Alive string. But you'll never see this output
because early printk is notinitialized yet. It is a minor bug in the kernel and i sent the
patch - commit and you will see it in the mainline soon. So you can skip this code.

Move on init pages

In the next step, as we have copied boot_params structure, we need to move from the early
page tables to the page tables for initialization process. We already set early page tables for
switchover, you can read about it in the previous part and dropped all it in the

reset_early page_tables function (you can read about it in the previous part too) and kept
only kernel high mapping. After this we call:

clear_page(init_level4d_pgt);

function and pass init_level4 pgt which also defined in the arch/x86/kernel/head 64.S
and looks:

NEXT_PAGE(init_level4_pgt)

.quad level3_ident_pgt - _ START_KERNEL_map + _KERNPG_TABLE
.org init_level4 pgt + L4_PAGE_OFFSET*8, 0
.quad level3_ident_pgt - _ START_KERNEL_map + _KERNPG_TABLE
.org init_level4_pgt + L4_START_KERNEL*8, 0
.quad level3_kernel pgt - _ START_KERNEL_map + _PAGE_TABLE

which maps first 2 gigabytes and 512 megabytes for the kernel code, data and bss.
clear_page function defined in the arch/x86/lib/clear page 64.S let's look on this function:
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ENTRY(clear_page)
CFI_STARTPROC
xorl %eax,%eax
movl $4096/64,%ecx

.p2align 4
.Lloop:
decl %ecx

#define PUT(x) movqg %rax, x*8(%rdi)
movq %rax, (%rdi)
PUT(1)

PUT(2)

PUT(3)

PUT(4)

PUT(5)

PUT(6)

PUT(7)

leaq 64(%rdi),%rdi
jnz .L1loop

nop

ret

CFI_ENDPROC
.Lclear_page_end:
ENDPROC(clear_page)

As you can understand from the function name it clears or fills with zeros page tables. First
of all note that this function starts with the cr1_starTPROC and cr1_enpproc Which are
expands to GNU assembly directives:

#define CFI_STARTPROC .cfi_startproc
#define CFI_ENDPROC .cfi_endproc

and used for debugging. After cF1_sTARTPROC mMacro we zero out eax register and put 64 to
the ecx (it will be a counter). Next we can see loop which starts with the .L1o00p label and
it starts from the ecx decrement. After it we put zero from the rax register to the rdi
which contains the base address of the init_level4 pgt now and do the same procedure
seven times but every time move rdi offset on 8. After this we will have first 64 bytes of the

init_level4 pgt filled with zeros. In the next step we put the address of the

init_level4 pgt Wwith 64-bytes offset to the rdi again and repeat all operations until ecx
reaches zero. In the end we will have init_levela pgt filled with zeros.

As we have init_levels pgt filled with zeros, we set the last init_level4 pgt entry to
kernel high mapping with the:

init_level4_pgt[ ] = early_level4 pgt[ 1;



Remember that we dropped all early levels pgt entries in the reset_early_page_table
function and kept only kernel high mapping there.

The last step in the xse_64 start_kernel function is the call of the:

Xx86_64_start_reservations(real_mode_data);

function with the real mode data as argument. The x86_64 start_reservations function
defined in the same source code file as the x86_64_start_kernel function and looks:

void __init char

{

if (!boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));

reserve_ebda_region();

start_kernel();

You can see that it is the last function before we are in the kernel entry point - start_kernel
function. Let's look what it does and how it works.

Last step before kernel entry point

First of all we can see in the x86_64_start_reservations function the check for

boot_params.hdr.version :

if (!'boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));

and if it is zero we call copy_bootdata function again with the virtual address of the
real mode_data (read about about it's implementation).

In the next step we can see the call of the reserve_ebda_region function which defined in
the arch/x86/kernel/head.c. This function reserves memory block for the espa or Extended
BIOS Data Area. The Extended BIOS Data Area located in the top of conventional memory
and contains data about ports, disk parameters and etc...

Let's look on the reserve_ebda_region function. It starts from the checking is
paravirtualization enabled or not:
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if (paravirt_enabled())
return;

we exit from the reserve_ebda_region function if paravirtualization is enabled because if it
enabled the extended bios data area is absent. In the next step we need to get the end of
the low memory:

lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES);
lowmem <<= ;

We're getting the virtual address of the BIOS low memory in kilobytes and convert it to bytes
with shifting it on 10 (multiply on 1024 in other words). After this we need to get the address
of the extended BIOS data are with the:

ebda_addr = get_bios_ebda();

where get_bios_ebda function defined in the arch/x86/include/asm/bios_ebda.h and looks
like:

static inline unsigned int void

{
unsigned int address = *(unsigned short *)phys_to_virt( );
address <<= 4;
return address;

Let's try to understand how it works. Here we can see that we converting physical address
ox40e to the virtual, where oxe040:0x000e is the segment which contains base address of

the extended BIOS data area. Don't worry that we are using phys_to_virt function for

converting a physical address to virtual address. You can note that previously we have used
__va macro for the same point, but phys_to_virt is the same:

static inline void *

{

return __va(address);

}

only with one difference: we pass argument with the phys_addr_t which depends on

CONFIG_PHYS_ADDR_T_64BIT
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#ifdef CONFIG_PHYS_ADDR_T_64BIT
typedef u64 phys_addr_t;
#else
typedef u32 phys_addr_t;
#endif

This configuration option is enabled by conF1c_pHYs_ADDR_T_64BIT . After that we got virtual
address of the segment which stores the base address of the extended BIOS data area, we
shift it on 4 and return. After this ebda_addr variables contains the base address of the
extended BIOS data area.

In the next step we check that address of the extended BIOS data area and low memory is
not less than INSANE_CUTOFF macro

if (ebda_addr < INSANE_CUTOFF)
ebda_addr = LOWMEM_CAP;

if (lowmem < INSANE_CUTOFF)
lowmem = LOWMEM_CAP;

which is:

#define INSANE_CUTOFF 0x20000U

or 128 kilobytes. In the last step we get lower part in the low memory and extended bios
data area and call memblock reserve function which will reserve memory region for
extended bios data between low memory and one megabyte mark:

lowmem = min(lowmem, ebda_addr);
lowmem = min(lowmem, LOWMEM_CAP);
memblock_reserve(lowmenm, - lowmem);

memblock_reserve function is defined at mm/block.c and takes two parameters:

e base physical address;
® region size.

and reserves memory region for the given base address and size. memblock_reserve is the
first function in this book from linux kernel memory manager framework. We will take a
closer look on memory manager soon, but now let's look at its implementation.
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First touch of the linux kernel memory
manager framework

In the previous paragraph we stopped at the call of the memblock reserve function and as i
sad before it is the first function from the memory manager framework. Let's try to
understand how it works. memblock_reserve function just calls:

memblock_reserve_region(base, size, MAX_NUMNODES, 0);

function and passes 4 parameters there:

e physical base address of the memory region;
e size of the memory region;

e maximum number of numa nodes;

e flags.

At the start of the memblock_reserve_region body we can see definition of the

memblock_type structure:

struct memblock_type *_rgn = &memblock.reserved;

which presents the type of the memory block and looks:

struct memblock_type {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;
struct memblock_region *regions;

As we need to reserve memory block for extended bios data area, the type of the current
memory region is reserved where memblock structure is:

struct memblock {
bool bottom_up;
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
struct memblock_type physmem;
#endif

i



and describes generic memory block. You can see that we initialize _rgn by assigning it to
the address of the memblock.reserved . memblock is the global variable which looks:

struct memblock memblock __ initdata_memblock = {
.memory.regions = memblock_memory_init_regions,
.memory.cnt =1,
.memory.max = INIT_MEMBLOCK_REGIONS,
.reserved.regions = memblock_reserved_init_regions,
.reserved.cnt = 4,
.reserved.max INIT_MEMBLOCK_REGIONS,

#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
.physmem.regions = memblock_physmem_init_regions,

.physmem.cnt =1,
INIT_PHYSMEM_REGIONS,

.physmem.max

#endif

.bottom_up = 5

.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
3

We will not dive into detail of this variable, but we will see all details about it in the parts
about memory manager. Just note that memblock variable defined with the
__initdata_memblock Which is:

#define __initdata_memblock _ meminitdata

and _ meminit_data iS:

#define _ _meminitdata __section(.meminit.data)

From this we can conclude that all memory blocks will be in the .meminit.data section.
After we defined _rgn we print information about it with memblock_dbg macros. You can
enable it by passing memblock=debug to the kernel command line.

After debugging lines were printed next is the call of the following function:

memblock_add_range(_rgn, base, size, nid, flags);

which adds new memory block region into the .meminit.data section. As we do not initialize
_rgn butit just contains &memblock.reserved , we just fill passed _rgn with the base
address of the extended BIOS data area region, size of this region and flags:



if (type->regions[0].size == 0) {
WARN_ON(type->cnt != || type->total_size);
type->regions[0].base = base;
type->regions[0].size = size;
type->regions[0].flags = flags;
memblock_set_region_node(&type->regions[0], nid);
type->total_size = size;
return 0;

After we filled our region we can see the call of the memblock_set _region_node function with
two parameters:

e address of the filled memory region;
e NUMA node id.

where our regions represented by the memblock_region structure:

struct memblock_region {
phys_addr_t base;
phys_addr_t size;
unsigned long flags;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;
#endif
}

NUMA node id depends on max_Numnobes macro which is defined in the
include/linux/numa.h:

#define MAX_NUMNODES (1 << NODES_SHIFT)

where Nopes_sHIFT depends on conNFIG_NODES_SHIFT configuration parameter and defined
as:

#ifdef CONFIG_NODES_SHIFT

#define NODES_SHIFT CONFIG_NODES_SHIFT
#else

#define NODES_SHIFT (0]
#endif

memblick_set_region_node function justfills nid field from memblock _region with the given
value:
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static inline void struct int

{
r->nid = nid;

}

After this we will have first reserved memblock for the extended bios data area in the
.meminit.data Section. reserve ebda_region function finished its work on this step and we
can go back to the arch/x86/kernel/head64.c.

We finished all preparations before the kernel entry point! The last step in the
x86_64_start_reservations function is the call of the:

start_kernel()

function from init/main.c file.

That's all for this part.

Conclusion

It is the end of the third part about linux kernel insides. In next part we will see the first
initialization steps in the kernel entry point - start_kernel function. It will be the first step
before we will see launch of the first init process.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.

Links

e BI|OS data area
e What is in the extended BIOS data area on a PC?
e Previous part
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Kernel initialization. Part 4.

Kernel entry point

If you have read the previous part - Last preparations before the kernel entry point, you can
remember that we finished all pre-initialization stuff and stopped right before the call to the
start_kernel function from the init/main.c. The start_kernel is the entry of the generic

and architecture independent kernel code, although we will return to the arch/ folder many
times. If you look inside of the start_kernel function, you will see that this function is very
big. For this moment it contains about se calls of functions. Yes, it's very big and of course
this part will not cover all the processes that occur in this function. In the current part we will
only start to do it. This part and all the next which will be in the Kernel initialization process
chapter will cover it.

The main purpose of the start_kernel to finish kernel initialization process and launch the
first init process. Before the first process will be started, the start_kernel must do many
things such as: to enable lock validator, to initialize processor id, to enable early cgroups
subsystem, to setup per-cpu areas, to initialize different caches in vfs, to initialize memory
manager, rcu, vmalloc, scheduler, IRQs, ACPI and many many more. Only after these steps
will we see the launch of the first init process in the last part of this chapter. So much
kernel code awaits us, let's start.

NOTE: All parts from this big chapter Linux Kernel initialization process Will not
cover anything about debugging. There will be a separate chapter about kernel
debugging tips.

A little about function attributes

As | wrote above, the start_kernel function is defined in the init/main.c. This function
defined with the __init attribute and as you already may know from other parts, all
functions which are defined with this attribute are necessary during kernel initialization.

#define __init __section(.init.text) __cold notrace

After the initialization process have finished, the kernel will release these sections with a call
tothe free_initmem function. Note also that _ init is defined with two attributes: _ cold
and notrace . The purpose of the first cold attribute is to mark that the function is rarely
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used and the compiler must optimize this function for size. The second notrace is defined
as:

#define notrace __attribute__ ((no_instrument_function))

where no_instrument_function says to the compiler not to generate profiling function calls.

In the definition of the start_kernel function, you can also see the _ visible attribute
which expands to the:

#define _ visible __ attribute__ ((externally_visible))

where externally visible tells to the compiler that something uses this function or variable,
to prevent marking this function/variable as unusable . You can find the definition of this and
other macro attributes in include/linux/init.h.

First steps in the start_kernel

At the beginning of the start_kernel Yyou can see the definition of these two variables:

char *command_line;
char *after_dashes;

The first represents a pointer to the kernel command line and the second will contain the
result of the parse_args function which parses an input string with parameters in the form

name=value , l0oOking for specific keywords and invoking the right handlers. We will not go
into the details related with these two variables at this time, but will see it in the next parts. In
the next step we can see a call to the:

lockdep_init();

function. 1lockdep_init initializes lock validator. Its implementation is pretty simple, it just
initializes two list_head hashes and sets the 1ockdep_initialized global variableto 1 .
Lock validator detects circular lock dependencies and is called when any spinlock or mutex
is acquired.

The next function is set_task_stack_end_magic Which takes address of the init_task and
sets sTACK END_MAGIC ( ©0x57AC6E9D ) as canary forit. init_task represents the initial task
structure:


https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/0xAX/linux-insides/blob/master/DataStructures/dlist.md
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/Mutual_exclusion

struct task_struct init_task = INIT_TASK(init_task);

where task_struct stores all the information about a process. | will not explain this
structure in this book because it's very big. You can find its definition in
include/linux/sched.h. At this moment task_struct contains more than 1ee fields!
Although you will not see the explanation of the task_struct in this book, we will use it very
often since it is the fundamental structure which describes the process in the Linux kernel. |
will describe the meaning of the fields of this structure as we meet them in practice.

You can see the definition of the init_task and it initialized by the 1InIT_TASK macro. This
macro is from include/linux/init_task.h and it just fills the init_task with the values for the
first process. For example it sets:

¢ init process state to zero or runnable . Arunnable process is one which is waiting only
for a CPU to run on;

¢ init process flags - pF_kTHREAD Which means - kernel thread;

e a list of runnable task;

e process address space;

¢ init process stack to the &init_thread_info whichis init_thread_union.thread_info
and initthread_union hastype - thread_union Which contains thread_info and
process stack:

union thread_union {
struct thread_info thread_info;

unsigned long [THREAD_SIZE/sizeof(long)];

B

Every process has its own stack and it is 16 kilobytes or 4 page frames. in xse_64 . We can
note that it is defined as array of unsigned long . The next field of the thread_union is -
thread_info defined as:

struct thread_info {

}

struct task_struct
struct exec_domain

__u32
__u32
__u32

int

mm_segment_t

struct restart_block
void __user

unsigned int

unsigned int

*task;

*exec_domain;

flags;

status;

cpu;
saved_preempt_count;
addr_limit;
restart_block;
*sysenter_return;
sig_on_uaccess_error:
uaccess_err:1;

I
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and occupies 52 bytes. The thread_info structure contains architecture-specific information
on the thread. We know that on x8e6_64 the stack grows down and

thread_union.thread_info is stored at the bottom of the stack in our case. So the process
stack is 16 kilobytes and thread_info is at the bottom. The remaining thread_size will be

16 kilobytes - 62 bytes = 16332 bytes . Note that thread_union represented as the union
and not structure, it means that thread_info and stack share the memory space.

Schematically it can be represented as follows:

= > —= —

thread_info

http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-
process-binds-in-union-construct

So the 1nIT_TASK macro fills these task_struct's fields and many many more. As |
already wrote above, | will not describe all the fields and values in the 1nNnIT_TAsk macro but
we will see them soon.

Now let's go back to the set_task_stack_end_magic function. This function defined in the
kernel/fork.c and sets a canary to the init process stack to prevent stack overflow.

void struct

{

unsigned long *stackend;
stackend = end_of_stack(tsk);
*stackend = STACK_END_MAGIC;

Its implementation is simple. set_task_stack_end_magic gets the end of the stack for the
given task_struct with the end of stack function. The end of a process stack depends on
the conFie_sTAck_GrRowsup configuration option. As we learn in xse_64 architecture, the
stack grows down. So the end of the process stack will be:
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(unsigned long *)(task_thread_info(p) + 1);

where task_thread_info just returns the stack which we filled with the 1InIT_TASK macro:

#define task_thread_info(task) ((struct thread_info *)(task)->stack)

As we got the end of the init process stack, we write stack_enb_macic there. After canary is
set, we can check it like this:

if (*end_of_stack(task) != STACK_END_MAGIC) {

The next function after the set_task_stack_end_magic iS smp_setup_processor_id . This
function has an empty body for x86_64 :

void __init _ weak void
{
}

as it not implemented for all architectures, but some such as s390 and arm64.

The next function in start_kernel iS debug objects_early init . Implementation of this
function is almost the same as 1ockdep_init , but fills hashes for object debugging. As |
wrote above, we will not see the explanation of this and other functions which are for
debugging purposes in this chapter.

After the debug_object_early init function we can see the call of the
boot_init_stack_canary function which fills task_struct->canary with the canary value for
the -fstack-protector gcc feature. This function depends on the CcONFIG_cC_STACKPROTECTOR
configuration option and if this option is disabled, boot_init_stack _canary does nothing,

otherwise it generates random numbers based on random pool and the TSC:

get_random_bytes(&canary, sizeof(canary));
tsc = __native_read_tsc();
canary += tsc + (tsc << L);

After we got a random number, we fill the stack _canary field of task_struct with it:

current->stack_canary = canary;
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and write this value to the top of the IRQ stack with the:

this_cpu_write(irg_stack_union.stack_canary, canary);

Again, we will not dive into details here, we will cover it in the part about IRQs. As canary is
set, we disable local and early boot IRQs and register the bootstrap CPU in the CPU maps.
We disable local IRQs (interrupts for current CPU) with the 1ocal irq disable macro which
expands to the call of the arch_local irq disable function from include/linux/percpu-defs.h:

static inline notrace void void

{

native_irqg_enable();

}

Where native irq_enable is cli instruction for xse_e4 . As interrupts are disabled we can
register the current CPU with the given ID in the CPU bitmap.

The first processor activation

The current function from the start_kernel is boot_cpu_init . This function initializes
various CPU masks for the bootstrap processor. First of all it gets the bootstrap processor id
with a call to:

int cpu = smp_processor_id();

For now it is just zero. If the conFic_besuec_PReempT configuration option is disabled,
smp_processor_id just expands to the call of raw_smp_processor_id which expands to the:

#define raw_smp_processor_id() (this_cpu_read(cpu_number))

this_cpu_read as many other function like this ( this_cpu_write , this_cpu_add and etc...)
defined in the include/linux/percpu-defs.h and presents this_cpu operation. These
operations provide a way of optimizing access to the per-cpu variables which are associated
with the current processor. In our case itis this_cpu_read :

__pcpu_size_call_return(this_cpu_read_, pcp)

Remember that we have passed cpu_number as pcp tothe this_cpu_read from the
raw_smp_processor_id . Now let's look at the _ pcpu_size call_return implementation:
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#define __pcpu_size_call_return(stem, variable)

({
typeof(variable) pscr_ret__;
__verify_pcpu_ptr(&(variable));
switch(sizeof(variable)) {
case 1: pscr_ret__ = stem##l(variable); break;
case 2: pscr_ret__ = stem##2(variable); break;
case 4: pscr_ret__ = stem##4(variable); break;
case 8: pscr_ret__ = stem##8(variable); break;
default:

_ bad_size_call_parameter(); break;

}

pscr_ret__;
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Yes, it looks a little strange but it's easy. First of all we can see the definition of the
pscr_ret__ variable with the int type. Why int? Ok, variable iS common_cpu and it was
declared as per-cpu int variable:

DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number);

In the next step we call __ verify pcpu_ptr with the address of cpu_number .
__veryf_pcpu_ptr used to verify that the given parameter is a per-cpu pointer. After that we
set pscr_ret__ value which depends on the size of the variable. Our common_cpu variable is

int , so it 4 bytes in size. It means that we will get this_cpu_read_4(common_cpu) in

pscr_ret__ .Inthe end ofthe _ pcpu_size call return we justcallit. this_cpu_read_4 isa
macro.
#define this_cpu_read_4(pcp) percpu_from_op("mov", pcp)

which calls percpu_from_op and pass mov instruction and per-cpu variable there.
percpu_from_op Will expand to the inline assembly call:

asm("movl %%gs:%1,%0" : "=r" (pfo_ret_) : "m" (common_cpu))

Let's try to understand how it works and what it does. The gs segment register contains the
base of per-cpu area. Here we just copy common_cpu which is in memory to the pfo_ret__
with the movl instruction. Or with another words:

this_cpu_read(common_cpu)

is the same as:



movl %gs:$common_cpu, $pfo_ret_

As we didn't setup per-cpu area, we have only one - for the current running CPU, we will get
zero as aresult of the smp_processor_id .

As we got the current processor id, boot _cpu_init sets the given CPU online, active,
present and possible with the:

set_cpu_online(cpu, );
set_cpu_active(cpu, );
set_cpu_present(cpu, E;
set_cpu_possible(cpu, );

All of these functions use the concept - cpumask . cpu_possible is a set of CPU ID's which

can be plugged in at any time during the life of that system boot. cpu_present represents

which CPUs are currently plugged in. cpu_online represents subset of the cpu_present

and indicates CPUs which are available for scheduling. These masks depend on the
CONFIG_HOTPLUG_cPU configuration option and if this option is disabled possible == present

and active == online . Implementation of the all of these functions are very similar. Every

function checks the second parameter. If itis true , it calls cpumask_set_cpu or
cpumask_clear_cpu otherwise.

For example let's look at set_cpu_possible . As we passed true as the second parameter,
the:

cpumask_set_cpu(cpu, to_cpumask(cpu_possible _bits));

will be called. First of all let's try to understand the to_cpumask macro. This macro casts a

bitmap to a struct cpumask * . CPU masks provide a bitmap suitable for representing the

set of CPU's in a system, one bit position per CPU number. CPU mask presented by the
cpu_mask structure:

typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;

which is just bitmap declared with the DECLARE_BITMAP macro:

#define DECLARE_BITMAP(name, bits) unsigned long name[BITS_TO_LONGS(bits)]

As we can see from its definition, the pecLArRe_BITMAP macro expands to the array of
unsigned long . Now let's look at how the to_cpumask macro is implemented:



#define to_cpumask(bitmap) \
((struct cpumask *)(1 ? (bitmap) \
(void *)sizeof(__check_is_bitmap(bitmap))))

| don't know about you, but it looked really weird for me at the first time. We can see a
ternary operator here which is true every time, but why the _ check is_bitmap here? It's
simple, let's look at it:

static inline int __check_is_bitmap(const unsigned long *bitmap)

{

return 1;

Yeah, it just returns 1 every time. Actually we need in it here only for one purpose: at
compile time it checks that the given bitmap is a bitmap, or in other words it checks that the
given bitmap has atype of unsigned long * . SO we just pass cpu_possible bits to the

to_cpumask macro for converting the array of unsigned long tothe struct cpumask * . Now
we can call cpumask_set_cpu function with the cpu -0 and struct cpumask
*cpu_possible_bits . This function makes only one call of the set_bit function which sets
the given cpu in the cpumask. All of these set_cpu_* functions work on the same
principle.

If you're not sure that this set_cpu_* operations and cpumask are not clear for you, don't
worry about it. You can get more info by reading the special part about it - cpoumask or
documentation.

As we activated the bootstrap processor, it's time to go to the next function in the
start_kernel. Now itis page address_init , but this function does nothing in our case,
because it executes only when all ram can't be mapped directly.

Print linux banner

The next call is pr_notice :

#define pr_notice(fmt, ...) \
printk (KERN_NOTICE pr_fmt(fmt), ##_VA_ARGS_ )

as you can see it just expands to the printk call. At this moment we use pr_notice to
print the Linux banner:

pr_notice("%s", linux_banner);
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which is just the kernel version with some additional parameters:

Linux version 4.0.0-rc6+ (alex@localhost) (gcc version 4.9.1 (Ubuntu 4.9.1-16ubuntu6)
) #319 SMP

Architecture-dependent parts of initialization

The next step is architecture-specific initialization. The Linux kernel does it with the call of
the setup_arch function. This is a very big function like start_kernel and we do not have
time to consider all of its implementation in this part. Here we'll only start to do it and
continue in the next part. As itis architecture-specific , we need to go again to the arch/
directory. The setup_arch function defined in the arch/x86/kernel/setup.c source code file
and takes only one argument - address of the kernel command line.

This function starts from the reserving memory block for the kernel _text and _data
which starts from the _text symbol (you can remember it from the
arch/x86/kernel/head _64.S) and ends before _ bss_stop . We are using memblock for the
reserving of memory block:

memblock_reserve(__pa_symbol(_text), (unsigned long)__bss_stop - (unsigned long)_text)

r

You can read about memblock inthe Linux kernel memory management Part 1.. As you can
remember memblock_reserve function takes two parameters:

e base physical address of a memory block;
e size of a memory block.

We can get the base physical address of the _text symbol with the _ pa symbol macro:

#define _ pa_symbol(x) \
__phys_addr_symbol(__phys_reloc_hide((unsigned long)(x)))

First of all it calls __phys_reloc_hide macro on the given parameter. The _ phys_reloc_hide
macro does nothing for x86_64 and just returns the given parameter. Implementation of the
__phys_addr_symbol macro is easy. It just subtracts the symbol address from the base
address of the kernel text mapping base virtual address (you can remember that it is
__START_KERNEL_map ) and adds phys_base which is the base address of _text :

#define _ phys_addr_symbol(x) \
((unsigned long)(x) - __ _START_KERNEL_map + phys_base)
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After we got the physical address of the _text symbol, memblock_reserve can reserve a
memory block from the _text tothe _ bss stop - _text .

Reserve memory for initrd

In the next step after we reserved place for the kernel text and data is reserving place for the
initrd. We will not see details about initrd in this post, you just may know that it is
temporary root file system stored in memory and used by the kernel during its startup. The

early reserve_initrd function does all work. First of all this function gets the base address
of the ram disk, its size and the end address with:

u64 ramdisk_image = get_ramdisk_image();
u64 ramdisk_size = get_ramdisk_size();
u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);

All of these parameters are taken from boot_params . If you have read the chapter about
Linux Kernel Booting Process, you must remember that we filled the boot_params structure
during boot time. The kernel setup header contains a couple of fields which describes
ramdisk, for example:

Field name: ramdisk_image
Type: write (obligatory)
Offset/size: 0x218/4
Protocol: 2.00+

The 32-bit linear address of the initial ramdisk or ramfs. Leave at
zero if there is no initial ramdisk/ramfs.

So we can get all the information that interests us from boot_params . For example let's look

at get_ramdisk_image

static u64 __init void
{
u64 ramdisk_image = boot_params.hdr.ramdisk_image;

ramdisk_image |= (u64)boot_params.ext_ramdisk_image << ;

return ramdisk_image;

Here we get the address of the ramdisk from the boot_params and shift left it on 32 . We
need to do it because as you can read in the Documentation/x86/zero-page.ixt:
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0C0/004 ALL ext_ramdisk_image ramdisk_image high 32bits

So after shifting it on 32, we're getting a 64-bit address in ramdisk_image and we return it.
get_ramdisk_size Works on the same principle as get_ramdisk_image , but it used
ext_ramdisk_size instead of ext ramdisk_image . After we got ramdisk's size, base address

and end address, we check that bootloader provided ramdisk with the:

if (!boot_params.hdr.type_of_loader ||
'ramdisk_image || !ramdisk_size)
return;

and reserve memory block with the calculated addresses for the initial ramdisk in the end:

memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);

Conclusion

It is the end of the fourth part about the Linux kernel initialization process. We started to dive
in the kernel generic code from the start_kernel function in this part and stopped on the
architecture-specific initialization in the setup_arch . In the next part we will continue with
architecture-dependent initialization steps.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me a PR to linux-insides.

Links

e GCC function attributes
e this_cpu operations

® cpumask

e |ock validator

® cgroups

e stack buffer overflow

¢ |IRQs

® jnitrd

® Previous part
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Kernel initialization. Part 5.

Continue of architecture-specific
initialization

In the previous part, we stopped at the initialization of an architecture-specific stuff from the
setup_arch function and now we will continue with it. As we reserved memory for the initrd,
next step is the olpc_ofw _detect which detects One Laptop Per Child support. We will not
consider platform related stuff in this book and will skip functions related with it. So let's go
ahead. The next step is the early trap_init function. This function initializes debug ( #bB -
raised when the T1F flag of rflags is set) and int3 ( #BP ) interrupts gate. If you don't know
anything about interrupts, you can read about it in the Early interrupt and exception handling.
In xse architecture INnT , INTO and 1InT3 are special instructions which allow a task to
explicitly call an interrupt handler. The 1nT3 instruction calls the breakpoint ( #8p ) handler.
You may remember, we already saw it in the part about interrupts: and exceptions:

Debug interrupt #ps is the primary method of invoking debuggers. early trap_init
defined in the arch/x86/kernel/traps.c. This functions sets #pB and #sp handlers and

reloads IDT:
void __init void
{

set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
load_idt(&idt_descr);
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We already saw implementation of the set_intr_gate in the previous part about interrupts.
Here are two similar functions set_intr_gate_ist and set_system_intr_gate_ist . Both of
these two functions take three parameters:

e number of the interrupt;

e base address of the interrupt/exception handler;

e third parameteris - 1Interrupt Stack Table . IST iS a new mechanism in the xse_64
and part of the TSS. Every active thread in kernel mode has own kernel stack which is
16 kilobytes. While a thread in user space, kernel stack is empty except thread_info
(read about it previous part) at the bottom. In addition to per-thread stacks, there are a
couple of specialized stacks associated with each CPU. All about these stack you can
read in the linux kernel documentation - Kernel stacks. x86_64 provides feature which
allows to switch to a new special stack for during any events as non-maskable
interrupt and etc... And the name of this feature is - 1Interrupt stack Table . There can
be upto 7 1sT entries per CPU and every entry points to the dedicated stack. In our
case this is DEBUG_STACK .

set_intr_gate_ist and set_system_intr_gate_ist Work by the same principle as
set_intr_gate With only one difference. Both of these functions checks interrupt number
and call _set_gate inside:

BUG_ON( (unsigned)n > );
_set_gate(n, GATE_INTERRUPT, addr, 0, ist, __ KERNEL_CS);

as set_intr_gate does this. But set_intr_gate calls _set gate with dpl-0, andist- 0, but
set_intr_gate_ist and set_system_intr_gate_ist Sets ist as DEBUG_STACK and
set_system_intr_gate_ist Sets dpl as eox3 which is the lowest privilege. When an
interrupt occurs and the hardware loads such a descriptor, then hardware automatically sets
the new stack pointer based on the IST value, then invokes the interrupt handler. All of the
special kernel stacks will be setted in the cpu_init function (we will see it later).

As #pB and #Bp gates written to the idt descr , we reload 1pT table with 1load_idt
which just cals 1dtr instruction. Now let's look on interrupt handlers and will try to
understand how they works. Of course, | can't cover all interrupt handlers in this book and |
do not see the point in this. It is very interesting to delve in the linux kernel source code, so
we will see how debug handler implemented in this part, and understand how other
interrupt handlers are implemented will be your task.

DB handler
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As you can read above, we passed address of the #ps handler as &debug in the

set_intr_gate_ist . Ixr.free-electorns.com is a great resource for searching identifiers in the
linux kernel source code, but unfortunately you will not find debug handler with it. All of you
can find, itis debug definition in the arch/x86/include/asm/traps.h:

asmlinkage void void);

We can see asmlinkage attribute which tells to us that debug is function written with
assembly. Yeah, again and again assembly :). Implementation of the #pe handler as other
handlers is in this arch/x86/kernel/entry 64.S and defined with the idtentry assembly
macro:

idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

idtentry is a macro which defines an interrupt/exception entry point. As you can see it
takes five arguments:

e name of the interrupt entry point;

name of the interrupt handler;

has interrupt error code or not;
e paranoid - if this parameter = 1, switch to special stack (read above);

shift_ist - stack to switch during interrupt.

Now let's look on idtentry macro implementation. This macro defined in the same
assembly file and defines debug function with the entry macro. For the start idtentry
macro checks that given parameters are correct in case if need to switch to the special
stack. In the next step it checks that give interrupt returns error code. If interrupt does not
return error code (in our case #pB does not return error code), it calls INTR_FRAME oOF
xcPT_FRAME if interrupt has error code. Both of these macros xcpT_FRaME and INTR_FRAME
do nothing and need only for the building initial frame state for interrupts. They uses cF1
directives and used for debugging. More info you can find in the CFI directives. As comment
from the arch/x86/kernel/entry 64.S says: CFI macros are used to generate dwarf2 unwind

information for better backtraces. They don't change any code. SO we will ignore them.
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.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
ENTRY (\sym)

/* Sanity check */

.if \shift_ist != -1 && \paranoid ==

.error "using shift_ist requires paranoid=1"

.endif

.if \has_error_code
XCPT_FRAME

.else

INTR_FRAME

.endif

You can remember from the previous part about early interrupts/exceptions handling that
after interrupt occurs, current stack will have following format:

dbocoocoooooooooooooooooo0 +

I I
+40 | SS |
+32 | RSP |
+24 | RFLAGS |
+16 | Cs |
+8 | RIP |

0 | Error Code | <---- rsp
I I
Pocoocooooooooo000o000000 +

The next two macro from the idtentry implementation are:

ASM_CLAC
PARAVIRT_ADJUST_EXCEPTION_FRAME

First asm_cLac macro depends on conFic_x86_sMAP configuration option and need for
security reason, more about it you can read here. The second

PARAVIRT _ADJUST_EXCEPTION_FRAME Mmacro is for handling handle Xen-type-exceptions (this
chapter about kernel initialization and we will not consider virtualization stuff here).

The next piece of code checks if interrupt has error code or not and pushes $-1 which is
oxfFFFFFFFFFFFFFFF ON x86_64 on the stack if not:

.ifeq \has_error_code
pushq_cfi $-1
.endif
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We need to do it as dummy error code for stack consistency for all interrupts. In the next
step we subtract from the stack pointer $or1G_RAX-R15 :

subq $ORIG_RAX-R15, %rsp

where oRIRG RAX , R15 and other macros defined in the arch/x86/include/asm/calling.h and
ORIG_RAX-R15 is 120 bytes. General purpose registers will occupy these 120 bytes because

we need to store all registers on the stack during interrupt handling. After we set stack for

general purpose registers, the next step is checking that interrupt came from userspace with:

testl $3, CS(%rsp)
jnz 1f

Here we checks first and second bits in the cs . You can remember that cs register
contains segment selector where first two bits are reL . All privilege levels are integers in
the range 0-3, where the lowest number corresponds to the highest privilege. So if interrupt
came from the kernel mode we call save_paranoid or jump on label 1 if not. In the

save_paranoid we store all general purpose registers on the stack and switch user gs on
kernel gs if need:

movl $1,%ebx
movl $MSR_GS_BASE, %ecx
rdmsr
testl %edx, %edx
js 1f
SWAPGS
xorl %ebx, %ebx
1: ret

In the next steps we put pt_regs pointer to the rdi , save error code in the rsi ifit has
and call interrupt handler which is - do_debug in our case from the arch/x86/kernel/traps.c.
do_debug like other handlers takes two parameters:

e pt_regs - is a structure which presents set of CPU registers which are saved in the
process' memory region;
e error code - error code of interrupt.

After interrupt handler finished its work, calls paranoid_exit which restores stack, switch on
userspace if interrupt came from there and calls iret . That's all. Of course it is not all :),
but we will see more deeply in the separate chapter about interrupts.
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This is general view of the idtentry macro for #pe interrupt. All interrupts are similar to
this implementation and defined with idtentry too. After early trap_init finished its work,
the next function is early _cpu_init . This function defined in the
arch/x86/kernel/cpu/common.c and collects information about CPU and its vendor.

Early ioremap initialization

The next step is initialization of early ioremap . In general there are two ways to
communicate with devices:

e |/O Ports;
e Device memory.

We already saw first method ( outb/inb instructions) in the part about linux kernel booting
process. The second method is to map I/O physical addresses to virtual addresses. When a
physical address is accessed by the CPU, it may refer to a portion of physical RAM which
can be mapped on memory of the I/O device. So ioremap used to map device memory into
kernel address space.

As i wrote above next function is the early ioremap_init which re-maps I/O memory to
kernel address space so it can access it. We need to initialize early ioremap for early
initialization code which needs to temporarily map 1/O or memory regions before the normal
mapping functions like ioremap are available. Implementation of this function is in the
arch/x86/mm/ioremap.c. At the start of the early ioremap_init we can see definition of the

pmd point with pmd_t type (which presents page middle directory entry typedef struct {
pmdval t pmd; } pmd_t; where pmdval t iS unsigned long ) and make a check that fixmap
aligned in a correct way:

pmd_t *pmd;
BUILD_BUG_ON( (fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));

fixmap - is fixed virtual address mappings which extends from FIXApDDR START to

FIXADDR_TOP . Fixed virtual addresses are needed for subsystems that need to know the
virtual address at compile time. After the check early ioremap_init makes a call of the

early ioremap_setup function from the mm/early ioremap.c. early_ioremap_setup fills

slot_virt array of the unsigned long with virtual addresses with 512 temporary boot-time
fix-mappings:

for (i = 0; 1 < FIX_BTMAPS_SLOTS; i++)
slot_virt[i] = _ fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
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After this we get page middle directory entry for the rix_sTmMAP_BEGIN and put to the pmd
variable, fills bm_pte with zeros which is boot time page tables and call

pmd_populate_kernel function for setting given page table entry in the given page middle
directory:

pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
(bm_pte, 0, sizeof(bm_pte));
pmd_populate_kernel(&init_mm, pmd, bm_pte);

That's all for this. If you feeling puzzled, don't worry. There is special part about ioremap
and fixmaps in the Linux Kernel Memory Management. Part 2 chapter.

Obtaining major and minor numbers for the
root device

After early ioremap was initialized, you can see the following code:

ROOT_DEV = o0ld_decode_dev(boot_params.hdr.root_dev);

This code obtains major and minor numbers for the root device where initrd will be
mounted later in the do_mount_root function. Major number of the device identifies a driver
associated with the device. Minor number referred on the device controlled by driver. Note
that old_decode dev takes one parameter from the boot_params_structure . As we can read
from the x86 linux kernel boot protocol:

Field name: root_dev

Type: modify (optional)
Offset/size: Ox1fc/2
Protocol: ALL

The default root device device number. The use of this field is
deprecated, use the "root=" option on the command line instead.

Now let's try to understand what o1d_decode _dev does. Actually it just calls mkpev inside
which generates dev_t from the give major and minor numbers. It's implementation is
pretty simple:

static inline dev_t

{
return MKDEV((val >> 8) & , val & );


https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md

where dev_t is a kernel data type to present major/minor number pair. But what's the
strange o1d_ prefix? For historical reasons, there are two ways of managing the major and
minor numbers of a device. In the first way major and minor numbers occupied 2 bytes. You
can see it in the previous code: 8 bit for major number and 8 bit for minor number. But there
is a problem: only 256 major numbers and 256 minor numbers are possible. So 16-bit
integer was replaced by 32-bit integer where 12 bits reserved for major number and 20 bits
for minor. You can see this in the new_decode_dev implementation:

static inline dev_t

{
unsigned major = (dev & ) >> 8;
unsigned minor = (dev & ) | ((dev >> ) & );
return MKDEV(major, minor);

}

After calculation we will get exfff or 12 bits for major ifitis exffffffff and exfffff or
20 bits for minor . So in the end of execution of the o1d_decode_dev we will get major and
minor numbers for the root device in rooT_bEV .

Memory map setup

The next point is the setup of the memory map with the call of the setup_memory_map
function. But before this we setup different parameters as information about a screen
(current row and column, video page and etc... (you can read about it in the VVideo mode
initialization and transition to protected mode)), Extended display identification data, video
mode, bootloader_type and etc...:

screen_info = boot_params.screen_info;

edid_info = boot_params.edid_info;
saved_video_mode = boot_params.hdr.vid_mode;
bootloader_type = boot_params.hdr.type_of_loader;

if ((bootloader_type >> =S ) {
bootloader_type &= ;
bootloader_type |= (boot_params.hdr.ext_loader_type+ ) << 4;
}
bootloader_version = bootloader_type & ;
bootloader_version |= boot_params.hdr.ext_loader_ver << 4;

All of these parameters we got during boot time and stored in the boot_params structure.
After this we need to setup the end of the I/O memory. As you know one of the main
purposes of the kernel is resource management. And one of the resource is memory. As we
already know there are two ways to communicate with devices are 1/O ports and device
memory. All information about registered resources are available through:


http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html

e /proc/ioports - provides a list of currently registered port regions used for input or output
communication with a device;
e /proc/iomem - provides current map of the system's memory for each physical device.

At the moment we are interested in  /proc/iomen :

cat /proc/iomem
00000000-00000fff : reserved
00001000-0009d7ff : System RAM
0009d800-0009ffff : reserved
000a0000-0e0bffff : PCI Bus 0000:00
000cO00O-000cffff : Video ROM
000d000O-000d3fff : PCI Bus 0000:00
000d4000-000d7fff : PCI Bus 0000:00
000d8000-000dbfff : PCI Bus 0000:00
000dcO00-000dffff : PCI Bus 0000:00
000e0000-000fffff : reserved
000e0000-000e3fff : PCI Bus 0000:00
000e4000-000e7fff : PCI Bus 0000:00
000fPO00-000Fffff : System ROM

As you can see range of addresses are shown in hexadecimal notation with its owner. Linux
kernel provides API for managing any resources in a general way. Global resources (for
example PICs or I/O ports) can be divided into subsets - relating to any hardware bus slot.
The main structure resource :

struct resource {
resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags;
struct resource *parent, *sibling, *child;

be

presents abstraction for a tree-like subset of system resources. This structure provides
range of addresses from start to end ( resource size t iS phys_addr_t or ue4 for
x86_64 ) Which a resource covers, name Of a resource (you see these names in the
/proc/iomem output) and flags of a resource (All resources flags defined in the
include/linux/ioport.h). The last are three pointers to the resource structure. These pointers
enable a tree-like structure:


https://github.com/torvalds/linux/blob/master/include/linux/ioport.h
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Every subset of resources has root range resources. For iomem itis iomem_resource which
defined as:

struct resource iomem_resource = {

.name = "PCI mem",
.start = 0,

.end = .

.flags = IORESOURCE_MEM,

}
EXPORT_SYMBOL (iomem_resource);

TODO EXPORT_SYMBOL

iomem_resource defines root addresses range for io memory with pct mem name and
TORESOURCE_MEM ( 0x00000200 ) as flags. As i wrote above our current point is setup the end
address of the iomem . We will do it with:

iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;

Here we shift 1 on boot_cpu_data.x86_phys_bits . boot_cpu_data iS cpuinfo_x86 structure
which we filled during execution of the early cpu_init . As you can understand from the
name of the xse_phys_bits field, it presents maximum bits amount of the maximum physical
address in the system. Note also that iomem_resource is passed to the ExPoRT_symBoL
macro. This macro exports the given symbol ( iomem_resource in our case) for dynamic
linking or in other words it makes a symbol accessible to dynamically loaded modules.

After we set the end address of the root iomem resource address range, as | wrote above
the next step will be setup of the memory map. It will be produced with the call of the setup_
memory_map function:



void __ init void

{
char *who;
who = x86_init.resources.memory_setup();

(&e820_saved, &e820, sizeof(struct e820map));
printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n");
e820_print_map(who);

}

First of all we call look here the call of the x86_init.resources.memory_setup . x86_init iS a

x86_init_ops structure which presents platform specific setup functions as resources
initialization, pci initialization and etc... initialization of the xs6_init is in the
arch/x86/kernel/x86 init.c. | will not give here the full description because it is very long, but
only one part which interests us for now:

struct x86_init_ops x86_init __initdata = {
.resources = {

.probe_roms probe_roms,
.reserve_resources = reserve_standard_io_resources,

.memory_setup

default_machine_specific_memory_setup,

iy

As we can see here memry_setup field is default_machine_specific_memory_setup where we
get the number of the €820 entries which we collected in the boot time, sanitize the BIOS
€820 map and fill es2emap structure with the memory regions. As all regions are collected,
print of all regions with printk. You can find this print if you execute dmesg command and
you can see something like this:
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http://en.wikipedia.org/wiki/E820
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html

.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]

L T e T e T e T e T e T e I e B e T e T e B e B e e |
©O O O O O O 6 66O 6o 6o o o o

e820: BIOS-provided physical RAM map:

BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BIOS-e820:
BI0S-e820:
BIOS-e820:
BIOS-e820:

[mem
[mem
[mem
[mem
[mem
[mem
[mem
[mem
[mem
[mem
[mem
[mem
[mem

0Xx0000000000000000-0x000000000009d7f]
0x000000000009d800-0x000000000009FFff]
0Xx00000000000e00O0-0X00000000000F Fff]
0x0000000000100000-0x00000000be825Fff]
0Xx00000000be826000-0x00000000be82cff]
0x00000000be82d000-0X00000000bT744FFf]
0x00000000bf745000-0x00000000bTFf4fff]
0Xx00000000bfff5000-0x00000000dcO41fff]
0x00000000dc042000-0x00000000dcod2fff]
0x00000000dcOd3000-0x00000000dc138fff]
0x00000000dc139000-0x00000000dc27dfff]
0x00000000dc27e000-0x00000000deffefff]
0x00000000defffOOO-0x00000000deffffff]

usable
reserved
reserved
usable
ACPI NVS
usable
reserved
usable
reserved
usable
ACPI NVS
reserved
usable

Copying of the BIOS Enhanced Disk Device
information

The next two steps is parsing of the setup_data with parse setup_data function and
copying BIOS EDD to the safe place. setup_data is a field from the kernel boot header and

as we can read from the x8s boot protocol:

Field name: setup_data
Type: write (special)
Offset/size: 0x250/8
Protocol: 2.09+

The 64-bit physical pointer to NULL terminated single linked 1list of

struct setup_data. This is used to define a more extensible boot

parameters passing mechanism.

It used for storing setup information for different types as device tree blob, EFI setup data

and etc... In the second step we copy BIOS EDD information from the boot_params

structure that we collected in the arch/x86/boot/edd.c to the edd structure:


https://github.com/torvalds/linux/blob/master/arch/x86/boot/edd.c

static inline void _ _init void

{

(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,

sizeof(edd.mbr_signature));

(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
edd.edd_info_nr = boot_params.eddbuf_entries;

}

Memory descriptor initialization

The next step is initialization of the memory descriptor of the init process. As you already
can know every process has its own address space. This address space presented with
special data structure which called memory descriptor . Directly in the linux kernel source
code memory descriptor presented with mm_struct structure. mm_struct contains many
different fields related with the process address space as start/end address of the kernel
code/data, start/end of the brk, number of memory areas, list of memory areas and etc...
This structure defined in the include/linux/mm_types.h. As every process has its own
memory descriptor, task_struct structure containsitinthe mm and active mm field. And
our first init process has it too. You can remember that we saw the part of initialization of
the init task_struct with 1INIT_TAsk macro in the previous part:

#define INIT_TASK(tsk) \
{

.mm = , \
.active_mm = &init_mm, \

mm points to the process address space and active_mm points to the active address space
if process has no address space such as kernel threads (more about it you can read in the
documentation). Now we fill memory descriptor of the initial process:

init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = _brk_end;

with the kernel's text, data and brk. init_mm is the memory descriptor of the initial process
and defined as:
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struct mm_struct init_mm = {

.mm_rb = RB_ROOT,

.pgd = swapper_pg_dir,

.mm_users = ATOMIC_INIT(2),

.mm_count = ATOMIC_INIT(1),

.mmap_sem = _ RWSEM_INITIALIZER(init_mm.mmap_sem),
.page_table_lock = _ SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),
.mmlist = LIST_HEAD_INIT(init_mm.mmlist),

INIT_MM_CONTEXT(init_mm)
};

where mm_rb is a red-black tree of the virtual memory areas, pgd is a pointer to the page

global directory, mm_users is address space users, mm_count iS primary usage counter and
mmap_sem iS memory area semaphore. After we setup memory descriptor of the initial

process, next step is initialization of the Intel Memory Protection Extensions with
mpx_mm_init . The next step is initialization of the code/data/bss resources with:

code_resource.start = _ pa_symbol(_text);
code_resource.end = _ _pa_symbol(_etext)-1;
data_resource.start = _ pa_symbol(_etext);
data_resource.end = _ pa_symbol(_edata)-1;
bss_resource.start = _ pa_symbol(__bss_start);
bss_resource.end = _ _pa_symbol(__bss_stop)-1;

We already know a little about resource structure (read above). Here we fills code/data/bss
resources with their physical addresses. You can see it in the /proc/iomem :

-be825fff : System RAM
bb392 : Kernel code
bb393 c3f : Kernel data
al11000 ac3fff : Kernel bss

All of these structures are defined in the arch/x86/kernel/setup.c and look like typical
resource initialization:

static struct resource code_resource = {

.name = "Kernel code",

.start =0,

.end =0,

.flags = IORESOURCE_BUSY | IORESOURCE_MEM

}


https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c

The last step which we will cover in this part will be nx configuration. nx-bit or no

execute bit is 63-bit in the page directory entry which controls the ability to execute code

from all physical pages mapped by the table entry. This bit can only be used/set when the
no-execute page-protection mechanism is enabled by the setting ErFer.nxe to 1. In the
x86_configure nx function we check that CPU has support of nx-bit and it does not

disabled. After the check we fill _ supported pte mask depend on it:
void void
{
if (cpu_has_nx && !disable_nx)
__supported_pte_mask |= _PAGE_NX;
else
__supported_pte_mask &= ~_PAGE_NX;
3
Conclusion

It is the end of the fifth part about linux kernel initialization process. In this part we continued
to dive in the setup_arch function which makes initialization of architecture-specific stuff. It
was long part, but we have not finished with it. As i already wrote, the setup_arch is big
function, and | am really not sure that we will cover all of it even in the next part. There were
some new interesting concepts in this part like rix-mapped addresses, ioremap and etc...
Don't worry if they are unclear for you. There is a special part about these concepts - Linux
kernel memory management Part 2.. In the next part we will continue with the initialization of
the architecture-specific stuff and will see parsing of the early kernel parameters, early dump
of the pci devices, direct Media Interface scanning and many many more.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.

Links

e mm vs active_mm

e 820

e Supervisor mode access prevention
e Kernel stacks

e TSS

e IDT

e Memory mapped I/O


https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://www.kernel.org/doc/Documentation/vm/active_mm.txt
http://en.wikipedia.org/wiki/E820
https://lwn.net/Articles/517475/
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Task_state_segment
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Memory-mapped_I/O

Continue architecture-specific boot-time initializations

CFI directives

PDF. dwarf4 specification
Call stack
e Previous part

158


https://sourceware.org/binutils/docs/as/CFI-directives.html
http://dwarfstd.org/doc/DWARF4.pdf
http://en.wikipedia.org/wiki/Call_stack
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html

Kernel initialization. Part 6.

Architecture-specific initialization, again...

In the previous part we saw architecture-specific ( x86_64 in our case) initialization stuff from
the arch/x86/kernel/setup.c and finished on x86_configure_nx function which sets the

_pace_nx flag depends on support of NX bit. As | wrote before setup_arch function and

start_kernel are very big, so in this and in the next part we will continue to learn about
architecture-specific initialization process. The next function after x86_configure nx is

parse_early param . This function is defined in the init/main.c and as you can understand
from its name, this function parses kernel command line and setups different services
depends on the given parameters (all kernel command line parameters you can find are in
the Documentation/kernel-parameters.txt). You may remember how we setup earlyprintk
in the earliest part. On the early stage we looked for kernel parameters and their value with
the cmdline_find_option function and _ cmdline_find_option , _ cmdline_find_option_bool
helpers from the arch/x86/boot/cmdline.c. There we're in the generic kernel part which does
not depend on architecture and here we use another approach. If you are reading linux
kernel source code, you already note calls like this:

early_param("gbpages", parse_direct_gbpages_on);

early _param macro takes two parameters:

e command line parameter name;
e function which will be called if given parameter is passed.

and defined as:

#define early_param(str, fn) \
__setup_param(str, fn, fn, 1)

in the include/linux/init.h. As you can see early param macro just makes call of the
__setup_param Macro:


http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
http://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/cmdline.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h

#define __setup_param(str, unique_id, fn, early) \
static const char __setup_str_##unique_id[] __initconst \
__aligned(1) = str; \

static struct obs_kernel_param __setup_##unique_id \
__used __section(.init.setup) \
__attribute_ ((aligned((sizeof(long))))) \

= { _ _setup_str_##unique_id, fn, early }

This macro defines _ setup_str_*_id variable (where * depends on given function name)

and assigns it to the given command line parameter name. In the next line we can see

definition of the _ setup_* variable which type is obs_kernel param and its initialization.
obs_kernel_param structure defined as:

struct obs_kernel _param {
const char *str;
int (*setup_func)(char *);
int early;

¥

and contains three fields:

¢ name of the kernel parameter;
e function which setups something depend on parameter;
¢ field determines is parameter early (1) or not (0).

Note that _ set_param macro defines with __section(.init.setup) attribute. It means that
all _ setup_str_* will be placed inthe .init.setup section, moreover, as we can see in
the include/asm-generic/vmlinux.lds.h, they will be placed between _ setup_start and

__setup_end

#define INIT_SETUP(initsetup_align)
. = ALIGN(initsetup_align);
VMLINUX_SYMBOL(__setup_start) = .;
*(.init.setup)
VMLINUX_SYMBOL(__setup_end) = .;

s s s 7

Now we know how parameters are defined, let's back to the parse_early_param
implementation:


https://github.com/torvalds/linux/blob/master/include/asm-generic/vmlinux.lds.h

void __ init void

{
static int done __initdata;
static char tmp_cmdline[COMMAND_LINE_SIZE] _ initdata;
if (done)
return;
strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE);
parse_early_options(tmp_cmdline);
done = 1;
3

The parse_early_param function defines two static variables. First done check that
parse_early param already called and the second is temporary storage for kernel command
line. After this we copy boot_command_line to the temporary command line which we just
defined and call the parse_early_options function from the same source code main.c file.
parse_early options calls the parse args function from the kernel/params.c where
parse_args parses given command line and calls do_early param function. This function
goes fromthe _ setup_start t0 _ setup_end , and calls the function from the
obs_kernel_param if @ parameter is early. After this all services which are depend on early
command line parameters were setup and the next call after the parse_early param is
x86_report_nx . As | wrote in the beginning of this part, we already set nx-bit with the
x86_configure_nx . The next xseé_report_nx function from the arch/x86/mm/setup nx.c just
prints information about the nx . Note that we call x86_report_nx not right after the
x86_configure_nx , but after the call of the parse_early param . The answer is simple: we call
it after the parse_early param because the kernel support noexec parameter:

noexec [x86]
On X86-32 available only on PAE configured kernels.
noexec=on: enable non-executable mappings (default)
noexec=o0ff: disable non-executable mappings

We can see it in the booting time:

bootconso
NX (Execute Disable) protection: active

SMBIOS 2.8 present.

After this we can see call of the:

memblock_x86_reserve_range_setup_data();
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function. This function is defined in the same arch/x86/kernel/setup.c source code file and
remaps memory for the setup_data and reserved memory block for the setup_data (more
about setup_data Yyou can read in the previous part and about ioremap and memblock Yyou
can read in the Linux kernel memory management).

In the next step we can see following conditional statement:

if (acpi_mps_check()) {
#ifdef CONFIG_X86_LOCAL_APIC
disable_apic = 1;
#endif
setup_clear_cpu_cap(X86_FEATURE_APIC);

The first acpi_mps_check function from the arch/x86/kernel/acpi/boot.c depends on
CONFIG_x86_LOCAL_APIC and CONFIG_x86_MPPARSE configuration options:

int __init acpi_mps_check(void
{
#if defined(CONFIG_X86_LOCAL_APIC) && !'defined(CONFIG_X86_MPPARSE)
/* mptable code is not built-in*/
if (acpi_disabled || acpi_noirq) {
printk (KERN_WARNING "MPS support code is not built-in.\n"
"Using acpi=off or acpi=noirqg or pci=noacpi "
"may have problem\n");
return 1;

#endif

return 0;

It checks the built-in mps or MultiProcessor Specification table. If conFIc_x86_LocAL_APIC is
set and CcoNFIG_x86_MPPAARSE iS not set, acpi_mps_check prints warning message if the one
of the command line options: acpi=off , acpi=noirq Or pci=noacpi passed to the kernel. If
acpi_mps_check returns 1 it means that we disable local APIC and clear xs6_FEATURE_APIC
bit in the of the current CPU with the setup_clear_cpu_cap macro. (more about CPU mask
you can read in the CPU masks).

Early PCI dump

In the next step we make a dump of the PCI devices with the following code:
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#ifdef CONFIG_PCI
if (pci_early_dump_regs)
early_dump_pci_devices();
#endif

pci_early dump_regs Vvariable defined in the arch/x86/pci/common.c and its value depends
on the kernel command line parameter: pci=earlydump . We can find definition of this
parameter in the drivers/pci/pci.c:

early_param('"pci", pci_setup);

pci_setup function gets the string after the pci= and analyzes it. This function calls

pcibios_setup Which defined as _ weak in the drivers/pci/pci.c and every architecture
defines the same function which overrides _ weak analog. For example x86_64
architecture-dependent version is in the arch/x86/pci/common.c:

char *__init char {

} else if (! (str, "earlydump")) {
pci_early dump_regs = 1;

return ;

So, if conFic_pc1 option is set and we passed pci=earlydump option to the kernel
command line, next function which will be called - early_dump_pci_devices from the
arch/x86/pci/early.c. This function checks noearly pci parameter with:

if (learly_pci_allowed())

return;

and returns if it was passed. Each PCI domain can host up to 256 buses and each bus
hosts up to 32 devices. So, we goes in a loop:
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for (bus = 0; bus < ; bus++) {

for (slot = 0; slot < ; slot++) {
for (func = 0; func < 8; func++) {
}

}

and read the pci config with the read_pci_config function.

That's all. We will not go deep in the pci details, but will see more details in the special

Drivers/PCI part.

Finish with memory parsing

After the early dump_pci_devices , there are a couple of function related with available
memory and €820 which we collected in the First steps in the kernel setup part:

e820_reserve_setup_data();
finish_e820_parsing();

€820_add_kernel_range();
trim_bios_range(void);

max_pfn = e820_end_of_ram_pfn();
early_reserve_e820_mpc_new();

Let's look on it. As you can see the first function is es26_reserve_setup_data . This function
does almost the same as memblock_x86_reserve_range_setup_data Wwhich we saw above, but
it also calls es20_update_range which adds new regions to the es2emap with the given type
which is Es20_RESERVED_KERN in our case. The next function is finish_e820_parsing which
sanitizes es2o0map Wwith the sanitize_es820_map function. Besides this two functions we can
see a couple of functions related to the e820. You can see it in the listing above.
e820_add_kernel_range function takes the physical address of the kernel start and end:

u64 start = _ pa_symbol(_text);
u64 size = _ pa_symbol(_end) - start;
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checks that .text .data and .bss marked as Es2erAM inthe es2eomap and prints the
warning message if not. The next function trm_bios_range update first 4096 bytes in
e820Map as E820_RESERVED and sanitizes it again with the call of the sanitize e820_map .
After this we get the last page frame number with the call of the e820_end_of_ram_pfn
function. Every memory page has an unique number - page frame number and
e820_end_of_ram_pfn function returns the maximum with the call of the es20_end_pfn :

unsigned long __init void

{
return e820_end_pfn(MAX_ARCH_PFN);

where e820_end_pfn takes maximum page frame number on the certain architecture
( MAX_ARCH_PFN is 0x400000000 for x86_64 ). Inthe es2e_end pfn we go through the all

e820 slots and check that es2e entry has Es2e_rRaM oOr E820_PRAM type because we
calculate page frame numbers only for these types, gets the base address and end address
of the page frame number for the current es2e entry and makes some checks for these
addresses:

for (1 = 0; i < e820.nr_map; i++) {
struct e820entry *ei = &e820. [1i];
unsigned long start_pfn;
unsigned long end_pfn;

if (ei->type != E820_RAM && ei->type != E820_PRAM)

continue;

start_pfn = ei->addr >> PAGE_SHIFT;
end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;

if (start_pfn >= limit_pfn)
continue;

if (end_pfn > limit_pfn) {
last_pfn = limit_pfn;
break;

}

if (end_pfn > last_pfn)
last_pfn = end_pfn;



if (last_pfn > max_arch_pfn)
last_pfn = max_arch_pfn;

printk(KERN_INFO "e820: last_pfn = %#1x max_arch_pfn = %#1lx\n",
last_pfn, max_arch_pfn);
return last_pfn;

After this we check that 1ast_pfn which we got in the loop is not greater that maximum
page frame number for the certain architecture ( xse_e64 in our case), print information about
last page frame number and return it. We can see the 1last _pfn inthe dmesg output:

[ 0.000000] e820: last_pfn = 0x41fE00 max_arch_pfn = 0x400000000

After this, as we have calculated the biggest page frame number, we calculate max_low_pfn
which is the biggest page frame number in the 1ow memory or bellow first 4 gigabytes. If
installed more than 4 gigabytes of RAM, max_low_pfn will be result of the

e820_end_of_low_ram_pfn function which does the same e820_end_of_ram_pfn but with 4
gigabytes limit, in other way max_low_pfn will be the same as max_pfn :

if (max_pfn > (1UL<<( - PAGE_SHIFT)))
max_low_pfn = e820_end_of_low_ram_pfn();
else
max_low_pfn = max_pfn;

high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) +

r

Next we calculate high_memory (defines the upper bound on direct map memory) with _ va
macro which returns a virtual address by the given physical memory.

DMI scanning

The next step after manipulations with different memory regions and esz2e slots is collecting
information about computer. We will get all information with the Desktop Management
Interface and following functions:

dmi_scan_machine();
dmi_memdev_walk();
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Firstis dmi_scan_machine defined in the drivers/firmware/dmi_scan.c. This function goes
through the System Management BIOS structures and extracts information. There are two
ways specified to gain access to the swBIos table: get the pointer to the smeios table from
the EFI's configuration table and scanning the physical memory between exreeee and
ox10000 addresses. Let's look on the second approach. dmi_scan_machine function remaps
memory between oxfeeee and oxieeee with the dmi_early remap which just expands to

the early_ioremap

void __init void
{

char __iomem *p, *q;

char buf[32];

p = dmi_early_remap( : )i
if (p == )
goto error;

and iterates over all pmi header address and find search _sw_ string:

(buf, 0, );
for (a =p; g<p+ 7 q +=16) {
memcpy_fromio(buf + , q, );
if (!'dmi_smbios3_present(buf) || !dmi_present(buf)) {
dmi_available = 1;
dmi_early_unmap(p, );
goto out;

(buf, buf + , );

_smM_ string must be between oeeereeeeh and exeeerrFFF . Here we copy 16 bytes to the
buf with memcpy_fromio which is the same memcpy and execute dmi_smbios3_present and
dmi_present on the buffer. These functions check that first 4 bytes is _sm_ string, get
smBIos version and gets _pm1i_ attributes as pbm1 structure table length, table address
and etc... After one of these functions finish, you will see the result of it in the dmesg output:

[ 0.000000] SMBIOS 2.7 present.
[ 0.000000] DMI: Gigabyte Technology Co., Ltd. Z97X-UD5H-BK/Z97X-UD5H-BK, BIOS F6 0

6/17/2014

In the end of the dmi_scan_machine , we unmap the previously remapped memory:
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dmi_early_unmap(p, ),

The second function is - dmi_memdev_walk . As you can understand it goes over memory
devices. Let's look on it:

void __init void
{
if (!dmi_available)
return;
if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {

dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
if (dmi_memdev)
dmi_walk_early(save_mem_devices);

It checks that pm1 available (we got it in the previous function - dmi_scan_machine ) and
collects information about memory devices with dmi_walk _early and dmi_alloc Wwhich
defined as:

#ifdef CONFIG_DMI
RESERVE_BRK(dmi_alloc, 65536);
#endif

RESERVE_BRK defined in the arch/x86/include/asm/setup.h and reserves space with given
size in the brk section.

init_hypervisor_platform();
x86_1init.resources.probe_roms();
insert_resource(&iomem_resource, &code_resource);
insert_resource(&iomem_resource, &data_resource);
insert_resource(&iomem_resource, &bss_resource);
early_gart_iommu_check();

SMP config

The next step is parsing of the SMP configuration. We do it with the call of the
find_smp_config function which just calls function:
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static inline void void

{

x86_1init.mpparse.find_smp_config();

inside. x86_init.mpparse.find_smp_config is the default_find_smp_config function from the
arch/x86/kernel/mpparse.c. In the default _find_smp_config function we are scanning a
couple of memory regions for smp config and return if they are found:

if (smp_scan_config(0x0, )
smp_scan_config( @ , ) |
smp_scan_config( , ))
return;

First of all smp_scan_config function defines a couple of variables:

unsigned int *bp = phys_to_virt(base);
struct mpf_intel *mpf;

First is virtual address of the memory region where we will scan swp config, second is the
pointer to the mpf_intel structure. Let's try to understand what is it mpf_intel . All
information stores in the multiprocessor configuration data structure. mpf_intel presents
this structure and looks:

struct mpf_intel {
char signature[4];
unsigned int physptr;
unsigned char length;
unsigned char specification;
unsigned char checksum;
unsigned char featurel;
unsigned char feature2;
unsigned char feature3;
unsigned char feature4;
unsigned char feature5;

be

As we can read in the documentation - one of the main functions of the system BIOS is to
construct the MP floating pointer structure and the MP configuration table. And operating
system must have access to this information about the multiprocessor configuration and
mpf_intel stores the physical address (look at second parameter) of the multiprocessor
configuration table. So, smp_scan_config going in a loop through the given memory range
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and tries to find MpP floating pointer structure there. It checks that current byte points to
the smp signature, checks checksum, checks if mpf->specification is 1 or 4(it mustbe 1
or 4 by specification) in the loop:

while (length > 0) {
if ((*bp == SMP_MAGIC_IDENT) &&
(mpf->length == 1) &&
Impf_checksum( (unsigned char *)bp, ) &&
((mpf->specification == 1)
|| (mpf->specification == 4))) {

mem = virt_to_phys(mpf);

memblock_reserve(mem, sizeof(*mpf));

if (mpf->physptr)
smp_reserve_memory(mpf);

reserves given memory block if search is successful with memblock_reserve and reserves
physical address of the multiprocessor configuration table. You can find documentation
about this in the - MultiProcessor Specification. You can read More details in the special part
about swp .

Additional early memory initialization routines

In the next step of the setup_arch we can see the call of the early alloc_pgt _buf function
which allocates the page table buffer for early stage. The page table buffer will be placed in
the brk area. Let's look on its implementation:

void __init void
{
unsigned long tables = INIT_PGT_BUF_SIZE;

phys_addr_t base;
base = _ pa(extend_brk(tables, PAGE_SIZE));

pgt_buf_start = base >> PAGE_SHIFT;
pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);

First of all it get the size of the page table buffer, it will be 1InIT P6T_BUF size whichis (6 *
PAGe_s1ze) in the current linux kernel 4.0. As we got the size of the page table buffer, we call
extend_brk function with two parameters: size and align. As you can understand from its
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name, this function extends the brk area. As we can see in the linux kernel linker script
brk is in memory right after the BSS:

. = ALIGN(PAGE_SIZE);
.brk : AT(ADDR(.brk) - LOAD_OFFSET) {
_ _brk_base = .;
. o+= * 5
*(.brk_reservation)
_ _brk_limit = .;

Or we can find it with reade1f util:

Rl f R o A AF B BF A L P A T P AT R L S Al F d f A o N A T B AT AT -

.bss NOBITS ffffffffg199deee o©0dodoee
00000000000b4000 000000ORLEOO00OO0 WA 5] i) 4096

.brk NOBITS ffffffffe1a51000 ©00d9deee
0000000000026000 O00000000000000OGO WA §] i} 1

After that we got physical address of the new brk withthe _ pa macro, we calculate the
base address and the end of the page table buffer. In the next step as we got page table
buffer, we reserve memory block for the brk area with the reserve_brk function:

static void __init void

{
if (_brk_end > _brk_start)

memblock_reserve(__pa_symbol(_brk_start),
_brk_end - _brk_start);

_brk_start = 0;

Note that in the end of the reserve brk , we set brk_start to zero, because after this we

will not allocate it anymore. The next step after reserving memory block for the brk , we

need to unmap out-of-range memory areas in the kernel mapping with the cleanup_highmap

function. Remember that kernel mapping is _ START_KERNEL_map and _end - _text Of
level2_kernel_pgt maps the kernel _text , data and bss . In the start of the
clean_high_map we define these parameters:

unsigned long vaddr = __ START_KERNEL_map;

unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
pmd_t *pmd = level2_kernel_pgt;

pmd_t *last_pmd = pmd + PTRS_PER_PMD;
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Now, as we defined start and end of the kernel mapping, we go in the loop through the all
kernel page middle directory entries and clean entries which are not between _text and

end .

for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
if (pmd_none(*pmd))
continue;
if (vaddr < (unsigned long) _text || vaddr > end)
set_pmd(pmd, __pmd(0));

After this we set the limit for the memblock allocation with the memblock set current_ limit
function (read more about memblock you can in the Linux kernel memory management Part
2), it will be 1sa eEnp_Abbress or oxieee0e and fill the memblock information according to

es20 Wwith the call of the memblock_x86 fill function. You can see the result of this function
in the kernel initialization time:

MEMBLOCK configuration:

memory size = Ox1fff7ec00 reserved size = 0x1e30000

memory.cnt = 0x3

memory[0x0] [6x00000000001000-0x0000000009efff], 0x9e000 bytes flags: 0x0
memory[0x1] [6X00000000100000-0x000000bffdffff], Oxbfeed00O bytes flags: Ox0O
memory[0x2] [6X00000100000000-0x0000023Fffffff], 0x140000000 bytes flags: Ox0
reserved.cnt = 0x3

reserved[0x0] [6X0000000009TO00-0x000000000fffff], O0x61000 bytes flags: 0x0
reserved[0x1] [6x00000001000000-0x00000001a57fff], 0xa58000 bytes flags: Ox0
reserved[0x2] [6X0000007ec89000-0x0000007Fffffff], 0x1377000 bytes flags: Ox0

The rest functions after the memblock_x86_fill are: early reserve_e820_mpc_new allocates
additional slots in the es2emap for MultiProcessor Specification table, reserve real mode -
reserves low memory from exe to 1 megabyte for the trampoline to the real mode (for
rebooting, etc.), trim_platform_memory ranges - trims certain memory regions started from

0x20050000 , 0x20110000 , etc. these regions must be excluded because Sandy Bridge has
problems with these regions, trim_low_memory range reserves the first 4 kilobyte page in

memblock , init_mem mapping function reconstructs direct memory mapping and setups the
direct mapping of the physical memory at PAGE OFFSET , early trap_pf_init Setups #PF
handler (we will look on it in the chapter about interrupts) and setup_real mode function
setups trampoline to the real mode code.

That's all. You can note that this part will not cover all functions which are in the setup_arch

(like early gart_iommu_check , mtrrinitialization, etc.). As | already wrote many times,
setup_arch is big, and linux kernel is big. That's why | can't cover every line in the linux

kernel. | don't think that we missed something important, but you can say something like:
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each line of code is important. Yes, it's true, but | missed them anyway, because | think that
it is not realistic to cover full linux kernel. Anyway we will often return to the idea that we
have already seen, and if something is unfamiliar, we will cover this theme.

Conclusion

It is the end of the sixth part about linux kernel initialization process. In this part we
continued to dive in the setup_arch function again and it was long part, but we are not
finished with it. Yes, setup_arch is big, hope that next part will be the last part about this
function.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Kernel initialization. Part 7.

The End of the architecture-specific
initialization, almost...

This is the seventh part of the Linux Kernel initialization process which covers insides of the

setup_arch function from the arch/x86/kernel/setup.c. As you can know from the previous
parts, the setup_arch function does some architecture-specific (in our case it is x86 64)
initialization stuff like reserving memory for kernel code/data/bss, early scanning of the
Desktop Management Interface, early dump of the PCI device and many many more. If you
have read the previous part, you can remember that we've finished it at the

setup_real_mode function. In the next step, as we set limit of the memblock to the all
mapped pages, we can see the call of the setup_log buf function from the
kernel/printk/printk.c.

The setup_log buf function setups kernel cyclic buffer and its length depends on the
CONFIG_LOG_BUF_SHIFT configuration option. As we can read from the documentation of the
CONFIG_LOG_BUF_SHIFT it can be between 12 and 21 . In the insides, buffer defined as

array of chars:

#define _ LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
static char *log_buf = __ log_buf;

Now let's look on the implementation of the setup_log buf function. It starts with check that
current buffer is empty (It must be empty, because we just setup it) and another check that it
is early setup. If setup of the kernel log buffer is not early, we call the 1og_buf_add_cpu
function which increase size of the buffer for every CPU:

if (log_buf != _ log_buf)

return;
if ('early && 'new_log_buf_len)

log_buf_add_cpu();

We will not research 1og buf_add _cpu function, because as you can see in the setup_arch ,
we call setup_log_buf as:
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setup_log_buf(1);

where 1 means that it is early setup. In the next step we check new_log_buf_len variable
which is updated length of the kernel log buffer and allocate new space for the buffer with
the memblock virt_alloc function for it, or just return.

As kernel log buffer is ready, the next function is reserve_initrd . You can remember that
we already called the early reserve initrd function in the fourth part of the Kernel
initialization. Now, as we reconstructed direct memory mapping in the init_mem_mapping
function, we need to move initrd into directly mapped memory. The reserve_initrd function
starts from the definition of the base address and end address of the initrd and check that

initrd is provided by a bootloader. All the same as what we saw in the

early reserve_initrd . But instead of the reserving place in the memblock area with the call
of the memblock reserve function, we get the mapped size of the direct memory area and
check that the size of the initrd is not greater than this area with:

mapped_size = memblock_mem_size(max_pfn_mapped);
if (ramdisk_size >= (mapped_size>>1))
panic("initrd too large to handle, "
"disabling initrd (%l1ld needed, %l1ld available)\n",
ramdisk_size, mapped_size>>1);

You can see here that we call memblock_mem_size function and pass the max_pfn_mapped to
it, where max_pfn_mapped contains the highest direct mapped page frame number. If you do
not remember what is page frame number , explanation is simple: First 12 bits of the virtual
address represent offset in the physical page or page frame. If we right-shift out 12 bits of
the virtual address, we'll discard offset part and will get page Frame Number . In the
memblock_mem_size we go through the all memblock mem (not reserved) regions and
calculates size of the mapped pages and return it to the mapped_size variable (see code
above). As we got amount of the direct mapped memory, we check that size of the initrd
is not greater than mapped pages. If it is greater we just call panic which halts the system
and prints famous Kernel panic message. In the next step we print information about the
initrd size. We can see the result of this in the dmesg output:

[ ] RAMDISK: [mem 1

and relocate initrd to the direct mapping area with the relocate_initrd function. In the
start of the relocate_initrd function we try to find a free area with the
memblock_find_in_range function:
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relocated_ramdisk = memblock_find_in_range(©®, PFN_PHYS(max_pfn_mapped), area_size, PAG
E_SIZE);

if ('relocated_ramdisk)
panic("Cannot find place for new RAMDISK of size %11ld\n",
ramdisk_size);

The memblock find_in_range function tries to find a free area in a given range, in our case
from o tothe maximum mapped physical address and size must equal to the aligned size
of the initrd . If we didn't find a area with the given size, we call panic again. If all is
good, we start to relocated RAM disk to the down of the directly mapped memory in the next
step.

In the end of the reserve_initrd function, we free memblock memory which occupied by
the ramdisk with the call of the:

memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);

After we relocated initrd ramdisk image, the next function is vsmp_init from the
arch/x86/kernel/vsmp_64.c. This function initializes support of the scalemp vsmp . As |
already wrote in the previous parts, this chapter will not cover non-related x86_64
initialization parts (for example as the current or acp1 , etc.). So we will skip implementation
of this for now and will back to it in the part which cover techniques of parallel computing.

The next function is io_delay _init from the arch/x86/kernel/io _delay.c. This function allows
to override default default I/O delay exse port. We already saw I/O delay in the Last
preparation before transition into protected mode, now let's look on the io_delay init
implementation:

void __init void
{
if ('io_delay_override)
dmi_check_system(io_delay Oxed_port_dmi_table);

This function check io_delay override variable and overrides I/O delay port if

io_delay override is set. We can set io_delay override variably by passing io_delay
option to the kernel command line. As we can read from the Documentation/kernel-
parameters.ixt, io_delay option is:
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io_delay= [X86] I/0 delay method
Ox80
Standard port 0x80 based delay
Oxed
Alternate port Oxed based delay (needed on some systems)
udelay
Simple two microseconds delay
none
No delay

We can see io_delay command line parameter setup with the early param macro in the
arch/x86/kernel/io_delay.c

early param("io_delay", io_delay_param);

More about early_param you can read in the previous part. So the io_delay param function
which setups io_delay_override variable will be called in the do_early param function.

io_delay _param function gets the argument of the io_delay kernel command line
parameter and sets io_delay type depends on it:

static int __init char
{
if (!s)
return -EINVAL,

if (! (s, "Ox80"))

io_delay type = CONFIG_IO_DELAY_TYPE_0X80;
else if (! (s, "oxed"))

io_delay type = CONFIG_IO_DELAY_TYPE_OXED;
else if (! (s, "udelay"))

io_delay_type = CONFIG_IO_DELAY_TYPE_UDELAY;
else if (! (s, "none"))

io_delay type = CONFIG_IO_DELAY_TYPE_NONE;
else
return -EINVAL;

io_delay override = 1;
return 0;

The next functions are acpi_boot_table_init , early_acpi_boot_init and initmem_init
after the io_delay_init , but as | wrote above we will not cover ACPI related stuff in this

Linux Kernel initialization process chapﬂen

Allocate area for DMA
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In the next step we need to allocate area for the Direct memory access with the
dma_contiguous_reserve function which is defined in the drivers/base/dma-contiguous.c.

DMA is a special mode when devices communicate with memory without CPU. Note that we
pass one parameter - max_pfn_mapped << PAGE_SHIFT , 0 the dma_contiguous_reserve
function and as you can understand from this expression, this is limit of the reserved
memory. Let's look on the implementation of this function. It starts from the definition of the

following variables:

phys_addr_t selected_size ;
phys addr_t selected_base 5
phys_addr_t selected_limit = limit;

bool fixed = .

where first represents size in bytes of the reserved area, second is base address of the
reserved area, third is end address of the reserved area and the last fixed parameter
shows where to place reserved area. If fixed is 1 we just reserve area with the

memblock_reserve , if itis @ we allocate space with the kmemleak alloc . In the next step we
check size cmdline variable and if itis not equal to -1 we fill all variables which you can
see above with the values from the cma kernel command line parameter:

if (size_cmdline != ) {

You can find in this source code file definition of the early parameter:

early param('"cma", early_cma);

where cma is:

cma=nn[MG]@[start[MG][-end[MG]]]
[ARM, X86, KNL]
Sets the size of kernel global memory area for
contiguous memory allocations and optionally the
placement constraint by the physical address range of
memory allocations. A value of 0 disables CMA
altogether. For more information, see
include/linux/dma-contiguous.h
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If we will not pass cma option to the kernel command line, size_cmdline will be equal to
-1 . In this way we need to calculate size of the reserved area which depends on the
following kernel configuration options:

® CONFIG CMA SIZE SEL_MBYTES - Size in megabytes, default global cma area, which is
equal to cMA SIZE MBYTES * SZ_1M OF CONFIG_CMA_SIZE_MBYTES * 1M ;

® CONFIG_CMA_SIZE SEL_PERCENTAGE - percentage of total memory;

® CONFIG_CMA SIZE_SEL_MIN - use lower value;

® CONFIG_CMA_SIZE_SEL_MAX - use higher value.

As we calculated the size of the reserved area, we reserve area with the call of the
dma_contiguous_reserve_area function which first of all calls:

ret = cma_declare_contiguous(base, size, limit, ©, 0, fixed, res_cma);

function. The cma_declare contiguous reserves contiguous area from the given base
address with given size. After we reserved area for the bpma , next function is the

memblock_find_dma_reserve . As you can understand from its name, this function counts the
reserved pages in the pma area. This part will not cover all details of the cva and owma ,
because they are big. We will see much more details in the special part in the Linux Kernel
Memory management which covers contiguous memory allocators and areas.

Initialization of the sparse memory

The next step is the call of the function - xse_init.paging.pagetable_init . If you try to find
this function in the linux kernel source code, in the end of your search, you will see the
following macro:

#define native_pagetable_init paging_init

which expands as you can see to the call of the paging_init function from the
arch/x86/mm/init_64.c. The paging_init function initializes sparse memory and zone sizes.
First of all what's zones and what is it sparsemem . The sparsemem is a special foundation in
the linux kernel memory manager which used to split memory area into different memory
banks in the NUMA systems. Let's look on the implementation of the paginig_init function:
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void __init void

{
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();

node_clear_state(©, N_MEMORY);
if (N_MEMORY != N_NORMAL_MEMORY)
node_clear_state(®, N_NORMAL_MEMORY);

zone_sizes_init();

As you can see there is call of the sparse memory present_with_active regions function
which records a memory area for every nuvA node to the array of the mem_section
structure which contains a pointer to the structure of the array of struct page . The next

sparse_init function allocates non-linear mem_section and mem_map . In the next step we
clear state of the movable memory nodes and initialize sizes of zones. Every nuva node is
divided into a number of pieces which are called - zones . SO, zone_sizes_init function
from the arch/x86/mm/init.c initializes size of zones.

Again, this part and next parts do not cover this theme in full details. There will be special
part about NumaA .

vsyscall mapping

The next step after sparsemem initialization is setting of the trampoline cr4_features which

must contain content of the cr4 Control register. First of all we need to check that current

CPU has support of the cra register and if it has, we save its content to the
trampoline_cr4_features Which is storage for cr4 in the real mode:

if (boot_cpu_data.cpuid_level >= 0) {
mmu_cr4_features = _ _read_cr4();
if (trampoline_cr4_features)
*trampoline_cr4_features = mmu_cr4_features;

The next function which you can see is map_vsyscal from the arch/x86/kernel/vsyscall 64.c.
This function maps memory space for vsyscalls and depends on

CONFIG_X86_VSYSCALL_EMULATION kernel configuration option. Actually vsyscall is a special
segment which provides fast access to the certain system calls like getcpu , etc. Let's look
on implementation of this function:
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void __ init void

{
extern char __vsyscall_page;
unsigned long physaddr_vsyscall = _ pa_symbol(&__vsyscall page);
if (vsyscall_mode != NONE)
__set_fixmap(VSYSCALL_PAGE, physaddr_vsyscall,
vsyscall_mode == NATIVE
? PAGE_KERNEL_VSYSCALL
: PAGE_KERNEL_VVAR);
BUILD_BUG_ON( (unsigned long)__fix_ to_virt(VSYSCALL_PAGE) !=
(unsigned long)VSYSCALL_ADDR);
}

In the beginning of the map_vsyscall we can see definition of two variables. The first is
extern variable __vsyscall_page . As a extern variable, it defined somewhere in other source
code file. Actually we can see definition of the _ vsyscall page in the
arch/x86/kernel/vsyscall_emu_64.S. The __vsyscall page Symbol points to the aligned calls

of the vsyscalls as gettimeofday , etc.:

.globl _ vsyscall page

.balign PAGE_SIZE, 0Oxcc

.type __vsyscall page, @object
__vsyscall page:

mov $__ NR_gettimeofday, %rax
syscall
ret

.balign 1024, Oxcc
mov $_ NR_time, %rax
syscall

ret

The second variable is physaddr_vsyscall which just stores physical address of the
__vsyscall page symbol. In the next step we check the vsyscall mode variable, and if it is
not equal to nNonE , itis EMuLATE by default:

static enum { EMULATE, NATIVE, NONE } vsyscall mode = EMULATE;

And after this check we can see the call of the _ set_fixmap function which calls
native_set_fixmap With the same parameters:
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void enum unsigned long

__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));

void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)

{
unsigned long address = __ fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
BUG();
return;
3
set_pte_vaddr(address, pte);
fixmaps_set++;
}

Here we can see that native set_fixmap makes value of page Table Entry from the given
physical address (physical address of the __vsyscall page symbol in our case) and calls
internal function - __native_set_fixmap . Internal function gets the virtual address of the
given fixed_addresses index ( vsyscALL_PAGE in our case) and checks that given index is
not greater than end of the fix-mapped addresses. After this we set page table entry with the
call of the set_pte_vaddr function and increase count of the fix-mapped addresses. And in
the end of the map_vsyscall we check that virtual address of the vsyscaLL_pace (which is
firstindex in the fixed_addresses ) is not greater than vsyscaLL_abprR which is -1euL << 20
or ffffffffffeeeeee with the BuILD_BuG_ON macro:

BUILD_BUG_ON( (unsigned long)__fix_to_virt(VSYSCALL_PAGE) !=
(unsigned long)VSYSCALL_ADDR);

Now vsyscall areaisinthe fix-mapped area. That's all about map_vsyscall , if you do not
know anything about fix-mapped addresses, you can read Fix-Mapped Addresses and
ioremap. We will see more about vsyscalls inthe vsyscalls and vdso part.

Getting the SMP configuration

You may remember how we made a search of the SMP configuration in the previous part.
Now we need to get the swp configuration if we found it. For this we check

smp_found_config Vvariable which we set in the smp_scan_config function (read about it the
previous part) and call the get_smp_config function:
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if (smp_found_config)
get_smp_config();

The get_smp_config expands to the x86_init.mpparse.default_get _smp_config function
which is defined in the arch/x86/kernel/mpparse.c. This function defines a pointer to the
multiprocessor floating pointer structure - mpf_intel (you can read about it in the previous
part) and does some checks:

struct mpf_intel *mpf = mpf_found;

if (!'mpf)
return;

if (acpi_lapic && early)
return;

Here we can see that multiprocessor configuration was found in the smp_scan_config
function or just return from the function if not. The next check is acpi_lapic and early .
And as we did this checks, we start to read the swp configuration. As we finished reading it,
the next step is - prefill possible map function which makes preliminary filling of the
possible CPU's cpumask (more about it you can read in the Introduction to the cpumasks).

The rest of the setup_arch

Here we are getting to the end of the setup_arch function. The rest of function of course is
important, but details about these stuff will not will not be included in this part. We will just
take a short look on these functions, because although they are important as | wrote above,
but they cover non-generic kernel features related with the numa , swp , AcPI and apics ,
etc. First of all, the next call of the init_apic_mappings function. As we can understand this
function sets the address of the local APIC. The nextis x86_io_apic_ops.init and this
function initializes I/O APIC. Please note that we will see all details related with apic in the
chapter about interrupts and exceptions handling. In the next step we reserve standard 1/0O
resources like pma , TIMER , FPU , etc., with the call of the

x86_init.resources.reserve_resources function. Followingis mcheck_init function initializes

Machine check Exception and the lastis register_refined_jiffies which registers jiffy
(There will be separate chapter about timers in the kernel).

So that's all. Finally we have finished with the big setup_arch function in this part. Of course
as | already wrote many times, we did not see full details about this function, but do not
worry about it. We will be back more than once to this function from different chapters for
understanding how different platform-dependent parts are initialized.
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That's all, and now we can back to the start_kernel from the setup_arch .

Back to the main.c

As | wrote above, we have finished with the setup_arch function and now we can back to
the start_kernel function from the init/main.c. As you may remember or saw yourself,

start_kernel function as big as the setup_arch . So the couple of the next part will be
dedicated to learning of this function. So, let's continue with it. After the setup_arch we can
see the call of the mm_init_cpumask function. This function sets the cpumask pointer to the
memory descriptor cpumask . We can look on its implementation:

static inline void struct

{
#ifdef CONFIG_CPUMASK_OFFSTACK

mm->cpu_vm_mask_var = &mm->cpumask_allocation;
#endif
cpumask_clear (mm->cpu_vm_mask_var);

As you can see in the init/main.c, we pass memory descriptor of the init process to the
mm_init_cpumask and depends on CONFIG_CPUMASK_OFFSTACK configuration option we clear
TLB switch cpumask .

In the next step we can see the call of the following function:

setup_command_line(command_line);

This function takes pointer to the kernel command line allocates a couple of buffers to store
command line. We need a couple of buffers, because one buffer used for future reference
and accessing to command line and one for parameter parsing. We will allocate space for
the following buffers:

® saved_command_line - will contain boot command line;
® initcall_command_line - will contain boot command line. will be used in the
do_initcall level

® static_command_line - Will contain command line for parameters parsing.

We will allocate space with the memblock_virt_alloc function. This function calls
memblock_virt_alloc_try nid Wwhich allocates boot memory block with memblock_reserve if

slab is not available or uses kzalloc_node (more about it will be in the linux memory
management chapter). The memblock virt alloc uses BooTMEM Low_LIMIT (physical
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address of the (PAGE_oFFSET + 0x1000000) Value)and BOOTMEM_ALLOC_ACCESSIBLE (equal to
the current value of the memblock.current_limit ) @as minimum address of the memory region
and maximum address of the memory region.

Let's look on the implementation of the setup_command_line :

static void __init char
{
saved_command_line =
memblock_virt_alloc( (boot_command_line) + 1, 0);
initcall_command_line =
memblock_virt_alloc( (boot_command_line) + 1, 0);
static_command_line = memblock_virt_alloc( (command_line) + 1, 0);

(saved_command_line, boot_command_line);
(static_command_line, command_line);

Here we can see that we allocate space for the three buffers which will contain kernel
command line for the different purposes (read above). And as we allocated space, we store

boot_command_line inthe saved_command_line and command_line (kernel command line
from the setup_arch )tothe static_command_line .

The next function after the setup_command_line isthe setup_nr_cpu_ids . This function
setting nr_cpu_ids (number of CPUs) according to the last bit in the cpu_possible_mask
(more about it you can read in the chapter describes cpumasks concept). Let's look on its
implementation:

void __init void
{

nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;

Here nr_cpu_ids represents number of CPUs, NrR_cpus represents the maximum number
of CPUs which we can set in configuration time:
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Actually we need to call this function, because n~r_cpus can be greater than actual amount
of the CPUs in the your computer. Here we can see that we call find_last_bit function and
pass two parameters to it:

® cpu_possible_mask bits;
e maximum number of CPUS.

In the setup_arch we can find the call of the prefill_possible_map function which
calculates and writes to the cpu_possible_mask actual number of the CPUs. We call the

find_last_bit function which takes the address and maximum size to search and returns
bit number of the first set bit. We passed cpu_possible mask bits and maximum number of
the CPUs. First of all the find_last_bit function splits given unsigned long address to the
words:

words = size / BITS_PER_LONG;

where BITS PER_LONG iS 64 onthe x86_64 . As we got amount of words in the given size of
the search data, we need to check is given size does not contain partial words with the
following check:
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if (size & (BITS_PER_LONG-1)) {
tmp = (addr[words] & (~0OUL >> (BITS_PER_LONG
- (size & (BITS_PER_LONG-1)))));
if (tmp)
goto found;

if it contains partial word, we mask the last word and check it. If the last word is not zero, it
means that current word contains at least one set bit. We go to the found label:

found:
return words * BITS_PER_LONG + _ fls(tmp);

Here you can see _ f1s function which returns last set bit in a given word with help of the

bsr instruction:

static inline unsigned long __ fls(unsigned long word)

{
asm("bsr %1,%0"
i "=r" (word)
"rm" (word));
return word;
}

The bsr instruction which scans the given operand for first bit set. If the last word is not
partial we going through the all words in the given address and trying to find first set bit:

while (words) {
tmp = addr[--words];

if (tmp) {
found:
return words * BITS_PER_LONG + _ fls(tmp);

Here we put the last word to the tmp variable and check that tmp contains at least one set
bit. If a set bit found, we return the number of this bit. If no one words do not contains set bit

we just return given size:

return size;

After this nr_cpu_ids will contain the correct amount of the available CPUs.

That's all.



Conclusion

It is the end of the seventh part about the linux kernel initialization process. In this part,

finally we have finished with the setup_arch function and returned to the start_kernel

function. In the next part we will continue to learn generic kernel code from the
start_kernel and will continue our way to the first init process.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Kernel initialization. Part 8.

Scheduler initialization

This is the eighth part of the Linux kernel initialization process and we stopped on the

setup_nr_cpu_ids function in the previous part. The main point of the current part is
scheduler initialization. But before we will start to learn initialization process of the scheduler,
we need to do some stuff. The next step in the init/main.c is the setup_per_cpu_areas
function. This function setups areas for the percpu variables, more about it you can read in
the special part about the Per-CPU variables. After percpu areas is up and running, the
next step is the smp_prepare_boot_cpu function. This function does some preparations for
the SMP:

static inline void void

{

smp_ops.smp_prepare_boot_cpu();

3

where the smp_prepare_boot_cpu expands to the call of the native smp_prepare_boot_cpu
function (more about smp_ops will be in the special parts about swp ):

void __init void
{
int me = smp_processor_id();
switch_to_new_gdt(me);
cpumask_set_cpu(me, cpu_callout_mask);
per_cpu(cpu_state, me) = CPU_ONLINE;

The native smp_prepare_boot_cpu function gets the id of the current CPU (which is
Bootstrap processor and its id is zero) with the smp_processor_id function. | will not
explain how the smp_processor_id works, because we already saw it in the Kernel entry
point part. As we got processor id number we reload Global Descriptor Table for the given
CPU with the switch_to_new_gdt function:
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void int

{
struct desc_ptr gdt_descr;
gdt_descr.address = (long)get_cpu_gdt_table(cpu);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
load_percpu_segment(cpu);

}

The gdt_descr variable represents pointer to the cept descriptor here (we already saw
desc_ptr in the Early interrupt and exception handling). We get the address and the size of
the epT descriptor where epT_size is 256 ofr:

#define GDT_SIZE (GDT_ENTRIES * 8)

and the address of the descriptor we will get with the get_cpu_gdt_table :

static inline struct desc_struct * unsigned int

{
return per_cpu(gdt_page, cpu).gdt;

The get_cpu_gdt_table uses per_cpu macro for getting gdt_page percpu variable for the
given CPU number (bootstrap processor with id - 0 in our case). You may ask the
following question: so, if we can access gdt_page percpu variable, where it was defined?
Actually we already saw it in this book. If you have read the first part of this chapter, you can
remember that we saw definition of the gdt_page in the arch/x86/kernel/head 64.S:

early_gdt_descr:
.word GDT_ENTRIES*8-1
early gdt_descr_base:
.quad INIT_PER_CPU_VAR(gdt_page)

and if we will look on the linker file we can see that it locates after the __per_cpu_load
symbol:

#define INIT_PER_CPU(x) init_per_cpu__ ##x = X + __per_cpu_load
INIT_PER_CPU(gdt_page);

and filled gdt_page in the arch/x86/kernel/cpu/common.c:
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DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
#ifdef CONFIG_X86_64

[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT( 7 O ),
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT( p O ),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT( p O ),
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT( ; 0, ),
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT( 7 @ ),
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT( 7 @ ),

more about percpu variables you can read in the Per-CPU variables part. As we got
address and size of the ebpT descriptor we reload epT with the 1oad gdt which just
execute 1gdt instruct and load percpu_segment with the following function:

void int {
loadsegment(gs, 0);
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
load_stack_canary_segment();

The base address of the percpu area must contain gs register (or fs register for xss ),
SO we are using loadsegment Mmacro and pass gs . In the next step we writes the base
address if the IRQ stack and setup stack canary (this is only for xse_32 ). After we load new

6dbT , we fill cpu_callout_mask bitmap with the current cpu and set cpu state as online with
the setting cpu_state percpu variable for the current processor - CPU_ONLINE :

cpumask_set_cpu(me, cpu_callout_mask);
per_cpu(cpu_state, me) = CPU_ONLINE;

So, whatis cpu_callout_mask bitmap... As we initialized bootstrap processor (processor
which is booted the first on x86 ) the other processors in a multiprocessor system are
known as secondary processors . Linux kernel uses following two bitmasks:

® cpu_callout_mask

® cpu_callin_mask

After bootstrap processor initialized, it updates the cpu_callout_mask to indicate which
secondary processor can be initialized next. All other or secondary processors can do some
initialization stuff before and check the cpu_callout_mask on the boostrap processor bit.
Only after the bootstrap processor filled the cpu_callout_mask with this secondary
processor, it will continue the rest of its initialization. After that the certain processor finish its
initialization process, the processor sets bit in the cpu_callin_mask . Once the bootstrap
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processor finds the bit in the cpu_callin_mask for the current secondary processor, this
processor repeats the same procedure for initialization of one of the remaining secondary
processors. In a short words it works as i described, but we will see more details in the
chapter about swmp .

That's all. We did all smp boot preparation.

Build zonelists

In the next step we can see the call of the build_all zonelists function. This function sets
up the order of zones that allocations are preferred from. What are zones and what's order
we will understand soon. For the start let's see how linux kernel considers physical memory.
Physical memory is split into banks which are called - nodes . If you has no hardware
support for numaA , you will see only one node:

$ cat /sys/devices/system/node/node®/numastat
numa_hit 72452442

numa_miss 0

numa_foreign ©

interleave_hit 12925

local_node 72452442

other_node 0

Every node is presented by the struct pglist_data in the linux kernel. Each node is
divided into a number of special blocks which are called - zones . Every zone is presented
by the zone struct in the linux kernel and has one of the type:

e zoNE_DMA - 0-16M;

e zoNE_DMA32 - used for 32 bit devices that can only do DMA areas below 4G;
e zone_NORMAL - all RAM from the 4GB on the xse_64 ;

® ZONE_HIGHMEM - absentonthe xse_é4 ;

® ZONE_MOVABLE - zone which contains movable pages.

which are presented by the zone_type enum. We can get information about zones with the:



$ cat /proc/zoneinfo

Node 0, zone DMA
pages free 3975
min 3
low 3

Node 0, zone DMA32

pages free 694163
min 875
low 1093

Node O, zone Normal

pages free 2529995
min 3146
low 3932

As | wrote above all nodes are described with the pglist_data Or pg_data_t structure in
memory. This structure is defined in the include/linux/mmzone.h. The build_all zonelists
function from the mm/page_alloc.c constructs an ordered zonelist (of different zones
DMA , DMA32 , NORMAL , HIGH_MEMORY , MoOVABLE ) which specifies the zones/nodes to visit
when a selected zone or node cannot satisfy the allocation request. That's all. More about
NuMA  and multiprocessor systems will be in the special part.

The rest of the stuff before scheduler
initialization

Before we will start to dive into linux kernel scheduler initialization process we must do a
couple of things. The first thing is the page_alloc_init function from the mm/page alloc.c.
This function looks pretty easy:

void _ _init void
{

hotcpu_notifier(page_alloc_cpu_notify, 0);

and initializes handler for the cpu hotplug. Of course the hotcpu_notifier depends on the
CONFIG_HOTPLUG_cPU configuration option and if this option is set, it just calls cpu_notifier
macro which expands to the call of the register_cpu_notifier which adds hotplug cpu
handler ( page_alloc_cpu_notify in our case).
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After this we can see the kernel command line in the initialization output:

Linux version 4.1.8-rc2+ (alex@localhost) (gcc version 4.9.2 (Ubuntu 4.9.2-10ubuntul3) ) #493 SMP Thu

Command line: root=/dev/sdb earlyprintk=ttyS®,115200 loglevel=7 debug rdinit=/sbin/init root=/dev/ram

And a couple of functions such as parse_early param and parse_args which handles linux
kernel command line. You may remember that we already saw the call of the

parse_early param function in the sixth part of the kernel initialization chapter, so why we
call it again? Answer is simple: we call this function in the architecture-specific code
( x86_64 in our case), but not all architecture calls this function. And we need to call the
second function parse_args to parse and handle non-early command line arguments.

In the next step we can see the call of the jump_label init from the kernel/jump label.c.
and initializes jump label.

After this we can see the call of the setup_log buf function which setups the printk log
buffer. We already saw this function in the seventh part of the linux kernel initialization
process chapter.

PID hash initialization

The nextis pidhash_init function. As you know each process has assigned a unique
number which called - process identification number Or PID . Each process generated
with fork or clone is automatically assigned a new unique pip value by the kernel. The
management of pips centered around the two special data structures: struct pid and

struct upid . First structure represents information about a pip in the kernel. The second
structure represents the information that is visible in a specific namespace. All pip
instances stored in the special hash table:

static struct hlist_head *pid_hash;

This hash table is used to find the pid instance that belongs to a numeric pip value. So,
pidhash_init initializes this hash table. In the start of the pidhash_init function we can
see the call of the alloc_large_system_hash :

pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, ,
HASH_EARLY | HASH_SMALL,
&pidhash_shift, ,
/ )i

The number of elements of the pid_hash depends on the ram configuration, but it can be
between 2r4 and 2r12 . The pidhash_init computes the size and allocates the required
storage (which is hlist in our case - the same as doubly linked list, but contains one


http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html
https://github.com/torvalds/linux/blob/master/kernel/jump_label.c
https://lwn.net/Articles/412072/
http://www.makelinux.net/books/lkd2/ch18lev1sec3
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-7.html
http://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html

pointer instead on the struct hlist head]. The alloc_large_system hash function allocates a
large system hash table with memblock_virt_alloc_nopanic if we pass HasH_EARLY flag (as it
in our case) or with __vmalloc if we did no pass this flag.

The result we can see in the dmesg output:

$ dmesg | grep hash
[ 0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes)

That's all. The rest of the stuff before scheduler initialization is the following functions:
vfs_caches_init_early does early initialization of the virtual file system (more about it will be
in the chapter which will describe virtual file system), sort_main_extable sorts the kernel's
built-in exception table entries which are between _ start__ _ex_table and
__stop___ex_table ,and trap_init initializes trap handlers (more about last two function
we will know in the separate chapter about interrupts).

The last step before the scheduler initialization is initialization of the memory manager with
the mm_init function from the init/main.c. As we can see, the mm_init function initializes
different parts of the linux kernel memory manager:

page_ext_init_flatmem();
mem_init();
kmem_cache_init();
percpu_init_late();
pgtable_init();
vmalloc_init();

The firstis page_ext_init_flatmem which depends on the conFic_spArRseMEM kernel

configuration option and initializes extended data per page handling. The mem_init

releases all bootmem , the kmem_cache_init initializes kernel cache, the percpu_init_late -

replaces percpu chunks with those allocated by slub, the pgtable init - initializes the
page->ptl kernel cache, the vmalloc_init - initializes wvmalloc . Please, NOTE that we will

not dive into details about all of these functions and concepts, but we will see all of they it in

the Linux kernel memory manager chapter.

That's all. Now we can look on the scheduler .

Scheduler initialization
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And now we come to the main purpose of this part - initialization of the task scheduler. | want
to say again as | already did it many times, you will not see the full explanation of the
scheduler here, there will be special chapter about this. Ok, next point is the sched_init
function from the kernel/sched/core.c and as we can understand from the function's name, it
initializes scheduler. Let's start to dive into this function and try to understand how the
scheduler is initialized. At the start of the sched_init function we can see the following
code:

#ifdef CONFIG_FAIR_GROUP_SCHED

alloc_size += * nr_cpu_ids * void ;
#endif
#ifdef CONFIG_RT_GROUP_SCHED

alloc_size += * nr_cpu_ids * void ;
#endif

First of all we can see two configuration options here:

® CONFIG_FAIR_GROUP_SCHED

® CONFIG_RT_GROUP_SCHED

Both of this options provide two different planning models. As we can read from the
documentation, the current scheduler - cFs or completely Fair Scheduler use a simple
concept. It models process scheduling as if the system has an ideal multitasking processor
where each process would receive 1/n processor time, where n is the number of the
runnable processes. The scheduler uses the special set of rules. These rules determine
when and how to select a new process to run and they are called scheduling policy . The
Completely Fair Scheduler supports following normal oOr non-real-time Scheduling
policies: SCHED_NORMAL , SCHED_BATCH and scHED_IDLE . The scHED NorMAL is used for the
most normal applications, the amount of cpu each process consumes is mostly determined
by the nice value, the scHep_eatcH used for the 100% non-interactive tasks and the
ScHED_IDLE runs tasks only when the processor has no task to run besides this task. The

real-time policies are also supported for the time-critical applications: scHep_riro and
SCcHED_RR . If you've read something about the Linux kernel scheduler, you can know that it
is modular. It means that it supports different algorithms to schedule different types of
processes. Usually this modularity is called scheduler classes . These modules encapsulate
scheduling policy details and are handled by the scheduler core without knowing too much
about them.

Now let's back to the our code and look on the two configuration options
CONFIG_FAIR_GROUP_SCHED and CONFIG_RT_GROUP_SCHED . The scheduler operates on an
individual task. These options allows to schedule group tasks (more about it you can read in
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the CFS group scheduling). We can see that we assign the alloc_size variables which
represent size based on amount of the processors to allocate for the sched_entity and
cfs_rq tothe 2 * nr_cpu_ids * sizeof(void **) expression with kzalloc :

ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);

#ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.se = (struct sched_entity **)ptr;
ptr += nr_cpu_ids * void 7

root_task_group.cfs_rq = (struct cfs_rq **)ptr;
ptr += nr_cpu_ids * void F
#endif

The sched_entity is a structure which is defined in the include/linux/sched.h and used by
the scheduler to keep track of process accounting. The cfs rq presents run queue. So,
you can see that we allocated space with size alloc_size for the run queue and scheduler
entity of the root_task_group . The root_task_group is an instance of the task_group
structure from the kernel/sched/sched.h which contains task group related information:

struct task_group {

struct sched_entity **se;
struct cfs_rq **cfs_rq;

The root task group is the task group which belongs to every task in system. As we allocated
space for the root task group scheduler entity and runqueue, we go over all possible CPUs

( cpu_possible_mask bitmap) and allocate zeroed memory from a particular memory node
with the kzalloc_node function for the load_balance_mask percpu variable:

DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);

Here cpumask var_t isthe cpumask_t with one difference: cpumask_var_t is allocated only
nr_cpu_ids bits when the cpumask_t always has Nr_cpus bits (more about cpumask you
can read in the CPU masks part). As you can see:
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#ifdef CONFIG_CPUMASK_OFFSTACK
for_each_possible_cpu(i) {
per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
cpumask_size(), GFP_KERNEL, cpu_to_node(1i));

}
#endif

this code depends on the conrF1e_crPumask_oFFsTAcK configuration option. This configuration
options says to use dynamic allocation for cpumask , instead of putting it on the stack. All
groups have to be able to rely on the amount of CPU time. With the call of the two following
functions:

init_rt_bandwidth(&def_rt_bandwidth,

global_rt_period(), global_rt_runtime());
init_d1_bandwidth(&def_dl_bandwidth,

global_rt_period(), global_rt_runtime());

we initialize bandwidth management for the scHep_beapLINE real-time tasks. These
functions initializes rt_bandwidth and d1_bandwidth structures which store information
about maximum deadline bandwidth of the system. For example, let's look on the
implementation of the init_rt_bandwidth function:

void struct

{
rt_b->rt_period = ns_to_ktime(period);
rt_b->rt_runtime = runtime;

raw_spin_lock_init(&rt_b->rt_runtime_lock);

hrtimer_init(&rt_b->rt_period_timer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rt_b->rt_period_timer.function = sched_rt_period_timer;

It takes three parameters:

e address of the rt_bandwidth structure which contains information about the allocated
and consumed quota within a period;

® period - period over which real-time task bandwidth enforcement is measured in us ;

e runtime - part of the period that we allow tasks to runin us .

As period and runtime we pass result of the global rt_period and global rt_runtime
functions. Which are 1s second and and e.95s by default. The rt_bandwidth structure is
defined in the kernel/sched/sched.h and looks:
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struct rt_bandwidth {

raw_spinlock_t rt_runtime_lock;
ktime_t rt_period;

u64 rt_runtime;
struct hrtimer rt_period_timer;

};

As you can see, it contains runtime and period and also two following fields:

® rt_runtime_lock - spinlock forthe rt_time protection;
® rt_period_timer - high-resolution kernel timer for unthrottled of real-time tasks.

So, inthe init_rt_bandwidth we initialize rt_bandwidth period and runtime with the given
parameters, initialize the spinlock and high-resolution time. In the next step, depends on
enable of SMP, we make initialization of the root domain:

#ifdef CONFIG_SMP
init_defrootdomain();
#endif

The real-time scheduler requires global resources to make scheduling decision. But
unfortunately scalability bottlenecks appear as the number of CPUs increase. The concept
of root domains was introduced for improving scalability. The linux kernel provides a special
mechanism for assigning a set of CPUs and memory nodes to a set of tasks and it is called -

cpuset . Ifa cpuset contains non-overlapping with other cpuset CPUSs, itis exclusive
cpuset . Each exclusive cpuset defines an isolated domain or root domain of CPUs
partitioned from other cpusets or CPUs. A root domain is presented by the struct
root_domain from the kernel/sched/sched.h in the linux kernel and its main purpose is to
narrow the scope of the global variables to per-domain variables and all real-time scheduling
decisions are made only within the scope of a root domain. That's all about it, but we will see
more details about it in the chapter about real-time scheduler.

After root domain initialization, we make initialization of the bandwidth for the real-time
tasks of the root task group as we did it above:

#ifdef CONFIG_RT_GROUP_SCHED
init_rt_bandwidth(&root_task_group.rt_bandwidth,
global rt_period(), global rt_runtime());
#endif

In the next step, depends on the conFie_ceroup_scHED kernel configuration option we
initialize the siblings and children lists of the root task group. As we can read from the
documentation, the CcoNFIG_CGROUP_SCHED is:
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This option allows you to create arbitrary task groups using the "cgroup" pseudo
filesystem and control the cpu bandwidth allocated to each such task group.

As we finished with the lists initialization, we can see the call of the autogroup_init
function:

#ifdef CONFIG_CGROUP_SCHED
list_add(&root_task_group. , &task_groups);
INIT_LIST _HEAD(&root_task_group.children);
INIT_LIST _HEAD(&root_task_group.siblings);
autogroup_init(&init_task);

#endif

which initializes automatic process group scheduling.

After this we are going through the all possible cpu (you can remember that possible
CPUs store in the cpu_possible_mask bitmap that can ever be available in the system) and
initialize a runqueue for each possible cpu:

for_each_possible_cpu(i) {
struct rq *rq;

Each processor has its own locking and individual runqueue. All runnable tasks are stored in
an active array and indexed according to its priority. When a process consumes its time
slice, it is moved to an expired array. All of these arras are stored in the special structure
which names is runqueue . As there are no global lock and runqueue, we are going through
the all possible CPUs and initialize runqueue for the every cpu. The runqueue is presented
by the rq structure in the linux kernel which is defined in the kernel/sched/sched.h.

rq = cpu_rq(i);

raw_spin_lock_init(&rq->lock);

rq->nr_running = 0;

rq->calc_load_active = 0;

rq->calc_load_update = jiffies + LOAD_FREQ;
init_cfs_rq(&rq->cfs);

init_rt_rq(&rg->rt);

init_dl_rq(&rg->dl);

rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
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Here we get the runqueue for the every CPU with the cpu_rq macro which returns

runqueues percpu variable and start to initialize it with runqueue lock, number of running
tasks, calc_load relative fields ( calc_load active and calc_load_update ) which are used
in the reckoning of a CPU load and initialization of the completely fair, real-time and deadline
related fields in a runqueue. After this we initialize cpu_load array with zeros and set the
last load update tick to the jiffies variable which determines the number of time ticks
(cycles), since the system boot:

for (j = 0, j < CPU_LOAD_IDX MAX; j++)
rq->cpu_load[j] = 0;

rq->last_load_update_tick = jiffies;

where cpu_load keeps history of runqueue loads in the past, for now cpPu_L0AD_IDX _MAX is

5. In the next step we fill runqueue fields which are related to the SMP, but we will not cover

them in this part. And in the end of the loop we initialize high-resolution timer for the give
runqueue and setthe iowait (more about it in the separate part about scheduler) number:

init_rqg_hrtick(rq);
atomic_set(&rg->nr_iowait, 0);

Now we come out from the for_each_possible cpu loop and the next we need to set load
weight for the init task with the set_load weight function. Weight of process is calculated
through its dynamic priority which is static priority + scheduling class of the process. After
this we increase memory usage counter of the memory descriptor of the init process and
set scheduler class for the current process:

atomic_inc(&init_mm.mm_count);
current->sched_class = &fair_sched_class;

And make current process (it will be the first init process) idle and update the value of
the calc_load_update with the 5 seconds interval:

init_idle(current, smp_processor_id());
calc_load_update = jiffies + LOAD_FREQ;

So, the init process will be run, when there will be no other candidates (as it is the first
process in the system). In the end we just set scheduler_running variable:

scheduler_running = 1;
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That's all. Linux kernel scheduler is initialized. Of course, we have skipped many different
details and explanations here, because we need to know and understand how different
concepts (like process and process groups, runqueue, rcu, etc.) works in the linux kernel ,
but we took a short look on the scheduler initialization process. We will look all other details
in the separate part which will be fully dedicated to the scheduler.

Conclusion

It is the end of the eighth part about the linux kernel initialization process. In this part, we
looked on the initialization process of the scheduler and we will continue in the next part to
dive in the linux kernel initialization process and will see initialization of the RCU and many
other initialization stuff in the next part.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Kernel initialization. Part 9.

RCU initialization

This is ninth part of the Linux Kernel initialization process and in the previous part we
stopped at the scheduler initialization. In this part we will continue to dive to the linux kernel
initialization process and the main purpose of this part will be to learn about initialization of
the RCU. We can see that the next step in the init/main.c after the sched_init is the call of
the preempt_disable . There are two macros:

® preempt_disable

® preempt_enable

for preemption disabling and enabling. First of all let's try to understand what is preempt in
the context of an operating system kernel. In simple words, preemption is ability of the
operating system kernel to preempt current task to run task with higher priority. Here we
need to disable preemption because we will have only one init process for the early boot
time and we don't need to stop it before we call cpu_idle function. The preempt_disable
macro is defined in the include/linux/preempt.h and depends on the CONFIG_PREEMPT_COUNT
kernel configuration option. This macro is implemented as:

#define preempt_disable() \

do { \
preempt_count_inc(); \
barrier(); \

} while (0)

and if conFIG_PREEMPT_COUNT is not set just:

#define preempt_disable() barrier()

Let's look on it. First of all we can see one difference between these macro implementations.
The preempt_disable with conFIG_PREEMPT_COUNT Set contains the call of the
preempt_count_inc . There is special percpu variable which stores the number of held locks

and preempt_disable calls:

DECLARE_PER_CPU(int, __preempt_count);
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In the first implementation of the preempt_disable we increment this _ preempt_count .

There is API for returning value of the _ preempt_count , it is the preempt_count function. As

we called preempt_disable , first of all we increment preemption counter with the
preempt_count_inc macro which expands to the:

#define preempt_count_inc() preempt_count_add(1)
#define preempt_count_add(val) __ preempt_count_add(val)

where preempt_count_add calls the raw_cpu_add_4 macro which adds 1 to the given

percpu variable ( __preempt_count ) in our case (more about precpu variables you can
read in the part about Per-CPU variables). Ok, we increased _ preempt_count and the next
step we can see the call of the barrier macro in the both macros. The barrier macro
inserts an optimization barrier. In the processors with xse_64 architecture independent
memory access operations can be performed in any order. That's why we need the
opportunity to point compiler and processor on compliance of order. This mechanism is
memory barrier. Let's consider a simple example:

preempt_disable();
foo();
preempt_enable();

Compiler can rearrange it as:

preempt_disable();
preempt_enable();
foo();

In this case non-preemptible function foo can be preempted. As we put barrier macro in
the preempt_disable and preempt_enable mMacros, it prevents the compiler from swapping
preempt_count_inc With other statements. More about barriers you can read here and here.

In the next step we can see following statement:

if (WARN('irgs_disabled(),
"Interrupts were enabled *very* early, fixing it\n"))
local_irq_disable();

which check IRQs state, and disabling (with c1i instruction for xse_e4 ) if they are
enabled.

That's all. Preemption is disabled and we can go ahead.
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Initialization of the integer ID management

In the next step we can see the call of the idr_init_cache function which defined in the
lib/idr.c. The idr library is used in a various places in the linux kernel to manage assigning
integer 1ps to objects and looking up objects by id.

Let's look on the implementation of the idr_init_cache function:

void __init void
{

idr_layer_cache = kmem_cache_create("idr_layer_cache",
sizeof(struct idr_layer), O, SLAB_PANIC, );

Here we can see the call of the kmem_cache create . We already called the kmem _cache_init
in the init/main.c. This function create generalized caches again using the kmem_cache_alloc
(more about caches we will see in the Linux kernel memory management chapter). In our
case, as we are using kmem_cache_t Wwhich will be used by the slab allocator and
kmem_cache_create creates it. As you can see we pass five parameters to the

kmem_cache_create .

* name of the cache;

size of the object to store in cache;

offset of the first object in the page;

flags;

constructor for the objects.

and it will create kmem_cache for the integer IDs. Integer 1ps is commonly used pattern to
map set of integer IDs to the set of pointers. We can see usage of the integer IDs in the i2c
drivers subsystem. For example drivers/i2c/iZc-core.c which represents the core of the i2c
subsystem defines 1p forthe i2c adapter with the perine_1pr macro:

static ;

and then uses it for the declaration of the i2c adapter:
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static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)

{

int id;

id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);

and id2_adapter_idr presents dynamically calculated bus number.

More about integer ID management you can read here.

RCU initialization

The next step is RCU initialization with the rcu_init function and it's implementation
depends on two kernel configuration options:

® CONFIG_TINY_RCU

® CONFIG_TREE_RCU

In the first case rcu_init will be in the kernel/rcu/tiny.c and in the second case it will be
defined in the kernel/rcu/tree.c. We will see the implementation of the tree rcu , but first of
all about the rcu in general.

Rcu or read-copy update is a scalable high-performance synchronization mechanism
implemented in the Linux kernel. On the early stage the linux kernel provided support and
environment for the concurrently running applications, but all execution was serialized in the
kernel using a single global lock. In our days linux kernel has no single global lock, but
provides different mechanisms including lock-free data structures, percpu data structures
and other. One of these mechanisms is - the read-copy update . The Rrcu technique is
designed for rarely-modified data structures. The idea of the rcu is simple. For example we
have a rarely-modified data structure. If somebody wants to change this data structure, we
make a copy of this data structure and make all changes in the copy. In the same time all
other users of the data structure use old version of it. Next, we need to choose safe moment
when original version of the data structure will have no users and update it with the modified

copy.

Of course this description of the rcu is very simplified. To understand some details about
rcu , first of all we need to learn some terminology. Data readers in the rcu executed in
the critical section. Every time when data reader get to the critical section, it calls the
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rcu_read_lock , and rcu_read_unlock on exit from the critical section. If the thread is not in
the critical section, it will be in state which called - quiescent state . The moment when
every thread is in the quiescent state called - grace period . If a thread wants to remove
an element from the data structure, this occurs in two steps. First step is removal -
atomically removes element from the data structure, but does not release the physical
memory. After this thread-writer announces and waits until it is finished. From this moment,
the removed element is available to the thread-readers. After the grace period finished, the
second step of the element removal will be started, it just removes the element from the
physical memory.

There a couple of implementations of the rcu . Old rcu called classic, the new
implementation called tree RCU. As you may already understand, the conF1G_TREE Rcu
kernel configuration option enables tree rcu . Another is the tiny RCU which depends on

CONFIG_TINY_RcU and conrFIic_smp=n . We will see more details about the rcu in general in
the separate chapter about synchronization primitives, but now let's look on the rcu_init
implementation from the kernel/rcu/tree.c:

void __init void
{

int cpu;

rcu_bootup_announce();

rcu_init_geometry();

rcu_init_one(&rcu_bh_state, &rcu_bh_data);
rcu_init_one(&rcu_sched_state, &rcu_sched_data);
__rcu_init_preempt();

open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);

cpu_notifier(rcu_cpu_notify, 0);
pm_notifier(rcu_pm_notify, 0);
for_each_online_cpu(cpu)
rcu_cpu_notify( , CPU_UP_PREPARE, (void *)(long)cpu);

rcu_early_boot_tests();

In the beginning of the rcu_init function we define cpu variable and call
rcu_bootup_announce . The rcu_bootup_announce function is pretty simple:
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static void __init void

{
pr_info("Hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();

It just prints information about the rcu with the pr_info function and

rcu_bootup_announce_oddness Which uses pr_info too, for printing different information
about the current rcu configuration which depends on different kernel configuration options
like CONFIG_RCU_TRACE , CONFIG_PROVE_RCU , CONFIG_RCU_FANOUT_EXACT , etc. In the next step,
we can see the call of the rcu_init_geometry function. This function is defined in the same
source code file and computes the node tree geometry depends on the amount of CPUs.
Actually rcu provides scalability with extremely low internal RCU lock contention. What if a
data structure will be read from the different CPUs? rcu API provides the rcu_state
structure which presents RCU global state including node hierarchy. Hierarchy is presented
by the:

struct rcu_node node[NUM_RCU_NODES];

array of structures. As we can read in the comment of above definition:

The root (first level) of the hierarchy is in ->node[0] (referenced by ->level[0]), th
e second

level in ->node[1] through ->node[m] (->node[1] referenced by ->level[1]), and the thi
rd level

in ->node[m+1] and following (->node[m+1] referenced by ->level[2]). The number of le
vels is

determined by the number of CPUs and by CONFIG_RCU_FANOUT.

Small systems will have a "hierarchy" consisting of a single rcu_node.

The rcu_node structure is defined in the kernel/rcu/tree.h and contains information about
current grace period, is grace period completed or not, CPUs or groups that need to switch
in order for current grace period to proceed, etc. Every rcu_node contains a lock for a
couple of CPUs. These rcu_node structures are embedded into a linear array in the

rcu_state structure and represented as a tree with the root as the first element and covers
all CPUs. As you can see the number of the rcu nodes determined by the n~um_rcu_NoDEs
which depends on number of available CPUs:

#define NUM_RCU_NODES (RCU_SUM - NR_CPUS)
#define RCU_SUM (NUM_RCU_LVL_O + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3 + NUM_R
CU_LVL_4)
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where levels values depend on the conFic_Rcu_FANouT_LEAF configuration option. For
example for the simplest case, one rcu_node will cover two CPU on machine with the eight
CPUs:
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So, inthe rcu_init_geometry function we just need to calculate the total number of
rcu_node structures. We start to do it with the calculation of the jiffies till to the first and
next fgqs whichis force-quiescent-state (read above about it):

d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
if (jiffies_till first_fgs == ULONG_MAX)

jiffies_till first_fgs = d;
if (jiffies_till next_fqgs == ULONG_MAX)

jiffies_till next_fgs = d;

where:



#define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
#define RCU_JIFFIES_FQS_DIV 256

As we calculated these jiffies, we check that previous defined jiffies till first fgs and
jiffies_till next_fqs variables are equal to the ULONG MAX (their default values) and
set they equal to the calculated value. As we did not touch these variables before, they are

equal to the uLonNG_MAX :

static ulong jiffies_till first_fgs = ULONG_MAX;
static ulong jiffies_till next_fqgs = ULONG_MAX;

In the next step of the rcu_init_geometry , we check that rcu_fanout_leaf didn't change (it
has the same value as conF1c_Rcu_FANOUT LEAF in compile-time) and equal to the value of
the conrFIG_Rcu_FANOUT LEAF configuration option, we just return:

if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
nr_cpu_ids == NR_CPUS)
return;

After this we need to compute the number of nodes that an rcu_node tree can handle with
the given number of levels:

rcu_capacity[0] = 1;
rcu_capacity[1] = rcu_fanout_leaf;
for (1 = 2; 1 <= MAX_RCU_LVLS; i++)
rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

And in the last step we calculate the number of rcu_nodes at each level of the tree in the
loop.

As we calculated geometry of the rcu_node tree, we need to go back to the rcu_init
function and next step we need to initialize two rcu_state structures with the rcu_init_one
function:

rcu_init_one(&rcu_bh_state, &rcu_bh_data);
rcu_init_one(&rcu_sched_state, &rcu_sched_data);
The rcu_init_one function takes two arguments:

e Global rcu state;
o Per-CPU data for rcu .
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Both variables defined in the kernel/rcu/tree.h with its percpu data:

extern struct rcu_state rcu_bh_state;
DECLARE_PER_CPU(struct rcu_data, rcu_bh_data);

About this states you can read here. As | wrote above we need to initialize rcu_state
structures and rcu_init_one function will help us with it. After the rcu_state initialization,
we can see the call of the _ rcu_init_preempt which depends on the CoNFIG_PREEMPT RCU
kernel configuration option. It does the same as previous functions - initialization of the

rcu_preempt_state Structure with the rcu_init_one function which has rcu_state type.
After this, in the rcu_init , we can see the call of the:

open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);

function. This function registers a handler of the pending interrupt . Pending interrupt or
softirq supposes that part of actions can be delayed for later execution when the system
is less loaded. Pending interrupts is represented by the following structure:

struct softirg_action

{

void (*action)(struct softirg_action *);

be

which is defined in the include/linux/interrupt.h and contains only one field - handler of an
interrupt. You can check about softirgs in the your system with the:
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$ cat /proc/softirqgs

CPUO CPU1 CPU2 CPU3 CPU4 CPU5
CPU6 CPU7
HI: 2 (0] (0] 1 (0] 2
0 0
TIMER: 137779 168110 139573 107647 107408 114972 9
9653 98665
NET_TX: 1127 0 4 (0] 1 1
(0] (0]
NET_RX: 334 221 132939 3076 451 361
292 303
BLOCK: 5253 5596 8 779 2016 37442
28 2855
BLOCK_IOPOLL: (0] (0] (0] (0] 0 (0]
0 0
TASKLET: 66 (0] 2916 113 (0] 24 2
6708 0
SCHED: 102350 75950 91705 75356 75323 82627 6
9279 69914
HRTIMER: 510 302 368 260 219 255
248 246
RCU: 81290 68062 82979 69015 68390 69385 6
3304 63473

The open_softirq function takes two parameters:

¢ index of the interrupt;
¢ interrupt handler.

and adds interrupt handler to the array of the pending interrupts:

void open_softirq(int nr, void (*action)(struct softirg_action *))

{

softirg_vec[nr].action = action;

In our case the interrupt handler is - rcu_process_callbacks Which is defined in the
kernel/rcu/tree.c and does the Rrcu core processing for the current CPU. After we registered
softirg interrupt for the rcu , we can see the following code:

cpu_notifier(rcu_cpu_notify, 0);
pm_notifier(rcu_pm_notify, 0);
for_each_online_cpu(cpu)
rcu_cpu_notify( , CPU_UP_PREPARE, (void *)(long)cpu);
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Here we can see registration of the cpu notifier which needs in systems which supports
CPU hotplug and we will not dive into details about this theme. The last function in the

rcu_init isthe rcu_early_boot_tests :

void void

{
pr_info("Running RCU self tests\n");

if (rcu_self_test)

early boot_test_call rcu();
if (rcu_self_test_bh)

early boot_test_call rcu_bh();
if (rcu_self_test_sched)

early boot_test_call rcu_sched();

which runs self tests for the rcu .

That's all. We saw initialization process of the rcu subsystem. As | wrote above, more
about the rcu will be in the separate chapter about synchronization primitives.

Rest of the initialization process

Ok, we already passed the main theme of this part which is rcu initialization, but it is not

the end of the linux kernel initialization process. In the last paragraph of this theme we will

see a couple of functions which work in the initialization time, but we will not dive into deep
details around this function for different reasons. Some reasons not to dive into details are
following:

e They are not very important for the generic kernel initialization process and depend on
the different kernel configuration;

e They have the character of debugging and not important for now;

e We will see many of this stuff in the separate parts/chapters.

After we initialized rcu , the next step which you can see in the init/main.c is the -
trace_init function. As you can understand from its name, this function initialize tracing
subsystem. You can read more about linux kernel trace system - here.

After the trace_init , we can see the call of the radix_tree_init . If you are familiar with
the different data structures, you can understand from the name of this function that it
initializes kernel implementation of the Radix tree. This function is defined in the lib/radix-
tree.c and you can read more about it in the part about Radix tree.
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In the next step we can see the functions which are related to the interrupts handling
subsystem, they are:

® early irg_init
® init_IRQ

® softirg_init

We will see explanation about this functions and their implementation in the special part
about interrupts and exceptions handling. After this many different functions (like

init_timers , hrtimers_init , time_init , etc.) which are related to different timing and
timers stuff. We will see more about these function in the chapter about timers.

The next couple of functions are related with the perf events - perf_event-init (there will
be separate chapter about perf), initialization of the profiling with the profile init . After
this we enable irq with the call of the:

local_irqg_enable();

which expands to the sti instruction and making post initialization of the SLAB with the call
of the kmem _cache_init_late function (As | wrote above we will know about the sLaAB in the
Linux memory management chapter).

After the post initialization of the sLAB , next point is initialization of the console with the
console_init function from the drivers/tty/ity io.c.

After the console initialization, we can see the 1ockdep_info function which prints
information about the Lock dependency validator. After this, we can see the initialization of
the dynamic allocation of the debug objects with the debug objects_mem_init , kernel
memory leak detector initialization with the kmemleak_init , percpu pageset setup with the
setup_per_cpu_pageset , setup of the NUMA policy with the numa_policy init , setting time
for the scheduler with the sched_clock_init , pidmap initialization with the call of the
pidmap_init function for the initial pip namespace, cache creation with the
anon_vma_init for the private virtual memory areas and early initialization of the ACPI with

the acpi_early init .

This is the end of the ninth part of the linux kernel initialization process and here we saw
initialization of the RCU. In the last paragraph of this part ( Rest of the initialization
process ) we will go through many functions but did not dive into details about their
implementations. Do not worry if you do not know anything about these stuff or you know
and do not understand anything about this. As | already wrote many times, we will see
details of implementations in other parts or other chapters.
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Conclusion

It is the end of the ninth part about the linux kernel initialization process. In this part, we
looked on the initialization process of the rcu subsystem. In the next part we will continue
to dive into linux kernel initialization process and | hope that we will finish with the

start_kernel function and will go to the rest_init function from the same init/main.c
source code file and will see the start of the first process.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Kernel initialization. Part 10.

End of the linux kernel initialization
process

This is tenth part of the chapter about linux kernel initialization process and in the previous
part we saw the initialization of the RCU and stopped on the call of the acpi_early init
function. This part will be the last part of the Kernel initialization process chapter, so let's
finish it.

After the call of the acpi_early init function from the init/main.c, we can see the following
code:

#ifdef CONFIG_X86_ESPFIX64
init_espfix_bsp();
#endif

Here we can see the call of the init_espfix_bsp function which depends on the

CONFIG_x86_ESPFIX64 Kernel configuration option. As we can understand from the function
name, it does something with the stack. This function is defined in the
arch/x86/kernel/espfix_64.c and prevents leaking of 31:16 bits of the esp register during
returning to 16-bit stack. First of all we install espfix page upper directory into the kernel
page directory in the init_espfix_bs :

pgd_p = &init_level4 pgt[pgd_index(ESPFIX_BASE_ADDR)];
pgd_populate(&init_mm, pgd_p, (pud_t *)espfix_pud_page);

Where ESPFIX_BASE_ADDR iS:

#define PGDIR_SHIFT 39
#define ESPFIX_PGD_ENTRY _AC(-2, UL)
#define ESPFIX_BASE_ADDR (ESPFIX_PGD_ENTRY << PGDIR_SHIFT)

Also we can find it in the Documentation/x86/x86 64/mm:

. unused hole ...
fffffoeeee00000 - fFffff7fffffffff (=39 bits) %esp fixup stacks
. unused hole ...
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After we've filled page global directory with the espfix pud, the next step is call of the
init_espfix_random and init_espfix_ap functions. The first function returns random

locations for the espfix page and the second enables the espfix for the current CPU.

After the init_espfix_bsp finished the work, we can see the call of the
thread_info_cache_init function which defined in the kernel/fork.c and allocates cache for

the thread_info if THREAD_SIZE is less than PAGE_SIzE :

# if THREAD_SIZE >= PAGE_SIZE

void void
{
thread_info_cache = kmem_cache_create("thread info", THREAD_SIZE,
THREAD_SIZE, 0, );
BUG_ON(thread_info_cache == );
}
#endif

As we already know the PAGE_SIzE iS (_AC(1,UL) << PAGE_SHIFT) Or 4096 bytes and
THREAD_SIZE IS (PAGE_SIZE << THREAD_SIZE ORDER) Or 16384 bytes forthe x86_64 . The
next function after the thread_info_cache_init isthe cred_init from the kernel/cred.c. This
function just allocates cache for the credentials (like uid , gid , etc.):

void __init void
{

cred_jar = kmem_cache_create('cred_jar", sizeof(struct cred),
, SLAB_HWCACHE_ALIGN|SLAB_PANIC, );

more about credentials you can read in the Documentation/security/credentials.txt. Next step
is the fork_init function from the kernel/fork.c. The fork_init function allocates cache for
the task_struct . Let's look on the implementation of the fork_init . First of all we can see
definitions of the ArRcH_MIN_TASKALIGN macro and creation of a slab where task_structs will
be allocated:
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#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN L1 _CACHE_BYTES
#endif
task_struct_cachep =
kmem_cache_create("task _struct", sizeof(struct task_struct),
ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, );
#endif

As we can see this code depends on the CONFIG_ARCH_TASK_STRUCT_ACLLOCATOR kernel
configuration option. This configuration option shows the presence of the alloc_task_struct
for the given architecture. As x86_64 has no alloc_task_struct function, this code will not
work and even will not be compiled on the xse_64 .

Allocating cache for init task

After this we can see the call of the arch_task _cache_init function in the fork_init :

void void

task_xstate_cachep =
kmem_cache_create("task xstate", xstate_size,
__alignof__(union thread_xstate),
SLAB_PANIC | SLAB_NOTRACK, );
setup_xstate_comp();

The arch_task_cache_init does initialization of the architecture-specific caches. In our case

itis x86_64 , SO as we can see, the arch_task_cache_init allocates cache for the
task_xstate Which represents FPU state and sets up offsets and sizes of all extended

states in xsave area with the call of the setup_xstate_comp function. After the
arch_task_cache_init we calculate default maximum number of threads with the:

set_max_threads(MAX_THREADS);

where default maximum number of threads is:

#define FUTEX_TID_MASK Ox3fffffff
#define MAX_THREADS FUTEX_TID_MASK

In the end of the fork_init function we initialize signal handler:
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init_task.signal->r1im[RLIMIT_NPROC].rlim_cur = max_threads/2;

init_task.signal->r1im[RLIMIT_NPROC].rlim_max = max_threads/2;

init_task.signal->rlim[RLIMIT_SIGPENDING] =
init_task.signal->r1im[RLIMIT_NPROC];

As we know the init_task is aninstance of the task_struct structure, so it contains

signal field which represents signal handler. It has following type struct signal struct .
On the first two lines we can see setting of the current and maximum limit of the resource
limits . Every process has an associated set of resource limits. These limits specify amount
of resources which current process can use. Here rlim is resource control limit and

presented by the:

struct rlimit {
__kernel_ulong_t rlim_cur;
__kernel_ulong_t rlim_max;

¥

structure from the include/uapi/linux/resource.h. In our case the resource is the
RLIMIT_NPROC Which is the maximum number of processes that user can own and
RLIMIT_SIGPENDING - the maximum number of pending signals. We can see it in the:

cat /proc/self/limits

Limit Soft Limit Hard Limit Units
Max processes processes
Max pending signals signals

Initialization of the caches

The next function after the fork_init isthe proc_caches_init from the kernel/fork.c. This
function allocates caches for the memory descriptors (or mm_struct structure). At the
beginning of the proc_caches_init we can see allocation of the different SLAB caches with
the call of the kmem_cache_create

® sighand_cachep - manage information about installed signal handlers;
® signal cachep - manage information about process signal descriptor;
® files cachep - manage information about opened files;
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® fs_cachep - manage filesystem information.

After this we allocate sLaB cache for the mm_struct structures:

mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
SLAB_HWCACHE_ALIGN |SLAB_PANIC|SLAB_NOTRACK, );

After this we allocate sLAB cache for the important vm_area_struct which used by the
kernel to manage virtual memory space:

vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);

Note, that we use kMeM_cacHE macro here instead of the kmem_cache_create . This macro is
defined in the include/linux/slab.h and just expands to the kmem cache create call:

#define KMEM_CACHE(__struct, _ flags) kmem_cache_create(#__struct,\
sizeof(struct _ struct), _ alignof__ (struct _ struct),\
(__flags), NULL)

The «kmem_cacHe has one difference from kmem_cache create . Take a look on __alignof__
operator. The kMem_cacHe macro aligns sLAB to the size of the given structure, but
kmem_cache_create USes given value to align space. After this we can see the call of the
mmap_init and nsproxy_cache_init functions. The first function initializes virtual memory
area sLAB and the second function initializes sLaB for namespaces.

The next function after the proc_caches_init is buffer_init . This function is defined in the
fs/buffer.c source code file and allocate cache for the buffer_head . The buffer_head is a
special structure which defined in the include/linux/buffer_head.h and used for managing
buffers. In the start of the buffer_init function we allocate cache for the struct
buffer_head structures with the call of the kmem_cache_create function as we did in the
previous functions. And calculate the maximum size of the buffers in memory with:

nrpages = (nr_free_buffer_pages() * 10) / ;
max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));

which will be equal to the 1e% of the zone normaL (all RAM from the 4GB on the xse_64 ).
The next function after the buffer_init is- vfs_caches_init . This function allocates sLAB
caches and hashtable for different VFS caches. We already saw the vfs_caches_init_early
function in the eighth part of the linux kernel initialization process which initialized caches for
dcache (or directory-cache) and inode cache. The vfs_caches_init function makes post-
early initialization of the dcache and inode caches, private data cache, hash tables for the
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mount points, etc. More details about VFS will be described in the separate part. After this
we can see signals_init function. This function is defined in the kernel/signal.c and
allocates a cache for the sigqueue structures which represents queue of the real time
signals. The next function is page writeback_init . This function initializes the ratio for the
dirty pages. Every low-level page entry contains the dirty bit which indicates whether a
page has been written to after been loaded into memory.

Creation of the root for the procfs

After all of this preparations we need to create the root for the proc filesystem. We will do it
with the call of the proc_root_init function from the fs/proc/root.c. At the start of the

proc_root_init function we allocate the cache for the inodes and register a new filesystem
in the system with the:

err = register_filesystem(&proc_fs_type);
if (err)
return;

As | wrote above we will not dive into details about VFS and different filesystems in this
chapter, but will see it in the chapter about the vrs . After we've registered a new filesystem
in our system, we call the proc_self_init function from the fs/proc/self.c and this function
allocates inode number for the self ( /proc/self directory refers to the process
accessing the /proc filesystem). The next step after the proc_self init is

proc_setup_thread_self which setups the /proc/thread-self directory which contains
information about current thread. After this we create /proc/self/mounts symlink which will
contains mount points with the call of the

proc_symlink("mounts", , "self/mounts");

and a couple of directories depends on the different configuration options:
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#ifdef CONFIG_SYSVIPC
proc_mkdir("sysvipc", );
#endif
proc_mkdir("fs", )i
proc_mkdir("driver", );
proc_mkdir("fs/nfsd", );
#1f defined (CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)
proc_mkdir ("openprom", );
#endif
proc_mkdir ("bus", );

if (!proc_mkdir("tty", ))
return;
proc_mkdir("tty/ldisc", );

In the end of the proc_root_init we call the proc_sys_init function which creates
/proc/sys directory and initializes the Syscil.

It is the end of start_kernel function. | did not describe all functions which are called in the
start_kernel . | skipped them, because they are not important for the generic kernel
initialization stuff and depend on only different kernel configurations. They are
taskstats_init_early Which exports per-task statistic to the user-space, delayacct_init -
initializes per-task delay accounting, key init and security init initialize different
security stuff, check_bugs - fix some architecture-dependent bugs, ftrace_init function
executes initialization of the ftrace, cgroup_init makes initialization of the rest of the cgroup
subsystem,etc. Many of these parts and subsystems will be described in the other chapters.

That's all. Finally we have passed through the long-long start_kernel function. But it is not
the end of the linux kernel initialization process. We haven't run the first process yet. In the
end of the start_kernel we can see the last call of the - rest_init function. Let's go
ahead.

First steps after the start_kernel

The rest_init function is defined in the same source code file as start_kernel function,
and this file is init/main.c. In the beginning of the rest_init we can see call of the two
following functions:


http://en.wikipedia.org/wiki/Sysctl
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://en.wikipedia.org/wiki/Cgroups
https://github.com/torvalds/linux/blob/master/init/main.c

rcu_scheduler_starting();
smpboot_thread_init();

The first rcu_scheduler_starting makes RCU scheduler active and the second
smpboot_thread_init registers the smpboot_ thread notifier CPU notifier (more about it you
can read in the CPU hotplug documentation. After this we can see the following calls:

kernel_thread(kernel_init, , CLONE_FS);
pid = kernel_thread(kthreadd, , CLONE_FS | CLONE_FILES);

Here the kernel_thread function (defined in the kernel/fork.c) creates new kernel thread.As
we can see the kernel thread function takes three arguments:

e Function which will be executed in a new thread;
e Parameter for the kernel_init function;
e Flags.

We will not dive into details about kernel_thread implementation (we will see it in the
chapter which describe scheduler, just need to say that kernel thread invokes clone). Now
we only need to know that we create new kernel thread with kernel_thread function, parent
and child of the thread will use shared information about filesystem and it will start to
execute kernel_init function. A kernel thread differs from a user thread that it runs in
kernel mode. So with these two kernel_thread calls we create two new kernel threads with
the pip = 1 for init process and pip = 2 for kthreadd . We already know what is init
process. Let's look on the kthreadd . It is a special kernel thread which manages and helps
different parts of the kernel to create another kernel thread. We can see it in the output of
the ps util:

$ ps -ef | grep kthread
root Janll ? :00: [kthreadd]

Let's postpone kernel init and kthreadd for now and go ahead in the rest_init . Inthe
next step after we have created two new kernel threads we can see the following code:

rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();

The first rcu_read_lock function marks the beginning of an RCU read-side critical section
and the rcu_read_unlock marks the end of an RCU read-side critical section. We call these
functions because we need to protect the find_task_by pid_ns . The find_task_by_pid_ns
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returns pointer to the task_struct by the given pid. So, here we are getting the pointer to
the task_struct for pip = 2 (we gotit after kthreadd creation with the kernel thread ). In
the next step we call complete function

complete(&kthreadd_done);

and pass address of the kthreadd_done . The kthreadd_done defined as

static _ _initdata ;

where DECLARE_cOMPLETION macro defined as:

#define DECLARE_COMPLETION(work) \
struct completion work = COMPLETION_INITIALIZER(work)

and expands to the definition of the compiletion structure. This structure is defined in the
include/linux/completion.h and presents completions concept. Completions is a code
synchronization mechanism which provides race-free solution for the threads that must wait
for some process to have reached a point or a specific state. Using completions consists of
three parts: The first is definition of the complete structure and we did it with the
DECLARE_COMPLETION . The second is call of the wait_for_completion . After the call of this
function, a thread which called it will not continue to execute and will wait while other thread
did not call complete function. Note that we call wait_for_completion with the
kthreadd_done in the beginning of the kernel init_freeable

wait_for_completion(&kthreadd_done);

And the last step is to call complete function as we saw it above. After this the
kernel_init_freeable function will not be executed while kthreadd thread will not be set.
After the kthreadd was set, we can see three following functions in the rest_init :

init_idle_bootup_task(current);
schedule_preempt_disabled();
cpu_startup_entry(CPUHP_ONLINE);

The first init_idle bootup_task function from the kernel/sched/core.c sets the Scheduling
class for the current process ( idle class in our case):
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void struct

idle->sched_class = &idle_sched_class;

where idle class is a low task priority and tasks can be run only when the processor
doesn't have anything to run besides this tasks. The second function
schedule_preempt_disabled disables preemptin idle tasks. And the third function
cpu_startup_entry is defined in the kernel/sched/idle.c and calls cpu_idle_loop from the
kernel/sched/idle.c. The cpu_idle loop function works as process with pip = @ and works
in the background. Main purpose of the cpu_idle_loop is to consume the idle CPU cycles.
When there is no process to run, this process starts to work. We have one process with
idle scheduling class (we just setthe current task tothe idie with the call of the
init_idle bootup_task function), so the idile thread does not do useful work but just
checks if there is an active task to switch to:

static void void

{

while (1) {
while (!'need_resched()) {

More about it will be in the chapter about scheduler. So for this moment the start_kernel
calls the rest_init function which spawns an init ( kernel_init function) process and
become idle process itself. Now is time to look on the kernel_init . Execution of the
kernel_init function starts from the call of the kernel init freeable function. The
kernel_init_freeable function first of all waits for the completion of the kthreadd setup. |
already wrote about it above:

wait_for_completion(&kthreadd_done);

After this we set gfp_allowed mask t0 _ GFP_BITS MAsk Which means that system is already
running, set allowed cpus/mems to all CPUs and NUMA nodes with the set_mems_allowed
function, allow init process to run on any CPU with the set_cpus_allowed ptr , set pid for
the cad or ctrl-Alt-pelete , do preparation for booting of the other CPUs with the call of
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the smp_prepare_cpus , call early initcalls with the do_pre_smp_initcalls , initialize smp with
the smp_init and initialize lockup detector with the call of the 1ockup_detector_init and
initialize scheduler with the sched_init_smp .

After this we can see the call of the following functions - do_basic_setup . Before we will call
the do_basic_setup function, our kernel already initialized for this moment. As comment
says:

Now we can finally start doing some real work..

The do_basic_setup Will reinitialize cpuset to the active CPUs, initialize the «khelper - which
is a kernel thread which used for making calls out to userspace from within the kernel,
initialize tmpfs, initialize drivers subsystem, enable the user-mode helper workqueue and
make post-early call of the initcalls . We can see opening of the dev/console and dup
twice file descriptors from o to 2 afterthe do_basic_setup :

if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
pr_err("warning: unable to open an initial console.\n");

(void) sys_dup(0);
(void) sys_dup(0);

We are using two system calls here sys open and sys_dup . In the next chapters we will
see explanation and implementation of the different system calls. After we opened initial
console, we check that rdinit= option was passed to the kernel command line or set
default path of the ramdisk:

if (!ramdisk_execute_command)
ramdisk_execute_command = "/init";

Check user's permissions for the ramdisk and call the prepare_namespace function from the
init/do_mounts.c which checks and mounts the initrd:

if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
ramdisk_execute_command = ;
prepare_namespace();

This is the end of the kernel_init_freeable function and we need return to the
kernel_init . The next step after the kernel init_freeable finished its execution is the
async_synchronize full . This function waits until all asynchronous function calls have been
done and after it we will call the free_initmem which will release all memory occupied by the
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initialization stuff which located between _ init_begin and _ _init_end . After this we
protect .rodata with the mark rodata ro and update state of the system from the
SYSTEM_BOOTING to the

system_state = SYSTEM_RUNNING;

And tries to run the init process:

if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d)\n",
ramdisk_execute_command, ret);

First of all it checks the ramdisk_execute_command which we set in the kernel_init_freeable
function and it will be equal to the value of the rdinit= kernel command line parameters or

/init by default. The run_init_process function fills the first element of the argv_init
array:

static const char *argv_init[MAX_INIT_ARGS+2] = { "init", ;3

which represents arguments of the init program and call do_execve function:

argv_init[0] = init_filename;

return do_execve(getname_kernel(init_filename),
(const char __user *const __user *)argv_init,
(const char __user *const __user *)envp_init);

The do_execve function is defined in the include/linux/sched.h and runs program with the
given file name and arguments. If we did not pass rdinit= option to the kernel command
line, kernel starts to check the execute_command which is equal to value of the init= kernel
command line parameter:

if (execute_command) {
ret = run_init_process(execute_command);
if (!'ret)
return 0;
panic("Requested init %s failed (error %d).",
execute_command, ret);
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If we did not pass init= kernel command line parameter either, kernel tries to run one of
the following executable files:

if ('try_to_run_init_process("/sbhin/init") ||
Itry_to_run_init_process("/etc/init") ||
Itry_to_run_init_process("/bin/init") ||
Itry_to_run_init_process("/bin/sh"))
return 0;

Otherwise we finish with panic:

panic("No working init found. Try passing init= option to kernel. "
"See Linux Documentation/init.txt for guidance.");

That's all!l Linux kernel initialization process is finished!

Conclusion

It is the end of the tenth part about the linux kernel initialization process. It is not only the

tenth part, but also is the last part which describes initialization of the linux kernel. As |
wrote in the first part of this chapter, we will go through all steps of the kernel initialization
and we did it. We started at the first architecture-independent function - start_kernel and
finished with the launch of the first init process in the our system. | skipped details about
different subsystem of the kernel, for example | almost did not cover scheduler, interrupts,
exception handling, etc. From the next part we will start to dive to the different kernel
subsystems. Hope it will be interesting.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Interrupts and Interrupt Handling

You will find a couple of posts which describe interrupts and exceptions handling in the linux
kernel.

e |nterrupts and Interrupt Handling. Part 1. - describes an interrupts handling theory.

e Start to dive into interrupts in the Linux kernel - this part starts to describe interrupts and
exceptions handling related stuff from the early stage.

e Early interrupt handlers - third part describes early interrupt handlers.

e |nterrupt handlers - fourth part describes first non-early interrupt handlers.

e |mplementation of exception handlers - descripbes implementation of some exception
handlers as double fault, divide by zero and etc.

e Handling Non-Maskable interrupts - describes handling of non-maskable interrupts and
the rest of interrupts handlers from the architecture-specific part.

e Dive into external hardware interrupts - this part describes early initialization of code
which is related to handling of external hardware interrupts.

e Non-early initialization of the IRQs - this part describes non-early initialization of code
which is related to handling of external hardware interrupts.

e Softirg, Tasklets and Workqueues - this part describes softirgs, tasklets and workqueues
concepts.

e - this is the last part of the interrupts and interrupt handling chapter and here we will see
a real hardware driver and interrupts related stuff.
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Interrupts and Interrupt Handling. Part 1.

Introduction

This is the first part of the new chapter of the linux insides book. We have come a long way
in the previous chapter of this book. We started from the earliest steps of kernel initialization
and finished with the launch of the first init process. Yes, we saw several initialization
steps which are related to the various kernel subsystems. But we did not dig deep into the
details of these subsystems. With this chapter, we will try to understand how the various
kernel subsystems work and how they are implemented. As you can already understand
from the chapter's title, the first subsystem will be interrupts.

What is an Interrupt?

We have already heard of the word interrupt in several parts of this book. We even saw a
couple of examples of interrupt handlers. In the current chapter we will start from the theory
i.e.

e What are interrupts ?
e \What are interrupt handlers ?

We will then continue to dig deeper into the details of interrupts and how the Linux kernel
handles them.

So..., First of all what is an interrupt? An interrupt is an event which is raised by software or
hardware when its needs the CPU's attention. For example, we press a button on the
keyboard and what do we expect next? What should the operating system and computer do
after this? To simplify matters assume that each peripheral device has an interrupt line to the
CPU. A device can use it to signal an interrupt to the CPU. However interrupts are not
signaled directly to the CPU. In the old machines there was a PIC which is a chip
responsible for sequentially processing multiple interrupt requests from multiple devices. In
the new machines there is an Advanced Programmable Interrupt Controller commonly
known as - Apic . An Apic consists of two separate devices:

® |ocal APIC

® TI/0 APIC
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The first - Local Apic is located on each CPU core. The local APIC is responsible for
handling the CPU-specific interrupt configuration. The local APIC is usually used to manage
interrupts from the APIC-timer, thermal sensor and any other such locally connected I/O
devices.

The second - 1/0 ApIic provides multi-processor interrupt management. It is used to
distribute external interrupts among the CPU cores. More about the local and I/O APICs will
be covered later in this chapter. As you can understand, interrupts can occur at any time.
When an interrupt occurs, the operating system must handle it immediately. But what does it
mean to handle an interrupt ? When an interrupt occurs, the operating system must
ensure the following steps:

¢ The kernel must pause execution of the current process; (preempt current task);

¢ The kernel must search for the handler of the interrupt and transfer control (execute
interrupt handler);

e After the interrupt handler completes execution, the interrupted process can resume
execution.

Of course there are numerous intricacies involved in this procedure of handling interrupts.
But the above 3 steps form the basic skeleton of the procedure.

Addresses of each of the interrupt handlers are maintained in a special location referred to
as the - 1Interrupt Descriptor Table Or IDT . The processor uses a unique number for
recognizing the type of interruption or exception. This number is called - vector number . A
vector number is an index in the 1pT . There is limited amount of the vector numbers and it
can be from o to 255 . You can note the following range-check upon the vector number
within the Linux kernel source-code:

BUG_ON( (unsigned)n > );

You can find this check within the Linux kernel source code related to interrupt setup (eg.
The set_intr_gate , void set_system_intr_gate in arch/x86/include/asm/desc.h). The first
32 vector numbers from e to 31 are reserved by the processor and used for the
processing of architecture-defined exceptions and interrupts. You can find the table with the
description of these vector numbers in the second part of the Linux kernel initialization
process - Early interrupt and exception handling. Vector numbers from 32 to 255 are
designated as user-defined interrupts and are not reserved by the processor. These
interrupts are generally assigned to external 1/0O devices to enable those devices to send
interrupts to the processor.

Now let's talk about the types of interrupts. Broadly speaking, we can split interrupts into 2
major classes:
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e External or hardware generated interrupts;
e Software-generated interrupts.

The first - external interrupts are received through the Local Apic or pins on the processor
which are connected to the Local Apic . The second - software-generated interrupts are
caused by an exceptional condition in the processor itself (sometimes using special
architecture-specific instructions). A common example for an exceptional condition is
division by zero . Another example is exiting a program with the syscall instruction.

As mentioned earlier, an interrupt can occur at any time for a reason which the code and
CPU have no control over. On the other hand, exceptions are synchronous with program
execution and can be classified into 3 categories:

® Faults
® Traps
® Aborts

A fault is an exception reported before the execution of a "faulty" instruction (which can
then be corrected). If corrected, it allows the interrupted program to be resume.

Next a trap is an exception which is reported immediately following the execution of the
trap instruction. Traps also allow the interrupted program to be continued just as a fault
does.

Finally an abort is an exception that does not always report the exact instruction which
caused the exception and does not allow the interrupted program to be resumed.

Also we already know from the previous part that interrupts can be classified as maskable
and non-maskable . Maskable interrupts are interrupts which can be blocked with the two
following instructions for xse 64 - sti and cl1i . We can find them in the Linux kernel
source code:

static inline void void
{
asm Yedlat™ "memory");
}
and
static inline void void
{
asm "sti" "memory");

}
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These two instructions modify the 1F flag bit within the interrupt register. The sti
instruction sets the 1rF flag and the c1i instruction clears this flag. Non-maskable
interrupts are always reported. Usually any failure in the hardware is mapped to such non-
maskable interrupts.

If multiple exceptions or interrupts occur at the same time, the processor handles them in
order of their predefined priorities. We can determine the priorities from the highest to the
lowest in the following table:

|
Description |
|

_________________________________________________ o
Hardware Reset and Machine Checks |
- RESET |
- Machine Check |

_________________________________________________ S
Trap on Task Switch |
- T flag in TSS is set |

I

_________________________________________________ +
External Hardware Interventions |
- FLUSH |
- STOPCLK |
- SMI |

I

Traps on the Previous Instruction |
- Breakpoints |
- Debug Trap Exceptions |
_________________________________________________ +
| Nonmaskable Interrupts |
B R S +
| Maskable Hardware Interrupts
B R o m e e e e e e e e e e e e e e e e e mmm oo +
| Code Breakpoint Fault |
F R o mm e e e e e e e e e e e e e e e e e mem oo +
| Faults from Fetching Next Instruction |
| Code-Segment Limit Violation
| Code Page Fault |
o mm e e e e e e e e e e e e e e e e e mmm e mooo o +
| Faults from Decoding the Next Instruction |
| Instruction length > 15 bytes
| Invalid Opcode |
| Coprocessor Not Available |
I I
+

| 10 | Faults on Executing an Instruction |
| | Overflow |
| | Bound error |



Invalid TSS
Segment Not Present
Stack fault
General Protection

x87 FPU Floating-point exception

I
I
I
I
Data Page Fault |
I
I
SIMD floating-point exception |

I

I
I
I
I
I
| Alignment Check
I
I
I
+

Virtualization exception

Now that we know a little about the various types of interrupts and exceptions, it is time to
move on to a more practical part. We start with the description of the 1interrupt pescriptor
Table . As mentioned earlier, the 1pT Sstores entry points of the interrupts and exceptions
handlers. The 1pT is similar in structure to the Global pescriptor Table which we saw in
the second part of the Kernel booting process. But of course it has some differences.
Instead of descriptors , the 1pT entries are called gates . It can contain one of the
following gates:

¢ Interrupt gates
e Task gates
e Trap gates.

in the xss architecture. Only long mode interrupt gates and trap gates can be referenced in
the xs6_64 . Like the Global Descriptor Table ,the 1Interrupt Descriptor table iS an array
of 8-byte gates on xse and an array of 16-byte gates on xse_64 . We can remember from
the second part of the Kernel booting process, that 6lobal Descriptor Table must contain

nuLL descriptor as its first element. Unlike the clobal pescriptor Table , the 1Interrupt
Descriptor Table Mmay contain a gate; it is not mandatory. For example, you may remember
that we have loaded the Interrupt Descriptor table with the ~uLL gates only in the earlier
part while transitioning into protected mode:

/*
* Set up the IDT
*/
static void setup_idt(void)

{
static const struct gdt_ptr null_idt = {0, 0};

asm volatile("lidtl %0" : : "m" (null_idt));

from the arch/x86/boot/pm.c. The 1Interrupt Descriptor table can be located anywhere in
the linear address space and the base address of it must be aligned on an 8-byte boundary
on xs8e or 16-byte boundary on xse_64 . The base address of the 1pT is stored in the
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special register - 1pTR . There are two instructions on xse -compatible processors to modify
the 1pTR register:

® LIDT

® SIDT

The first instruction LipT is used to load the base-address of the 1pT i.e. the specified
operand into the 1pTR . The second instruction sipt is used to read and store the contents
of the 1pTR into the specified operand. The 1pTR register is 48-bits on the xss and
contains the following information:

Looking at the implementation of setup_idt , we have prepared a null _idt and loaded it to
the 1pTR register with the 1idt instruction. Note that null idt has gdt_ptr type which
is defined as:

struct gdt_ptr {
ulé len;
u32 ptr;
} __attribute__ ((packed));

Here we can see the definition of the structure with the two fields of 2-bytes and 4-bytes
each (a total of 48-bits) as we can see in the diagram. Now let's look at the 1pT entries
structure. The 1pT entries structure is an array of the 16-byte entries which are called gates
in the xs6_64 . They have the following structure:



T T T T T e +
I I
| Reserved |
I I
e m e e e e e e e e e e e e e e e e e e e emm e mm e e e e e e e e e e e e e e e e e e m e e mmmm—m———————————
95 64
g +

P 5 0500000000000 0000000000 C0000C0CCCCCCC0C0S0oo0C0000000000000000000000000000000 +
63 48 47 46 44 42 39 34 32
PP 5000 000000000000 0000000000000 0C00C00C0C0S00o0C0000000000000000000000000000000 +
I I I [ I [ I
| Offset 31..16 | P | P | O |Type |60 0 | @ ] 0 | IST |
I I [ I [ I
_______________________________________________________________________________ +
31 16 15 0
o 5 0o 00 000000000000 0000000000000 0000C0CC0C0S00o0C0000000000000000000000000000000 +
I I I
| Segment Selector | Offset 15..0 |
I I I
Jh o 0 00000 0000000000 0000000000000 0000C00C0C0S000000000000000000000000000000000500 +

To form an index into the IDT, the processor scales the exception or interrupt vector by

sixteen. The processor handles the occurrence of exceptions and interrupts just like it

handles calls of a procedure when it sees the call instruction. A processor uses an unique

number or vector number Of the interrupt or the exception as the index to find the necessary
Interrupt Descriptor Table entry. Now let's take a closer look at an 1pT entry.

As we can see, 1pT entry on the diagram consists of the following fields:

e 0-15 bits - offset from the segment selector which is used by the processor as the
base address of the entry point of the interrupt handler;

16-31 bits - base address of the segment select which contains the entry point of the
interrupt handler;
e 1IST - a new special mechanism in the x86_64 , will see it later;
e ppL - Descriptor Privilege Level,
e p - Segment Present flag;
e 48-63 bits - second part of the handler base address;
e 64-95 bits - third part of the base address of the handler;
e 96-127 bits - and the last bits are reserved by the CPU.

And the last Type field describes the type of the 1pT entry. There are three different kinds
of handlers for interrupts:



¢ |nterrupt gate
e Trap gate
e Task gate

The 1IST or Interrupt Stack Table iS a new mechanism inthe xse_64 . Itis used as an
alternative to the legacy stack-switch mechanism. Previously The xsge architecture
provided a mechanism to automatically switch stack frames in response to an interrupt. The

1sT is a modified version of the xse Stack switching mode. This mechanism
unconditionally switches stacks when it is enabled and can be enabled for any interrupt in
the 1pT entry related with the certain interrupt (we will soon see it). From this we can
understand that 1sT is not necessary for all interrupts. Some interrupts can continue to use
the legacy stack switching mode. The 1sT mechanism provides up to seven 1sT pointers
in the Task State Segment or T1ss which is the special structure which contains information
about a process. The Tss is used for stack switching during the execution of an interrupt or
exception handler in the Linux kernel. Each pointer is referenced by an interrupt gate from
the 1pT .

The 1nterrupt Descriptor Table represented by the array of the gate desc structures:

extern gate_desc idt_table[];

where gate_desc is:

#ifdef CONFIG_X86_64
typedef struct gate_struct64 gate_desc;
#endif

and gate_structe4 defined as:

struct gate_struct64 {
ulé offset_low;
ulé segment;
unsigned ist : 3, zero®@ : 5, type : 5, dpl : 2, p : 1;
ul6 offset_middle;
u32 offset_high;
u32 zeroi;
} __attribute_ ((packed));


http://en.wikipedia.org/wiki/Task_state_segment

Each active thread has a large stack in the Linux kernel for the xse_e4 architecture. The
stack size is defined as THREAD_sizE and is equal to:

#define PAGE_SHIFT 12
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define THREAD_SIZE_ORDER (2 + KASAN_STACK_ORDER)

#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)

The pace_size is 4096 -bytes and the THREAD_S1zE_OrRDER depends on the
KASAN_STACK_ORDER . As we can see, the kasan_sTack depends on the conrFic_kasan kernel
configuration parameter and is defined as:

#ifdef CONFIG_KASAN

#define KASAN_STACK_ORDER 1
#else

#define KASAN_STACK_ORDER 0
#endif

KAsan is a runtime memory debugger. So... the THReaDp_size will be 16384 bytes if

CONFIG_KASAN is disabled or 32768 if this kernel configuration option is enabled. These
stacks contain useful data as long as a thread is alive or in a zombie state. While the thread
is in user-space, the kernel stack is empty except for the thread_info structure (details
about this structure are available in the fourth part of the Linux kernel initialization process)
at the bottom of the stack. The active or zombie threads aren't the only threads with their
own stack. There also exist specialized stacks that are associated with each available CPU.
These stacks are active when the kernel is executing on that CPU. When the user-space is
executing on the CPU, these stacks do not contain any useful information. Each CPU has a
few special per-cpu stacks as well. The first is the interrupt stack used for the external
hardware interrupts. Its size is determined as follows:

#define IRQ_STACK_ORDER (2 + KASAN_STACK_ORDER)
#define IRQ_STACK_SIZE (PAGE_SIZE << IRQ_STACK_ORDER)

or 16384 bytes. The per-cpu interrupt stack represented by the irg_stack_union unionin
the Linux kernel for xs6_64 :
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union irg_stack_union {
char irg_stack[IRQ_STACK_SIZE];

struct {
char gs_base[40];
unsigned long stack_canary;
¥
};

The first irq_stack field is a 16 kilobytes array. Also you can see that irq_stack_union
contains a structure with the two fields:

® gs base - The gs register always points to the bottom of the irgstack union. On the
x86_64 , the gs register is shared by per-cpu area and stack canary (more about per-
cpu Vvariables you can read in the special part). All per-cpu symbols are zero based and
the gs points to the base of the per-cpu area. You already know that segmented
memory model is abolished in the long mode, but we can set the base address for the
two segment registers - fs and gs with the Model specific registers and these
registers can be still be used as address registers. If you remember the first part of the
Linux kernel initialization process, you can remember that we have set the gs register:

mov1l $MSR_GS_BASE, %ecx

movl initial gs(%rip), %eax
movl initial gs+4(%rip), %edx
wrmsr

where initial gs points tothe irq_stack union :

GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irg_stack_union)

® stack_canary - Stack canary for the interrupt stack is a stack protector to verify that
the stack hasn't been overwritten. Note that gs_base is a 40 bytes array. ecc requires
that stack canary will be on the fixed offset from the base of the gs and its value must
be 40 forthe xse_64 and 20 forthe xse .

The irq_stack_union is the first datum in the percpu area, we can see it in the

System.map
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00000000000EBOEO D _ per_cpu_start
0000000OOOENBEAO D irg_stack_union
0000000000004000 d exception_stacks
0000000EE9000 D gdt_page

We can see its definition in the code:

DECLARE_PER_CPU_FIRST(union irqg_stack_union, irq_stack_union) _ visible;

Now, it's time to look at the initialization of the irq_stack_union . Besides the
irq_stack_union definition, we can see the definition of the following per-cpu variables in
the arch/x86/include/asm/processor.h:

DECLARE_PER_CPU(char *, irq_stack_ptr);
DECLARE_PER_CPU(unsigned int, irq_count);

The firstis the irq_stack _ptr . From the variable's name, it is obvious that this is a pointer to
the top of the stack. The second - irq count is used to check if a CPU is already on an
interrupt stack or not. Initialization of the irq_stack_ptr is located in the

setup_per_cpu_areas function in arch/x86/kernel/setup percpu.c:

void __init void

{

#ifdef CONFIG_X86_64
for_each_possible_cpu(cpu) {

per_cpu(irqg_stack_ptr, cpu) =
per_cpu(irq_stack_union.irg_stack, cpu) +
IRQ_STACK_SIZE - 64;

#endif
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Here we go over all the CPUs one-by-one and setup irq_stack_ptr . This turns out to be
equal to the top of the interrupt stack minus 64 . Why e4 ?TODO
arch/x86/kernel/cpu/common.c source code file is following:

void int

{

loadsegment(gs, 0);
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irqg_stack_union.gs_base, cpu));

and as we already know the gs register points to the bottom of the interrupt stack:

movl $MSR_GS_BASE, %ecx

movl initial gs(%rip), %eax
mov1l initial gs+4(%rip), %edx
wrmsr

GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irg_stack_union)

Here we can see the wrmsr instruction which loads the data from edx:eax into the Model

specific register pointed by the ecx register. In our case the model specific register is
MSR_GS_BASE Wwhich contains the base address of the memory segment pointed by the gs

register. edx:eax points to the address of the initial gs which is the base address of our

irqg_stack_union

We already know that xse6_e4 has a feature called 1interrupt stack Table or 1sT and this
feature provides the ability to switch to a new stack for events non-maskable interrupt,
double fault and etc... There can be up to seven 1sT entries per-cpu. Some of them are:

® DOUBLEFAULT_STACK
® NMI_STACK
® DEBUG_STACK

® MCE_STACK

or

#define DOUBLEFAULT_STACK 1
#define NMI_STACK 2

#define DEBUG_STACK 3
#define MCE_STACK 4
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All interrupt-gate descriptors which switch to a new stack with the 1st are initialized with
the set_intr_gate ist function. For example:

set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);

set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);

where &nmi and &double fault are addresses of the entries to the given interrupt
handlers:

asmlinkage void void);
asmlinkage void void);

defined in the arch/x86/kernel/entry 64.S

idtentry double_fault do_double_fault has_error_code=1 paranoid=2

ENTRY (nmi)

END(nmi)

When an interrupt or an exception occurs, the new ss selector is forced to nuLL and the
ss selector’s rpl field is settothe new cpl . Theold ss, rsp, registerflags, cs ,
rip are pushed onto the new stack. In 64-bit mode, the size of interrupt stack-frame

pushes is fixed at 8-bytes, so we will get the following stack:

o m e e e o - +

I I

| SS | 40
| RSP | 32
| RFLAGS | 24
| Ccs | 16
| RIP | 8
| Error code | O
I I
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If the 1sT field in the interrupt gate is not e , we read the 1st pointerinto rsp . If the
interrupt vector number has an error code associated with it, we then push the error code
onto the stack. If the interrupt vector number has no error code, we go ahead and push the
dummy error code on to the stack. We need to do this to ensure stack consistency. Next we
load the segment-selector field from the gate descriptor into the CS register and must verify
that the target code-segment is a 64-bit mode code segment by the checking bit 21 i.e. the

L bitin the clobal pescriptor Table . Finally we load the offset field from the gate
descriptor into rip which will be the entry-point of the interrupt handler. After this the
interrupt handler begins to execute. After an interrupt handler finishes its execution, it must
return control to the interrupted process with the iret instruction. The iret instruction
unconditionally pops the stack pointer ( ss:rsp ) to restore the stack of the interrupted
process and does not depend on the cpl change.

That's all.

Conclusion

It is the end of the first part about interrupts and interrupt handling in the Linux kernel. We
saw some theory and the first steps of the initialization of stuff related to interrupts and
exceptions. In the next part we will continue to dive into interrupts and interrupts handling -
into the more practical aspects of it.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me a PR to linux-insides.

Links

e PIC

e Advanced Programmable Interrupt Controller
e protected mode

¢ |ong mode

e kernel stacks

e Task State Segment

e segmented memory model

e Model specific registers

e Stack canary

e Previous chapter
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Interrupts and Interrupt Handling. Part 2.

Start to dive into interrupt and exceptions
handling in the Linux kernel

We saw some theory about interrupts and exception handling in the previous part and as |
already wrote in that part, we will start to dive into interrupts and exceptions in the Linux
kernel source code in this part. As you already can note, the previous part mostly described
theoretical aspects and in this part we will start to dive directly into the Linux kernel source
code. We will start to do it as we did it in other chapters, from the very early places. We will
not see the Linux kernel source code from the earliest code lines as we saw it for example in
the Linux kernel booting process chapter, but we will start from the earliest code which is
related to the interrupts and exceptions. In this part we will try to go through the all interrupts
and exceptions related stuff which we can find in the Linux kernel source code.

If you've read the previous parts, you can remember that the earliest place in the Linux

kernel xs6_64 architecture-specific source code which is related to the interrupt is located in

the arch/x86/boot/pm.c source code file and represents the first setup of the Interrupt
Descriptor Table. It occurs right before the transition into the protected mode in the
go_to_protected_mode function by the call of the setup_idt :

void void

setup_idt();

The setup_idt function is defined in the same source code file as the
go_to_protected_mode function and just loads the address of the nuLL interrupts descriptor
table:

static void setup_idt(void)

{
static const struct gdt_ptr null_idt = {0, 0};
asm volatile("lidtl %0" : : "m" (null_idt));
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where gdt_ptr represents a special 48-bit epTrR register which must contain the base
address of the Global Descriptor Table :

struct gdt_ptr {
ul6é len;
u32 ptr;
} __attribute__((packed));

Of course in our case the gdt_ptr does not represent the epTrR register, but 1pTR Since
we set 1Interrupt Descriptor Table . You will not find an idt_ptr structure, because if it had
been in the Linux kernel source code, it would have been the same as gdt_ptr but with
different name. So, as you can understand there is no sense to have two similar structures
which differ only by name. You can note here, that we do not fill the 1nterrupt pescriptor
Table Wwith entries, because it is too early to handle any interrupts or exceptions at this point.
That's why we just fill the 1pT with NuLL .

After the setup of the Interrupt descriptor table, Global Descriptor Table and other stuff we
jump into protected mode in the - arch/x86/boot/pmjump.S. You can read more about it in
the part which describes the transition to protected mode.

We already know from the earliest parts that entry to protected mode is located in the
boot_params.hdr.code32_start and you can see that we pass the entry of the protected
mode and boot_params to the protected_mode jump in the end of the arch/x86/boot/pm.c:

protected_mode_jump(boot_params.hdr.code32_start,
(u32)&boot_params + (ds() << 4));

The protected_mode_jump is defined in the arch/x86/boot/pmjump.S and gets these two
parameters in the ax and dx registers using one of the 8086 calling conventions:

GLOBAL (protected_mode_jump)

.byte 0x66, Oxea # 1jmpl opcode

2: .long in_pm32 # offset
.word __BOOT_CS # segment

ENDPROC (protected_mode_jump)

where in_pm32 contains a jump to the 32-bit entry point:


http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/GDT
http://en.wikipedia.org/wiki/Protected_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pm.c
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pmjump.S
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/X86_calling_conventions#List_of_x86_calling_conventions

GLOBAL (in_pm32)
jmpl *%eax // %eax contains address of the “startup_32°
ENDPROC (in_pm32)

As you can remember the 32-bit entry point is in the arch/x86/boot/compressed/head 64.S
assembly file, although it contains _64 in its name. We can see the two similar files in the
arch/x86/boot/compressed directory:

® arch/x86/boot/compressed/head_32.S

® arch/x86/boot/compressed/head_64.S

But the 32-bit mode entry point is the second file in our case. The first file is not even
compiled for xse_64 . Let's look at the arch/x86/boot/compressed/Makefile:

vmlinux-objs-y := $(obj)/vmlinux.lds $(obj)/head_$(BITS).o0 $(obj)/misc.o \

We can see here that head * depends on the s$(B1Ts) variable which depends on the
architecture. You can find it in the arch/x86/Makefile:

ifeq ($(CONFIG_X86_32),Y)

BITS := 32
else

BITS := 64
endif

Now as we jumped on the startup_32 from the arch/x86/boot/compressed/head 64.S we
will not find anything related to the interrupt handling here. The startup_32 contains code
that makes preparations before the transition into long mode and directly jumps in to it. The
long mode entry is located in startup_64 and it makes preparations before the kernel
decompression that occurs in the decompress_kernel from the
arch/x86/boot/compressed/misc.c. After the kernel is decompressed, we jump on the

startup_64 from the arch/x86/kernel/head 64.S. Inthe startup_64 we start to build
identity-mapped pages. After we have built identity-mapped pages, checked the NX bit,
setup the Extended Feature Enable Register (see in links), and updated the early clobal
Descriptor Table With the 1gdt instruction, we need to setup gs register with the following
code:
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movl $MSR_GS_BASE, %ecx

movl initial _gs(%rip), %eax
movl initial_gs+4(%rip), %edx
wrmsr

We already saw this code in the previous part. First of all pay attention on the last wrmsr
instruction. This instruction writes data from the edx:eax registers to the model specific
register specified by the ecx register. We can see that ecx contains s$Msr_Gs_Base which
is declared in the arch/x86/include/uapi/asm/msr-index.h and looks like:

#define MSR_GS_BASE Oxc0000101

From this we can understand that msr_cs_ase defines the number of the model specific
register . Since registers cs , ds, es ,and ss are notused in the 64-bit mode, their
fields are ignored. But we can access memory over fs and gs registers. The model
specific register provides a back door to the hidden parts of these segment registers and
allows to use 64-bit base address for segment register addressed by the fs and gs . So
the wmsr_Gs_BASE is the hidden part and this part is mapped on the cs.base field. Let's look
on the initial_gs :

GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irg_stack_union)

We pass irq_stack_union symbol to the 1nIT_PER_cPu_vAR macro which just concatenates
the init_per_cpu__ prefix with the given symbol. In our case we will get the

init_per_cpu__irg_stack_union sSymbol. Let's look at the linker script. There we can see
following definition:

#define INIT_PER_CPU(x) init_per_cpu__##x = x + __per_cpu_load
INIT_PER_CPU(irg_stack_union);

It tells us that the address of the init_per_cpu__irq_stack_union Wwill be irg_stack_union +
_ per_cpu_load . Now we need to understand where init_per_cpu__irq_stack_union and
__per_cpu_load are what they mean. The first irq_stack_union is defined in the
arch/x86/include/asm/processor.h with the becLARE_INIT_PER_cPu macro which expands to
call the init_per_cpu_var macro:
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DECLARE_INIT_PER_CPU(irq_stack_union);

#define DECLARE_INIT_PER_CPU(var) \
extern typeof(per_cpu_var(var)) init_per_cpu_var(var)

#define init_per_cpu_var(var) init_per_cpu__##var

If we expand all macros we will get the same init_per_cpu__irg stack union as we got after
expanding the 1INIT_PER_cPU macro, but you can note that it is not just a symbol, but a
variable. Let's look at the typeof(per_cpu_var(var)) expression. OQur var is

irq_stack_union and the per_cpu_var macro is defined in the
arch/x86/include/asm/percpu.h:

#define PER_CPU_VAR(var) %__percpu_seg:var

where:

#ifdef CONFIG_X86_64
#define _ percpu_seg gs
endif

So, we are accessing gs:irq_stack_union and getting its type which is irq_union . Ok, we

defined the first variable and know its address, now let's look at the second _ per_cpu_load
symbol. There are a couple of per-cpu variables which are located after this symbol. The
__per_cpu_load is defined in the include/asm-generic/sections.h:

extern char __per_cpu_load[], _ per_cpu_start[], _ _per_cpu_end[];

and presented base address of the per-cpu variables from the data area. So, we know the
address of the irq_stack_union , _ per_cpu_load and we know that

init_per_cpu__irg_stack_union must be placed right after _ per_cpu_load . And we can see
it in the System.map:

fFFFFfff819edo00 D __init_begin
fFFfFfff819edo0® D _ per_cpu_load
fFFfffff819ed0OO A init_per_cpu__irq_stack_union
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Now we know about initial_gs , SO let's look at the code:

movl $MSR_GS_BASE, %ecx

movl initial_gs(%rip), %eax
movl initial_gs+4(%rip), %edx
wrmsr

Here we specified a model specific register with msr_cs_BASE , put the 64-bit address of the

initial gs tothe edx:eax pair and execute the wrmsr instruction for filling the gs
register with the base address of the init_per_cpu__irq_stack_union which will be at the
bottom of the interrupt stack. After this we will jump to the C code on the

x86_64_start_kernel from the arch/x86/kernel/head64.c. Inthe x86_64_ start_kernel
function we do the last preparations before we jump into the generic and architecture-
independent kernel code and one of these preparations is filling the early 1nterrupt
Descriptor Table With the interrupts handlers entries or early_idt_handlers . You can
remember i, if you have read the part about the Early interrupt and exception handling and
can remember following code:

for (1 = 0; 1 < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early idt_handlers[i]);

load_idt((const struct desc_ptr *)&idt_descr);

but | wrote Early interrupt and exception handling part when Linux kernel version was -
3.18 . For this day actual version of the Linux kernelis 4.1.e-rc6+ and Andy Lutomirski
sent the patch and soon it will be in the mainline kernel that changes behaviour for the
early idt_handlers . NOTE While | wrote this part the patch already turned in the Linux
kernel source code. Let's look on it. Now the same part looks like:

for (1 = 0; 1 < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early_idt_handler_array[i]);

load_idt((const struct desc_ptr *)&idt_descr);

AS you can see it has only one difference in the name of the array of the interrupts handlers
entry points. Now it is early idt_handler_arry :

extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZ
El;

where NUM_EXCEPTION_VECTORS and EARLY_IDT_HANDLER_SIzE are defined as:
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#define NUM_EXCEPTION_VECTORS 32
#define EARLY_IDT_HANDLER_SIZE 9

So, the early idt_handler_array is an array of the interrupts handlers entry points and
contains one entry point on every nine bytes. You can remember that previous
early idt_handlers was defined in the arch/x86/kernel/head 64.S. The
early_idt_handler_array is defined in the same source code file too:

ENTRY (early_idt_handler_array)

ENDPROC (early_idt_handler_common)

It fills early idt_handler_arry with the .rept NUM_EXCEPTION VECTORS and contains entry of
the early make_pgtable interrupt handler (more about its implementation you can read in
the part about Early interrupt and exception handling). For now we come to the end of the

xg86_64 architecture-specific code and the next part is the generic kernel code. Of course
you already can know that we will return to the architecture-specific code in the setup_arch
function and other places, but this is the end of the x86_64 early code.

Setting stack canary for the interrupt stack

The next stop after the arch/x86/kernel/head 64.S is the biggest start_kernel function
from the init/main.c. If you've read the previous chapter about the Linux kernel initialization
process, you must remember it. This function does all initialization stuff before kernel will
launch first init process with the pid - 1 . The first thing that is related to the interrupts
and exceptions handling is the call of the boot_init_stack_canary function.

This function sets the canary value to protect interrupt stack overflow. We already saw a little
some details about implementation of the boot_init_stack_canary in the previous part and
now let's take a closer look on it. You can find implementation of this function in the
arch/x86/include/asm/stackprotector.h and its depends on the CONFIG_cC_STACKPROTECTOR
kernel configuration option. If this option is not set this function will not do anything:
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#ifdef CONFIG_CC_STACKPROTECTOR

#else
static inline void void
{

}
#endif

If the conF1G_cc_sTAckPROTECTOR kernel configuration option is set, the
boot_init_stack_canary function starts from the check stat irq stack_union that represents
per-cpu interrupt stack has offset equal to forty bytes from the stack canary value:

#ifdef CONFIG_X86_64
BUILD_BUG_ON(offsetof(union irq_stack_union, stack_canary) != );
#endif

As we can read in the previous part the irq_stack_union represented by the following
union:

union irg_stack_union {
char irg_stack[IRQ_STACK_SIZE];

struct {
char gs_base[40];
unsigned long stack_canary;
}
3

which defined in the arch/x86/include/asm/processor.h. We know that union in the C
programming language is a data structure which stores only one field in a memory. We can
see here that structure has first field - gs_base which is 40 bytes size and represents
bottom of the irq_stack . So, after this our check with the BuiLp_Buc_on macro should end
successfully. (you can read the first part about Linux kernel initialization process if you're
interesting about the BuILD Buc_oN macro).

After this we calculate new canary value based on the random number and Time Stamp
Counter:

get_random_bytes(&canary, sizeof(canary));
tsc = __native_read_tsc();
canary += tsc + (tsc << L);
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and write canary value to the irq_stack_union with the this_cpu_write macro:

this_cpu_write(irg_stack_union.stack_canary, canary);

more about this_cpu_* operation you can read in the Linux kernel documentation.

Disabling/Enabling local interrupts

The next step in the init/main.c which is related to the interrupts and interrupts handling after
we have set the canary value to the interrupt stack - is the call of the 1ocal irg disable
macro.

This macro defined in the include/linux/irgflags.h header file and as you can understand, we
can disable interrupts for the CPU with the call of this macro. Let's look on its
implementation. First of all note that it depends on the coNFIG_TRACE_IRQFLAGS_SUPPORT
kernel configuration option:

#ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT

#define local_irqg_disable() \
do { raw_local irq_disable(); trace_hardirqs_off(); } while (0)

#else
#define local_irqg_disable() do { raw_local irq_disable(); } while (0)

#endif

They are both similar and as you can see have only one difference: the 1ocal irq disable

macro contains call of the trace_hardirqs_off when CONFIG_TRACE_IRQFLAGS_SUPPORT IS

enabled. There is special feature in the lockdep subsystem - irqg-flags tracing for tracing
hardirqg and softirq state. In our case lockdep subsystem can give us interesting

information about hard/soft irqgs on/off events which are occurs in the system. The
trace_hardirgs_off function defined in the kernel/locking/lockdep.c:

void void

{
trace_hardirqs_off_caller (CALLER_ADDRO);

}
EXPORT_SYMBOL (trace_hardirgs_off);
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and just calls trace_hardirgs_off_caller function. The trace hardirgs_off caller checks
the hardirgs_enabled field of the current process and increases the
redundant_hardirqs_off if call of the 1local irq_disable was redundant or the
hardirgs_off_events if it was not. These two fields and other 1ockdep statistic related fields
are defined in the kernel/locking/lockdep insides.h and located in the 1ockdep_stats
structure:

struct lockdep_stats {

int softirqgs_off_events;
int redundant_softirqs_off;
}

If you will set conFic_peBuc_Lockper kernel configuration option, the
lockdep_stats_debug_show function will write all tracing information to the /proc/lockdep :

static void struct

{
#ifdef CONFIG_DEBUG_LOCKDEP

unsigned long long hil = debug_atomic_read(hardirqs_on_events),
hi2 = debug_atomic_read(hardirqs_off_events),
hri = debug_atomic_read(redundant_hardirqgs_on),

seq_printf(m, " hardirq on events: %1111u\n", hil);

seq_printf(m, " hardirq off events: %1111u\n", hi2);
seq_printf(m, " redundant hardirqg ons: %1111u\n", hril);
#endif

}

and you can see its result with the:

$ sudo cat /proc/lockdep

hardirg on events: 12838248974
hardirqg off events: 12838248979
redundant hardirg ons: 67792
redundant hardirqg offs: 3836339146
softirg on events: 38002159
softirg off events: 38002187
redundant softirqg ons: 0

redundant softirqg offs: 0
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Ok, now we know a little about tracing, but more info will be in the separate part about
lockdep and tracing . You can see that the both 1ocal_disable_irq macros have the

same part - raw_local_irg_disable . This macro defined in the

arch/x86/include/asm/irgflags.h and expands to the call of the:

static inline void void
asm "cli" "memory");

And you already must remember that c1i instruction clears the IF flag which determines
ability of a processor to handle an interrupt or an exception. Besides the 1ocal irq disable |,
as you already can know there is an inverse macro - local _irq_enable . This macro has the
same tracing mechanism and very similar on the 1ocal irg_enable , but as you can
understand from its name, it enables interrupts with the sti instruction:

static inline void void
asm "sti" "memory");

Now we know how 1local irq_disable and local_irq_enable work. It was the first call of
the 1local irgq_disable macro, but we will meet these macros many times in the Linux
kernel source code. But for now we are in the start_kernel function from the init/main.c
and we just disabled 1ocal interrupts. Why local and why we did it? Previously kernel
provided a method to disable interrupts on all processors and it was called c1i . This
function was removed and now we have 1local_irq_{enabled,disable} to disable or enable
interrupts on the current processor. After we've disabled the interrupts with the
local_irq_disable macro, we set the:

early boot_irgs_disabled = ;

The early boot_irqgs_disabled variable defined in the include/linux/kernel.h:

extern bool early_boot_irqgs_disabled;

and used in the different places. For example it used in the smp_call function_many function
from the kernel/smp.c for the checking possible deadlock when interrupts are disabled:

WARN_ON_ONCE(cpu_online(this_cpu) && irgs_disabled()
&& l!oops_in_progress && !early boot_irqs_disabled);
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Early trap initialization during kernel
initialization

The next functions after the 1local disable_irq are boot_cpu_init and page_address_init ,
but they are not related to the interrupts and exceptions (more about this functions you can
read in the chapter about Linux kernel initialization process). The next is the setup_arch
function. As you can remember this function located in the arch/x86/kernel/setup.c source
code file and makes initialization of many different architecture-dependent stuff. The first
interrupts related function which we can see in the setup_arch isthe - early trap_init
function. This function defined in the arch/x86/kernel/traps.c and fills Interrupt Descriptor
Table with the couple of entries:

void __init void

{
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
#ifdef CONFIG_X86_32

set_intr_gate(X86_TRAP_PF, page_fault);
#endif

load_idt(&idt_descr);

Here we can see calls of three different functions:

® set_intr_gate_ist
® set_system_intr_gate_ist

® set_intr_gate

All of these functions defined in the arch/x86/include/asm/desc.h and do the similar thing but
not the same. The first set_intr_gate_ist function inserts new an interrupt gate in the 1pT .
Let's look on its implementation:

static inline void int void unsigned

{
BUG_ON( (unsigned)n > );

_set_gate(n, GATE_INTERRUPT, addr, 0, ist, _ KERNEL_CS);

First of all we can see the check that n which is vector number of the interrupt is not
greater than exff or 255. We need to check it because we remember from the previous
part that vector number of an interrupt must be between o and 255 . In the next step we
can see the call of the _set_gate function that sets a given interrupt gate to the 1pT table:
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static inline void _set_gate(int gate, unsigned type, void *addr,
unsigned dpl, unsigned ist, unsigned seg)

{
gate_desc s;
pack_gate(&s, type, (unsigned long)addr, dpl, ist, segq);
write_idt_entry(idt_table, gate, &s);
write_trace_idt_entry(gate, &s);

}

Here we start from the pack_gate function which takes clean 1pT entry represented by the
gate_desc structure and fills it with the base address and limit, Interrupt Stack Table,
Privilege level, type of an interrupt which can be one of the following values:

® GATE_INTERRUPT
® GATE_TRAP
® GATE_CALL

® GATE_TASK

and set the present bit for the given 1p7T entry:

static inline void pack_gate unsigned unsigned long
unsigned unsigned unsigned
{
gate->offset_low = PTR_LOW(func);
gate->segment = _ KERNEL_CS;
gate->ist = ist;
gate->p =1
gate->dpl = dpl;
gate->zero@ = 0;
gate->zerol = 0;
gate->type = type;
gate->offset_middle = PTR_MIDDLE(func);
gate->offset_high = PTR_HIGH(func);
}

After this we write just filled interrupt gate to the 1pT with the write idt_entry macro
which expands to the native write idt_entry and just copy the interrupt gate to the
idt_table table by the given index:
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#define write_idt_entry(dt, entry, g) native_write_idt_entry(dt, entry, g)

static inline void int const

(&idt[entry], gate, sizeof(*gate));

where idt_table is just array of gate_desc :

extern gate_desc idt_table[];

That's all. The second set_system_intr_gate_ist function has only one difference from the

set_intr_gate_ist :

static inline void int void unsigned

{
BUG_ON( (unsigned)n > );
_set_gate(n, GATE_INTERRUPT, addr, , ist, _ KERNEL_CS);

Do you see it? Look on the fourth parameter of the _set_gate . Itis ox3 . Inthe
set_intr_gate itwas oxo . We know that this parameter represent ppL or privilege level.
We also know that e is the highest privilege level and 3 is the lowest.Now we know how
set_system_intr_gate_ist , set_intr_gate_ist , set_intr_gate are work and we can return
tothe early trap_init function. Let's look on it again:

set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);

We settwo 1pT entries for the #pe interrupt and int3 . These functions takes the same
set of parameters:

e vector number of an interrupt;
e address of an interrupt handler;
¢ interrupt stack table index.

That's all. More about interrupts and handlers you will know in the next parts.

Conclusion



It is the end of the second part about interrupts and interrupt handling in the Linux kernel.
We saw the some theory in the previous part and started to dive into interrupts and
exceptions handling in the current part. We have started from the earliest parts in the Linux
kernel source code which are related to the interrupts. In the next part we will continue to
dive into this interesting theme and will know more about interrupt handling process.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Interrupts and Interrupt Handling. Part 3.

Interrupt handlers

This is the third part of the chapter about an interrupts and an exceptions handling and in the
previous part we stopped in the setup_arch function from the arch/x86/kernel/setup.c on the
setting of the two exceptions handlers for the two following exceptions:

e 4#pB - debug exception, transfers control from the interrupted process to the debug
handler;
e 8P - breakpoint exception, caused by the int 3 instruction.

These exceptions allow the xse_e64 architecture to have early exception processing for the
purpose of debugging via the kgdb.

As you can remember we set these exceptions handlers in the early trap_init function:

void __init void
{
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
load_idt(&idt_descr);

from the arch/x86/kernel/traps.c. We already saw implementation of the set_intr_gate_ist
and set_system_intr_gate_ist functions in the previous part and now we will look on the
implementation of these early exceptions handlers.

Debug and Breakpoint exceptions

Ok, we set the interrupts gates in the early trap_init function for the #pB and #sp
exceptions and now time is to look on their handlers. But first of all let's look on these
exceptions. The first exceptions - #bB or debug exception occurs when a debug event
occurs, for example attempt to change the contents of a debug register. Debug registers are
special registers which present in processors starting from the Intel 80386 and as you can
understand from its name they are used for debugging. These registers allow to set
breakpoints on the code and read or write data to trace, thus tracking the place of errors.
The debug registers are privileged resources available and the program in either real-
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address or protected mode at cpL is o , that's why we have used set_intr_gate_ist for
the #pB , but notthe set_system_ intr_gate ist . The verctor number of the #pB exceptions
is 1 (we passitas xse_TrRAP_DB ) and has no error code:

The second is #BP or breakpoint exception occurs when processor executes the INT 3
instruction. We can add it anywhere in our code, for example let's look on the simple
program:

#include <stdio.h>

int {
int i;
while (i < 6){
("1 equal to: %d\n", 1i);
_asm__("int3");

++1;

If we will compile and run this program, we will see following output:

$ gcc breakpoint.c -o breakpoint
i equal to: 0
Trace/breakpoint trap

But if will run it with gdb, we will see our breakpoint and can continue execution of our
program:


http://en.wikipedia.org/wiki/INT_%28x86_instruction%29#INT_3

$ gdb breakpoint

(gdb) run
Starting program: /home/alex/breakpoints
i equal to: 0

Program received signal SIGTRAP, Trace/breakpoint trap.

0Xx0000000000400585 in main ()

=> Ox0000000000400585 <main+31>: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1
(gdb) c

Continuing.

i equal to: 1

Program received signal SIGTRAP, Trace/breakpoint trap.

0X0000000000400585 in main ()

=> Ox0000000000400585 <main+31>: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1
(gdb) c

Continuing.

i equal to: 2

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000000000400585 in main ()
=> 0x0000000000400585 <main+31>: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1

Now we know a little about these two exceptions and we can move on to consideration of
their handlers.

Preparation before an interrupt handler
As you can note, the set_intr_gate_ist and set_system_intr_gate_ist functions takes an
addresses of the exceptions handlers in the second parameter:

® &debug ;

® g&int3 .

You will not find these functions in the C code. All that can be found inthe *.c/*.h files only
definition of this functions in the arch/x86/include/asm/traps.h:

asmlinkage void void);
asmlinkage void void);
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But we can see asmlinkage descriptor here. The asmlinkage is the special specificator of
the gcc. Actually fora ¢ functions which are called from assembly, we need in explicit
declaration of the function calling convention. In our case, if function maked with

asmlinkage descriptor,then gcc will compile the function to retrieve parameters from
stack. So, both handlers are defined in the arch/x86/kernel/entry _64.S assembly source
code file with the idtentry macro:

idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

Actually debug and int3 are notinterrupts handlers. Remember that before we can
execute an interrupt/exception handler, we need to do some preparations as:

¢ When an interrupt or exception occurred, the processor uses an exception or interrupt
vector as an index to a descriptor in the 10T ;
¢ |nlegacy mode ss:esp registers are pushed on the stack only if privilege level
changed. In 64-bit mode ss:rsp pushed on the stack everytime;
¢ During stack switching with 1sT the new ss selector is forced to null. Old ss and
rsp are pushed on the new stack.
e The rflags , cs, rip and error code pushed on the stack;
e Control transferred to an interrupt handler;
e After an interrupt handler will finish its work and finishes with the iret instruction, old
ss will be poped from the stack and loaded to the ss register.
e ss:rsp Wwill be popped from the stack unconditionally in the 64-bit mode and will be
popped only if there is a privilege level change in legacy mode.
e iret instruction will restore rip , cs and rflags ;
¢ |nterrupted program will continue its execution.

S +
+40 | Ss |
+32 | rsp |
+24 | rflags |
+16 | cs |
+8 | rip |
0 | error code |

B +

Now we can see on the preparations before a process will transfer control to an
interrupt/exception handler from practical side. As | already wrote above the first thirteen
exceptions handlers defined in the arch/x86/kernel/entry 64.S assembly file with the idtentry
macro:
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.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
ENTRY (\sym)

END(\sym)
.endm

This macro defines an exception entry point and as we can see it takes five arguments:

e sym - defines global symbol with the .globl name .

® do_sym -an interrupt handler.

® has_error_code:req - information about error code, The :req qualifier tells the
assembler that the argument is required;

® paranoid - shows us how we need to check current mode;

e shift_ist - shows us what's stack to use;

As we can see our exceptions handlers are almost the same:

idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

The differences are only in the global name and name of exceptions handlers. Now let's look
how idtentry macro implemented. It starts from the two checks:

.if \shift_ist != -1 && \paranoid ==
.error "using shift_ist requires paranoid=1"
.endif

.if \has_error_code
XCPT_FRAME

.else

INTR_FRAME

.endif

First check makes the check that an exceptions uses 1nterrupt stack table and paranoid
is set, in other way it emits the erorr with the .error directive. The second if clause checks
existence of an error code and calls xcpT_FRAME Or INTR_FRAME macros depends on it.
These macros just expand to the set of CF| directives which are used by enu As to manage
call frames. The cr1 directives are used only to generate dwarf2 unwind information for
better backtraces and they don't change any code, so we will not go into detail about it and
from this point | will skip all code which is related to these directives. In the next step we
check error code again and push it on the stack if an exception has it with the:


https://sourceware.org/binutils/docs/as/Error.html#Error
https://sourceware.org/binutils/docs/as/CFI-directives.html
http://en.wikipedia.org/wiki/DWARF

.ifeq \has_error_code
pushq_cfi $-1
.endif

The pushg cfi macro defined in the arch/x86/include/asm/dwarf2.h and expands to the
pushq instruction which pushes given error code:

.macro pushg_cfi reg
pushqg \reg
CFI_ADJUST_CFA_OFFSET 8
.endm

Pay attention on the s$-1 . We already know that when an exception occurs, the processor
pushes ss, rsp, rflags, cs and rip on the stack:

#define RIP 16*8
#define CS 17*8
#define EFLAGS 18*8
#define RSP 19*8
#define SS 20*8

With the pushg \reg we denote that place before the rip will contain error code of an
exception:

#define ORIG_RAX 15*8

The or1ie_rAx will contain error code of an exception, IRQ number on a hardware interrupt
and system call number on system call entry. In the next step we can see the
ALLOC_PT_GPREGS_ON_STACK macro which allocates space for the 15 general purpose registers
on the stack:

.macro ALLOC_PT_GPREGS_ON_STACK addskip=0
subq $15*8+\addskip, %rsp
CFI_ADJUST_CFA_OFFSET 15*8+\addskip

.endm

After this we check paranoid and if it is set we check first three cpL bits. We compare it
with the 3 and it allows us to know did we come from userspace or not:
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.if \paranoid
.if \paranoid ==
CFI_REMEMBER_STATE
testl $3, CS(%rsp)
jnz 1f
.endif
call paranoid_entry
.else
call error_entry
.endif

If we came from userspace we jump on the label 1 which starts from the call error_entry
instruction. The error_entry saves all registers in the pt_regs structure which presents an
interrupt/exception stack frame and defined in the arch/x86/include/uapi/asm/ptrace.h. It
saves common and extra registers on the stack with the:

SAVE_C_REGS 8
SAVE_EXTRA_REGS 8

from rdi to ri5 and executes swapgs instruction. This instruction provides a method for
the Linux kernel to obtain a pointer to the kernel data structures and save the user's
gsbase . After this we will exit from the error_entry with the ret instruction. After the
error_entry finished to execute, since we came from userspace we need to switch on
kernel interrupt stack:

movqg %rsp,%rdi
call sync_regs

We just save all registers to the error_entry inthe error_entry , we put address of the
pt_regs tothe rdi and call sync_regs function from the arch/x86/kernel/traps.c:

asmlinkage __visible notrace struct pt_regs * struct

{
struct pt_regs *regs = task_pt_regs(current);
*regs = *eregs;
return regs;

This function switchs off the 1sT stack if we came from usermode. After this we switch on
the stack which we got from the sync_regs :

movq %rax,%rsp
movq %rsp,%rdi
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and put pointer of the pt_regs again in the rdi , and in the last step we call an exception
handler:

call \do_sym

So, real exceptions handlers are do_debug and do_int3 functions. We will see these
function in this part, but little later. First of all let's look on the preparations before a
processor will transfer control to an interrupt handler. In another way if paranoid is set, but
itis not 1, we call paranoid_entry which makes almost the same that error_entry , but it
checks current mode with more slow but accurate way:

ENTRY (paranoid_entry)
SAVE_C_REGS 8
SAVE_EXTRA_REGS 8

movl $MSR_GS_BASE, %ecx

rdmsr

testl %edx, %edx

js 1f /* negative -> in kernel */
SWAPGS

ret

END(paranoid_entry)

If edx will be negative, we are in the kernel mode. As we store all registers on the stack,
check that we are in the kernel mode, we need to setup 1st stack if it is set for a given
exception, call an exception handler and restore the exception stack:

.if \shift_ist != -1
subgq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
.endif

call \do_sym

Lif \shift_ist != -1
addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
.endif

The last step when an exception handler will finish it's work all registers will be restored from
the stack with the RESTORE_C_REGS and RESTORE_EXTRA_REGS macros and control will be
returned an interrupted task. That's all. Now we know about preparation before an
interrupt/exception handler will start to execute and we can go directly to the implementation
of the handlers.



Implementation of ainterrupts and exceptions
handlers

Both handlers do_debug and do_int3 defined in the arch/x86/kernel/traps.c source code
file and have two similar things: All interrupts/exceptions handlers marked with the
dotraplinkage prefix that expands to the:

#define dotraplinkage __ visible
#define _ visible _ attribute__ ((externally_visible))

which tells to compiler that something else uses this function (in our case these functions are
called from the assembly interrupt preparation code). And also they takes two parameters:

e pointer to the pt_regs structure which contains registers of the interrupted task;
e error code.

First of all let's consider do_debug handler. This function starts from the getting previous
state with the ist_enter function from the arch/x86/kernel/traps.c. We call it because we
need to know, did we come to the interrupt handler from the kernel mode or user mode.

prev_state = ist_enter(regs);

The ist_enter function returns previous state context state and executes a couple
preprartions before we continue to handle an exception. It starts from the check of the
previous mode with the user_mode_vm macro. It takes pt_regs structure which contains a
set of registers of the interrupted task and returns 1 if we came from userspace and o if
we came from kernel space. According to the previous mode we execute exception_enter if
we are from the userspace or inform RCU if we are from krenel space:

if (user_mode_vm(regs)) {
prev_state = exception_enter();
} else {
rcu_nmi_enter();
prev_state = IN_KERNEL;

return prev_state;

After this we load the bre debug registers to the dre variable with the call of the
get_debugreg macro from the arch/x86/include/asm/debugreg.h:
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get_debugreg(dr6, 6);
dr6 &= ~DR6_RESERVED;

The bpre debug register is debug status register contains information about the reason for
stopping the #pB or debug exception handler. After we loaded its value to the dre variable
we filter out all reserved bits ( 4:12 bits). In the next step we check dre register and
previous state with the following if condition expression:

if (!dr6 && user_mode_vm(regs))
user_icebp = 1;

If dre does not show any reasons why we caught this trap we set user_icebp to one
which means that user-code wants to get SIGTRAP signal. In the next step we check was it
kmemcheck trap and if yes we go to exit:

if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
goto B

After we did all these checks, we clear the dre register, clear the besuccTLmMsR_BTF flag
which provides single-step on branches debugging, set dre register for the current thread
and increase debug_stack_usage per-cpu) variable with the:

set_debugreg(0, 6);
clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
tsk->thread.debugreg6 = dr6;
debug_stack_usage_inc();

As we saved dre , we can allow irgs:

static inline void struct

{
preempt_count_inc();
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();

more about 1local irq enabled and related stuff you can read in the second part about
interrupts handling in the Linux kernel. In the next step we check the previous mode was
virtual 8086 and handle the trap:
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if (regs->flags & X86_VM_MASK) {
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, X86_TRAP_DB);
preempt_conditional_cli(regs);
debug_stack_usage_dec();
goto ;

ist_exit(regs, prev_state);

If we came not from the virtual 8086 mode, we need to check dre register and previous
mode as we did it above. Here we check if step mode debugging is enabled and we are not
from the user mode, we enabled step mode debugging in the dre copy in the current
thread, set T1rF_sincLE sTEP flag and re-enable Trap flag for the user mode:

if ((dr6 & DR_STEP) && !'user_mode(regs)) {
tsk->thread.debugreg6 &= ~DR_STEP;
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
regs->flags &= ~X86_EFLAGS_TF;

Then we get sicTrRAP signal code:

si _code = get_si_code(tsk->thread.debugreg6);

and send it for user icebp traps:

if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
send_sigtrap(tsk, regs, error_code, si_code);

preempt_conditional _cli(regs);

debug_stack_usage_dec();

ist_exit(regs, prev_state);

In the end we disable irqs , decrease value of the debug_stack_usage and exit from the
exception handler with the ist_exit function.

The second exception handler is do_int3 defined in the same source code file -
arch/x86/kernel/traps.c. Inthe do_int3 we make almost the same that in the do_debug
handler. We get the previous state with the ist_enter , increase and decrease the
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debug_stack_usage per-cpu variable, enable and disable local interrupts. But of course there
is one difference between these two handlers. We need to lock and then sync processor
cores during breakpoint patching.

That's all.

Conclusion

It is the end of the third part about interrupts and interrupt handling in the Linux kernel. We
saw the initialization of the Interrupt descriptor table in the previous part with the #ps and

#BP gates and started to dive into preparation before control will be transferred to an
exception handler and implementation of some interrupt handlers in this part. In the next part
we will continue to dive into this theme and will go next by the setup_arch function and will
try to understand interrupts handling related stuff.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Interrupts and Interrupt Handling. Part 4.

Initialization of non-early interrupt gates

This is fourth part about an interrupts and exceptions handling in the Linux kernel and in the
previous part we saw first early #pbB and #Bp exceptions handlers from the
arch/x86/kernel/traps.c. We stopped on the right after the early trap_init function that
called in the setup_arch function which defined in the arch/x86/kernel/setup.c. In this part
we will continue to dive into an interrupts and exceptions handling in the Linux kernel for

xg86_64 and continue to do it from the place where we left off in the last part. First thing
which is related to the interrupts and exceptions handling is the setup of the #pF or page
fault handler with the early_trap_pf_init function. Let's start from it.

Early page fault handler

The early trap pf_init function defined in the arch/x86/kernel/traps.c. It uses
set_intr_gate macro that fills Interrupt Descriptor Table with the given entry:

void __init void
{
#ifdef CONFIG_X86_64
set_intr_gate(X86_TRAP_PF, page_fault);
#endif

3

This macro defined in the arch/x86/include/asm/desc.h. We already saw macros like this in
the previous part - set_system_intr_gate and set_intr_gate_ist . This macro checks that
given vector number is not greater than 255 (maximum vector number) and calls

_set_gate function as set_system_intr_gate and set_intr_gate_ist did it:

#define set_intr_gate(n, addr)
do {
BUG_ON( (unsigned)n > OXFF);
_set_gate(n, GATE_INTERRUPT, (void *)addr, 0, O,
__KERNEL_CS);
_trace_set_gate(n, GATE_INTERRUPT, (void *)trace_##addr,
0, 0, _ KERNEL_CS);

\
\
\
\
\
\

1 while (o)
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The set_intr_gate macro takes two parameters:

e vector number of a interrupt;
e address of an interrupt handler;

In our case they are:

® X86_TRAP_PF - 14

® page_fault - the interrupt handler entry point.

The xse_Trap_rF is the element of enum which defined in the
arch/x86/include/asm/traprs.h:

enum {

X86_TRAP_PF,

When the early trap_pf_init will be called, the set_intr_gate will be expanded to the call
of the _set_gate which will fill the 1pT with the handler for the page fault. Now let's look on
the implementation of the page fault handler. The page_fault handler defined in the
arch/x86/kernel/entry _64.S assembly source code file as all exceptions handlers. Let's look
on it:

trace_idtentry page_fault do_page_fault has_error_code=1

We saw in the previous part how #pB and #Bp handlers defined. They were defined with
the idtentry macro, but here we can see trace_idtentry . This macro defined in the same
source code file and depends on the conFic_TrRACcING kernel configuration option:

#ifdef CONFIG_TRACING

.macro trace_idtentry sym do_sym has_error_code:req

idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code

.endm

#else

.macro trace_idtentry sym do_sym has_error_code:req

idtentry \sym \do_sym has_error_code=\has_error_code

.endm

#endif
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We will not dive into exceptions Tracing now. If conFIG_TRACING is not set, we can see that
trace_idtentry macro just expands to the normal idtentry . We already saw

implementation of the idtentry macro in the previous part, so let's start from the
page_fault exception handler.

As we can see in the idtentry definition, the handler of the page_fault is do_page_fault
function which defined in the arch/x86/mm/fault.c and as all exceptions handlers it takes two
arguments:

® regs - pt_regs structure that holds state of an interrupted process;
® error_code - error code of the page fault exception.

Let's look inside this function. First of all we read content of the cr2 control register:

dotraplinkage void notrace
struct unsigned long

unsigned long address = read_cr2();

This register contains a linear address which caused page fault . In the next step we make
a call of the exception_enter function from the include/linux/context tracking.h. The

exception_enter and exception_exit are functions from context tracking subsystem in the
Linux kernel used by the RCU to remove its dependency on the timer tick while a processor
runs in userspace. Almost in the every exception handler we will see similar code:

enum ctx_state prev_state;
prev_state = exception_enter();

exception_exit(prev_state);

The exception_enter function checks that context tracking is enabled with the
context_tracking_is_enabled and if it is in enabled state, we get previous context with the
this_cpu_read (more about this cpu_* operations you can read in the Documentation).

After this it calls context_tracking_user_exit function which informs the context tracking that

the processor is exiting userspace mode and entering the kernel:
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static inline enum ctx_state void

{

enum ctx_state prev_ctx;

if ('context_tracking_is_enabled())
return 0;

prev_ctx = this_cpu_read(context_tracking.state);
context_tracking_user_exit();

return prev_ctx;

The state can be one of the:

enum ctx_state {
IN_KERNEL = 0,
IN_USER,

} state;

And in the end we return previous context. Between the exception_enter and
exception_exit we call actual page fault handler:

__do_page_fault(regs, error_code, address);

The _ do_page_fault is defined in the same source code file as do_page_fault -
arch/x86/mm/fault.c. In the beginning of the _ do_page_fault we check state of the
kmemcheck checker. The kmemcheck detects warns about some uses of uninitialized
memory. We need to check it because page fault can be caused by kmemcheck:

if (kmemcheck_active(regs))
kmemcheck_hide(regs);
prefetchw(&mm->mmap_sem);

After this we can see the call of the prefetchw which executes instruction with the same
name which fetches X86 FEATURE_3DNOW to get exclusive cache line. The main purpose
of prefetching is to hide the latency of a memory access. In the next step we check that we
got page fault not in the kernel space with the following condition:

if (unlikely(fault_in_kernel_space(address))) {
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where fault_in_kernel_space iS:

static int unsigned long

{
return address >= TASK_SIZE_MAX;

The TAsk_size_mAax macro expands to the:

#define TASK_SIZE_MAX  ((1UL << 47) - PAGE_SIZE)

or oxeeee7ffffffffeee . Pay attention on unlikely macro. There are two macros in the

Linux kernel:
#define likely(x) _ _builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

You can often find these macros in the code of the Linux kernel. Main purpose of these
macros is optimization. Sometimes this situation is that we need to check the condition of
the code and we know that it will rarely be true or false . With these macros we can tell
to the compiler about this. For example

static int struct struct

{
if (ctx->pos < FIRST_PROCESS_ENTRY) {

int error = proc_readdir(file, ctx);
if (unlikely(error <= 0))
return error;

Here we can see proc_root_readdir function which will be called when the Linux VFS
needs to read the root directory contents. If condition marked with unlikely , compiler
can put false code right after branching. Now let's back to the our address check.
Comparison between the given address and the oxeeee7ffffffffeoe Wwill give us to know,
was page fault in the kernel mode or user mode. After this check we know it. After this
__do_page_fault routine will try to understand the problem that provoked page fault
exception and then will pass address to the appropriate routine. It can be kmemcheck fault,
spurious fault, kprobes fault and etc. Will not dive into implementation details of the page
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fault exception handler in this part, because we need to know many different concepts which
are provided by the Linux kernel, but will see it in the chapter about the memory
management in the Linux kernel.

Back to start_kernel

There are many different function calls after the early trap_pf_init inthe setup_arch
function from different kernel subsystems, but there are no one interrupts and exceptions
handling related. So, we have to go back where we came from - start_kernel function from
the init/main.c. The first things after the setup_arch isthe trap_init function from the
arch/x86/kernel/traps.c. This function makes initialization of the remaining exceptions
handlers (remember that we already setup 3 handlers for the #pe - debug exception, #Bp

- breakpoint exception and #pF - page fault exception). The trap_init function starts from
the check of the Extended Industry Standard Architecture:

#ifdef CONFIG_EISA

void __iomem *p = early_ioremap( ; 4);
if (readl(p) == 'E' + ('I'<<8) + ('S'<<lB) + ('A'<<24))
EISA_bus = 1;

early_iounmap(p, 4);
#endif

Note that it depends on the conFic_E1sAa kernel configuration parameter which represents

EISA support. Here we use early ioremap functionto map 1/0 memory on the page
tables. We use readl function to read first 4 bytes from the mapped region and if they are
equal to ersa string we set E1sa bus to one. In the end we just unmap previously mapped
region. More about early ioremap Yyou can read in the part which describes Fix-Mapped
Addresses and ioremap.

After this we start to fill the 1nterrupt pescriptor Table with the different interrupt gates.
First of all we set #DE or bpivide Error and #NMI Or Non-maskable Interrupt :

set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);

We use set_intr_gate macro to set the interrupt gate for the #pe exception and

set_intr_gate_ist forthe #nmI . You can remember that we already used these macros
when we have set the interrupts gates for the page fault handler, debug handler and etc, you
can find explanation of it in the previous part. After this we setup exception gates for the
following exceptions:
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set_system_intr_gate(X86_TRAP_OF, &overflow);
set_intr_gate(X86_TRAP_BR, bounds);
set_intr_gate(X86_TRAP_UD, invalid_op);
set_intr_gate(X86_TRAP_NM, device_not_available);

Here we can see:

e #0F oOr overflow exception. This exception indicates that an overflow trap occurred
when an special INTO instruction was executed;

® #BR OF BOUND Range exceeded exception. This exception indicates thata BounD-range-
exceed fault occurred when a BOUND instruction was executed;

e #UD Or Invalid opcode exception. Occurs when a processor attempted to execute
invalid or reserved opcode, processor attempted to execute instruction with invalid
operand(s) and etc;

® #NM Or Device Not Available exception. Occurs when the processor tries to execute

x87 FPu floating point instruction while em flag in the control register cre was set.

In the next step we set the interrupt gate for the #pF or bpouble fault exception:

set_intr_gate_ist(X86_TRAP_DF, &double fault, DOUBLEFAULT_STACK);

This exception occurs when processor detected a second exception while calling an
exception handler for a prior exception. In usual way when the processor detects another
exception while trying to call an exception handler, the two exceptions can be handled
serially. If the processor cannot handle them serially, it signals the double-fault or #br
exception.

The following set of the interrupt gates is:

set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
set_intr_gate(X86_TRAP_TS, &invalid_TSS);
set_intr_gate(X86_TRAP_NP, &segment_not_present);
set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
set_intr_gate(X86_TRAP_GP, &general_protection);
set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
set_intr_gate(X86_TRAP_MF, &coprocessor_error);
set_intr_gate(X86_TRAP_AC, &alignment_check);

Here we can see setup for the following exception handlers:

® #CSO Or Coprocessor Segment Overrun - this exception indicates that math coprocessor
of an old processor detected a page or segment violation. Modern processors do not
generate this exception

e 4TS oOr Invalid TsS exception - indicates that there was an error related to the Task
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State Segment.

#NP Or Segment Not Present exception indicates thatthe present flag of a segment
or gate descriptor is clear during attempt to load one of cs, ds, es, fs ,oOr gs
register.

#SS Or stack Fault exception indicates one of the stack related conditions was
detected, for example a not-present stack segment is detected when attempting to load
the ss register.

#GP Or General Protection exception indicates that the processor detected one of a
class of protection violations called general-protection violations. There are many
different conditions that can cause general-protection exception. For example loading
the ss, ds, es, fs,or gs register with a segment selector for a system segment,
writing to a code segment or a read-only data segment, referencing an entry in the

Interrupt Descriptor Table (following an interrupt or exception) that is not an interrupt,
trap, or task gate and many many more.

spurious Interrupt - a hardware interrupt that is unwanted.

#MF OF x87 FPU Floating-Point Error exception caused when the x87 FPU has
detected a floating point error.

#AC Or Alignment check exception Indicates that the processor detected an unaligned
memory operand when alignment checking was enabled.

After that we setup this exception gates, we can see setup of the machine-check exception:

#ifdef CONFIG_X86_MCE

set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);

#endif

Note that it depends on the conFic_xse_mce kernel configuration option and indicates that

the processor detected an internal machine error or a bus error, or that an external agent

detected a bus error. The next exception gate is for the SIMD Floating-Point exception:

set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);

which indicates the processor has detected an sse or sse2 or ssez SIMD floating-point

exception. There are six classes of numeric exception conditions that can occur while

executing an SIMD floating-point instruction:

Invalid operation
Divide-by-zero
Denormal operand
Numeric overflow
Numeric underflow
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¢ |nexact result (Precision)

In the next step we fill the used_vectors array which defined in the
arch/x86/include/asm/desc.h header file and represents bitmap :

DECLARE_BITMAP(used_vectors, NR_VECTORS);

of the first 32 interrupts (more about bitmaps in the Linux kernel you can read in the part
which describes cpumasks and bitmaps)

for (1 = 0; 1 < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors)

where FIRST_EXTERNAL_VECTOR iS:

#define FIRST_EXTERNAL_VECTOR 0x20

After this we setup the interrupt gate for the ia32_syscall and add oxse to the
used_vectors bitmap:

#ifdef CONFIG_IA32_EMULATION
set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
set_bit(IA32_SYSCALL_VECTOR, used_vectors);

#endif

There is conFIG_IA32_EMULATION Kernel configuration option on x86_64 Linux kernels. This
option provides ability to execute 32-bit processes in compatibility-mode. In the next parts
we will see how it works, in the meantime we need only to know that there is yet another
interrupt gate in the 1p7T wWith the vector number oxse . In the next step we maps 1pT to
the fixmap area:

_ set_fixmap(FIX_RO_IDT, _ pa_symbol(idt_table), PAGE_KERNEL_RO);
idt_descr.address = fix_to_virt(FIX_RO_IDT);

and write its address to the idt_descr.address (more about fix-mapped addresses you can
read in the second part of the Linux kernel memory management chapter). After this we can
see the call of the cpu_init function that defined in the arch/x86/kernel/cpu/common.c. This
function makes initialization of the all per-cpu state. In the beginning of the cpu_init we
do the following things: First of all we wait while current cpu is initialized and than we call the

cr4_init_shadow function which stores shadow copy of the cra control register for the
current cpu and load CPU microcode if need with the following function calls:
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wait_for_master_cpu(cpu);
cr4_init_shadow();
load_ucode_ap();

Next we get the Task state segment for the current cpu and orig ist structure which
represents origin Interrupt Stack Table Vvalues with the:

t = &per_cpu(cpu_tss, cpu);
oist = &per_cpu(orig_ist, cpu);

As we got values of the Task state Segment and 1Interrupt Stack Table for the current
processor, we clear following bits in the cr4 control register:

cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);

with this we disable vmss extension, virtual interrupts, timestamp (RDTSC can only be
executed with the highest privilege) and debug extension. After this we reload the clobal

Descriptor Table and Interrupt Descriptor table Wwith the:

switch_to_new_gdt(cpu);
loadsegment(fs, 0);
load_current_idt();

After this we setup array of the Thread-Local Storage Descriptors, configure NX and load
CPU microcode. Now is time to setup and load per-cpu Task State Segments. We are
going in a loop through the all exception stack which is nN_exception_sTacks or 4 and fill it

with Interrupt Stack Tables :

if (loist->ist[0]) {
char *estacks = per_cpu(exception_stacks, cpu);

for (v = 0; v < N_EXCEPTION_STACKS; v++) {
estacks += exception_stack_sizes[v];
oist->ist[v] = t->x86_tss.ist[v] =
(unsigned long)estacks;
if (v == DEBUG_STACK-1)
per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;

As we have filled Task state Segments Wwith the 1Interrupt Stack Tables we can set Tss
descriptor for the current processor and load it with the:
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set_tss_desc(cpu, t);
load_TR_desc();

where set_tss_desc macro from the arch/x86/include/asm/desc.h writes given descriptor to
the Global pescriptor Table oOf the given processor:

#define set_tss_desc(cpu, addr) _ set_tss_desc(cpu, GDT_ENTRY_TSS, addr)
static inline void __set_tss_desc(unsigned cpu, unsigned int entry, void *addr)

{
struct desc_struct *d = get_cpu_gdt_table(cpu);

tss_desc tss;

set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS,
I0_BITMAP_OFFSET + IO_BITMAP_BYTES +
sizeof(unsigned long) - 1);

write_gdt_entry(d, entry, &tss, DESC_TSS);

and 1load_TR desc macro expands to the 1tr or Load Task Register instruction:

#define load_TR_desc() native_load_tr_desc()
static inline void native_load_tr_desc(void)

{
asm volatile("ltr %w@"::"qg" (GDT_ENTRY_TSS*8));

In the end of the trap_init function we can see the following code:

set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);

#ifdef CONFIG_X86_64
(&nmi_idt_table, &idt_table, IDT_ENTRIES * );
set_nmi_gate(X86_TRAP_DB, &debug);
set_nmi_gate(X86_TRAP_BP, &int3);
#endif

Here we copy idt_table tothe nmi_dit _table and setup exception handlers for the #pB
Or Debug exception and #BR OF Breakpoint exception . YOU can remember that we already
set these interrupt gates in the previous part, so why do we need to setup it again? We
setup it again because when we initialized it before in the early trap_init function, the

Task State Segment was not ready yet, but now it is ready after the call of the cpu_init
function.
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That's all. Soon we will consider all handlers of these interrupts/exceptions.

Conclusion

It is the end of the fourth part about interrupts and interrupt handling in the Linux kernel. We
saw the initialization of the Task State Segment in this part and initialization of the different
interrupt handlers as pivide Error , Page Fault exception and etc. You can note that we
saw just initialization stuff, and will dive into details about handlers for these exceptions. In
the next part we will start to do it.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Interrupts and Interrupt Handling. Part 5.

Implementation of exception handlers

This is the fifth part about an interrupts and exceptions handling in the Linux kernel and in
the previous part we stopped on the setting of interrupt gates to the Interrupt descriptor
Table. We did it in the trap_init function from the arch/x86/kernel/traps.c source code file.
We saw only setting of these interrupt gates in the previous part and in the current part we
will see implementation of the exception handlers for these gates. The preparation before an
exception handler will be executed is in the arch/x86/entry/entry _64.S assembly file and
occurs in the idtentry macro that defines exceptions entry points:

idtentry divide_error do_divide_error has_error_c
ode=0

idtentry overflow do_overflow has_error_c
ode=0

idtentry invalid_op do_invalid_op has_error_c
ode=0

idtentry bounds do_bounds has_error_c
ode=0

idtentry device_not_available do_device_not_available has_error_c
ode=0

idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=
0

idtentry invalid_TSS do_invalid_TSS has_error_cod
e=1

idtentry segment_not_present do_segment_not_present has_error_cod
e=1

idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_c
ode=0

idtentry coprocessor_error do_coprocessor_error has_error_cod
e=0

idtentry alignment_check do_alignment_check has_error_cod
e=1

idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_c
ode=0

The idtentry macro does following preparation before an actual exception handler

( do_divide error forthe divide error , do_overflow forthe overflow and etc.) will get
control. In another words the idtentry macro allocates place for the registers (pt_regs
structure) on the stack, pushes dummy error code for the stack consistency if an
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interrupt/exception has no error code, checks the segment selector in the cs segment
register and switches depends on the previous state(userspace or kernelspace). After all of
these preparations it makes a call of an actual interrupt/exception handler:

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
ENTRY (\sym)

call \do_sym

END(\sym)
.endm

After an exception handler will finish its work, the idtentry macro restores stack and
general purpose registers of an interrupted task and executes iret instruction:

ENTRY (paranoid_exit)

RESTORE_EXTRA_REGS
RESTORE_C_REGS
REMOVE_PT_GPREGS_FROM_STACK 8
INTERRUPT_RETURN
END(paranoid_exit)

where INTERRUPT_RETURN iS:

#define INTERRUPT_RETURN jmp native_iret

ENTRY(native_iret)

.global native_irq_return_iret
native_irq_return_iret:

iretq

More about the idtentry macro you can read in the third part of the
http://Oxax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html chapter. Ok, now we
saw the preparation before an exception handler will be executed and now time to look on
the handlers. First of all let's look on the following handlers:

e divide error
e overflow
e invalid op
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e coprocessor_segment_overrun
e invalid_TSS

e segment_not_present

e stack _segment

e alignment_check

All these handlers defined in the arch/x86/kernel/traps.c source code file with the bo_ERrRoOR

macro:
DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
DO_ERROR(X86_TRAP_OF, SIGSEGV, '"overflow", overflow)
DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, '"coprocessor segment overrun', coprocessor_segment_
overrun)
DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(X86_TRAP_NP, SIGBUS, '"segment not present", segment_not_present)
DO_ERROR(X86_TRAP_SS, SIGBUS, ‘'"stack segment", stack_segment)
DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)

As we can see the po_ERROR macro takes 4 parameters:

e \ector number of an interrupt;

¢ Signal number which will be sent to the interrupted process;
e String which describes an exception;

e Exception handler entry point.

This macro defined in the same source code file and expands to the function with the
do_handler Name:

#define DO_ERROR(trapnr, signr, str, name)
dotraplinkage void do_##name(struct pt_regs *regs, long error_code)

{

s s s 7

do_error_trap(regs, error_code, str, trapnr, signr);

Note on the ## tokens. This is special feature - GCC macro Concatenation which
concatenates two given strings. For example, first po_ErRror in our example will expands to
the:

dotraplinkage void do_divide_error(struct pt_regs *regs, long error_code) \

{
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We can see that all functions which are generated by the po_error macro just make a call
of the do_error_trap function from the arch/x86/kernel/traps.c. Let's look on implementation
of the do_error_trap function.

Trap handlers

The do_error_trap function starts and ends from the two following functions:

enum ctx_state prev_state = exception_enter();

exception_exit(prev_state);

from the include/linux/context_tracking.h. The context tracking in the Linux kernel subsystem
which provide kernel boundaries probes to keep track of the transitions between level
contexts with two basic initial contexts: user or kernel . The exception_enter function
checks that context tracking is enabled. After this if it is enabled, the exception_enter reads
previous context and compares it with the conTExT_KERNEL . If the previous context is user ,
we call context_tracking_exit function from the kernel/context tracking.c which inform the
context tracking subsystem that a processor is exiting user mode and entering the kernel
mode:

if (!'context_tracking_is_enabled())
return 0;

prev_ctx = this_cpu_read(context_tracking.state);
if (prev_ctx != CONTEXT_KERNEL)
context_tracking_exit(prev_ctx);

return prev_ctx;

If previous context is non user , we just return it. The pre_ctx has enum ctx_state type
which defined in the include/linux/context tracking state.h and looks as:

enum ctx_state {
CONTEXT_KERNEL = 0,
CONTEXT_USER,
CONTEXT_GUEST,

} state;
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The second function is exception_exit defined in the same include/linux/context_tracking.h
file and checks that context tracking is enabled and call the contert_tracking_enter function
if the previous context was user :

static inline void enum

{

if (context_tracking_is_enabled()) {
if (prev_ctx != CONTEXT_KERNEL)
context_tracking_enter(prev_ctx);

The context_tracking _enter function informs the context tracking subsystem that a
processor is going to enter to the user mode from the kernel mode. We can see the following
code between the exception_enter and exception_exit :

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
NOTIFY_STOP) {
conditional_sti(regs);
do_trap(trapnr, signr, str, regs, error_code,
fill trap_info(regs, signr, trapnr, &info));

First of all it calls the notify die function which defined in the kernel/notifier.c. To get
notified for kernel panic, kernel oops, Non-Maskable Interrupt or other events the caller
needs to insert itself in the notify_die chain and the notify_die function does it. The
Linux kernel has special mechanism that allows kernel to ask when something happens and
this mechanism called notifiers Or notifier chains . This mechanism used for example
for the use hotplug events (look on the drivers/usb/core/notify.c), for the memory hotplug
(look on the include/linux/memory.h, the hotplug_memory_notifier macro and etc...), system
reboots and etc. A notifier chain is thus a simple, singly-linked list. When a Linux kernel
subsystem wants to be notified of specific events, it fills out a special notifier_block
structure and passes it to the notifier_chain_register function. An event can be sent with
the call of the notifier_call chain function. First of all the notify_die function fills
die_args structure with the trap number, trap string, registers and other values:

struct die_args args = {

.regs = regs,
.str = str,
.err = err,

.trapnr = trap,
.signr = sig,
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and returns the result of the atomic_notifier_call_chain function with the die_chain :

static

li

return atomic_notifier_call_chain(&die_chain, val, &args);

which just expands to the atomic_notifier_head sStructure that contains lock and

notifier_block :

struct atomic_notifier_head {
spinlock_t lock;
struct notifier_block _ rcu *head;

};

The atomic_notifier_call chain function calls each function in a notifier chain in turn and
returns the value of the last notifier function called. If the notify _die inthe do_error_trap
does not return NoTIFY_sTor we execute conditional sti function from the
arch/x86/kernel/traps.c that checks the value of the interrupt flag and enables interrupt
depends on it:

static inline void struct

{
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();

more about local irq enable macro you can read in the second part of this chapter. The
next and last call in the do_error_trap isthe do_trap function. First of all the do_trap

function defined the tsk variable which has task_struct type and represents the current
interrupted process. After the definition of the tsk , we can see the call of the
do_trap_no_signal function:

struct task_struct *tsk = current;
if ('do_trap_no_signal(tsk, trapnr, str, regs, error_code))
return;

The do_trap_no_signal function makes two checks:

¢ Did we come from the Virtual 8086 mode;
¢ Did we come from the kernelspace.
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if (v8086_mode(regs)) {

if (luser_mode(regs)) {

return ;

We will not consider first case because the long mode does not support the Virtual 8086
mode. In the second case we invoke fixup_exception function which will try to recover a
fault and die if we can't:

if (!fixup_exception(regs)) {
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
die(str, regs, error_code);

The die function defined in the arch/x86/kernel/dumpstack.c source code file, prints useful
information about stack, registers, kernel modules and caused kernel oops. If we came from
the userspace the do_trap_no_signal function will return -1 and the execution of the

do_trap function will continue. If we passed through the do_trap_no_signal function and
did not exit from the do_trap after this, it means that previous context was - user . Most
exceptions caused by the processor are interpreted by Linux as error conditions, for
example division by zero, invalid opcode and etc. When an exception occurs the Linux
kernel sends a signal to the interrupted process that caused the exception to notify it of an
incorrect condition. So, in the do_trap function we need to send a signal with the given
number ( sicrPe for the divide error, siciLL for the overflow exception and etc...). First of
all we save error code and vector number in the current interrupts process with the filling

thread.error_code and thread_trap_nr :

tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;

After this we make a check do we need to print information about unhandled signals for the
interrupted process. We check that show_unhandled_signals variable is set, that

unhandled_signal function from the kernel/signal.c will return unhandled signal(s) and printk
rate limit:
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#ifdef CONFIG_X86_64
if (show_unhandled_signals && unhandled_signal(tsk, signr) &&

printk_ratelimit()) {

pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
tsk->comm, tsk->pid, str,
regs->ip, regs->sp, error_code);

print_vma_addr (" in ", regs->ip);

pr_cont("\n");

3
#endif

And send a given signal to interrupted process:

force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);

This is the end of the do_trap . We just saw generic implementation for eight different
exceptions which are defined with the po_error macro. Now let's look on another exception
handlers.

Double fault

The next exception is #DbF or bpouble fault . This exception occurs when the processor
detected a second exception while calling an exception handler for a prior exception. We set
the trap gate for this exception in the previous part:

set_intr_gate_ist(X86_TRAP_DF, &double_ fault, DOUBLEFAULT_STACK);

Note that this exception runs on the pouBLEFAULT SsTAck Interrupt Stack Table which has
index- 1:

#define DOUBLEFAULT_STACK 1
The double fault is handler for this exception and defined in the arch/x86/kernel/traps.c.

The double fault handler starts from the definition of two variables: string that describes
exception and interrupted process, as other exception handlers:

static const char str[] "double fault";

struct task_struct *tsk = current;


https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

The handler of the double fault exception split on two parts. The first part is the check which
checks that a faultis a non-1s7 fault on the espfixe4 stack. Actually the iret instruction
restores only the bottom 16 bits when returningto a 16 bit segment. The espfix feature
solves this problem. So if the non-1sT fault on the espfix64 stack we modify the stack to
make it look like General Protection Fault

struct pt_regs *normal_regs = task_pt_regs(current);
memmove (&normal_regs->ip, (void *)regs->sp, 5*8);
ormal_regs->orig_ax = 0;

regs->ip = (unsigned long)general_protection;

regs->sp = (unsigned long)&normal_regs->orig_ax;
return;

In the second case we do almost the same that we did in the previous exception handlers.
The first is the call of the ist_enter function that discards previous context, user in our
case:

ist_enter(regs);

And after this we fill the interrupted process with the vector number of the pouble fault
exception and error code as we did it in the previous handlers:

tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_DF;

Next we print useful information about the double fault (PID number, registers content):

#ifdef CONFIG_DOUBLEFAULT
df_debug(regs, error_code);
#endif

And die:

for (;7)
die(str, regs, error_code);

That's all.

Device not available exception handler
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The next exception is the #Nm or Device not available . The Device not available
exception can occur depending on these things:

e The processor executed an x87 FPU floating-point instruction while the EM flag in
control register cre was set;

e The processor executed a wait oOr fwait instruction whilethe vp and T1s flags of
register cre were set;

e The processor executed an x87 FPU, MMX or SSE instruction while the 1s flagin
control register cre was setand the em flag is clear.

The handler of the pevice not available exception isthe do_device not_available function
and it defined in the arch/x86/kernel/traps.c source code file too. It starts and ends from the
getting of the previous context, as other traps which we saw in the beginning of this part:

enum ctx_state prev_state;
prev_state = exception_enter();

exception_exit(prev_state);

In the next step we check that Fpu is not eager:

BUG_ON(use_eager_fpu());

When we switch into a task or interrupt we may avoid loading the rFpu state. If a task will
use it, we catch Dpevice not Available exception exception. If we loading the rpPu state
during task switching, the Fpu is eager. In the next step we check cre control register on
the em flag which can show usis x87 floating point unit present (flag clear) or not (flag
set):

#ifdef CONFIG_MATH_EMULATION
if (read_crO() & X86_CRO_EM) {
struct math_emu_info info = { };

conditional_sti(regs);
info.regs = regs;
math_emulate(&info);
exception_exit(prev_state);

return;

#endif
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If the x87 floating point unit not presented, we enable interrupts with the conditional sti |,
fill the math_emu_info (defined in the arch/x86/include/asm/math_emu.h) structure with the
registers of an interrupt task and call math_emulate function from the arch/x86/math-
emu/fpu_entry.c. As you can understand from function's name, it emulates xs7 rpu unit
(more about the x87 we will know in the special chapter). In other way, if x86_cre_em flag
is clear which means that x87 rpu unit is presented, we call the fpu_ restore function
from the arch/x86/kernel/fpu/core.c which copies the rpu registers from the fpustate to
the live hardware registers. After this Fpu instructions can be used:

fpu__restore(&current->thread.fpu);

General protection fault exception handler

The next exception is the #GP oOr General protection fault . This exception occurs when
the processor detected one of a class of protection violations called general-protection
violations . It can be:

e Exceeding the segment limit when accessing the cs, ds, es, fs or gs segments;

e lLoadingthe ss, ds, es, fs or gs register with a segment selector for a system
segment.;

¢ Violating any of the privilege rules;

e and other...

The exception handler for this exception is the do_general protection from the
arch/x86/kernel/traps.c. The do_general_protection function starts and ends as other
exception handlers from the getting of the previous context:

prev_state = exception_enter();

exception_exit(prev_state);

After this we enable interrupts if they were disabled and check that we came from the Virtual
8086 mode:

conditional_sti(regs);

if (v8086_mode(regs)) {
local_irqg_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
goto ’
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As long mode does not support this mode, we will not consider exception handling for this
case. In the next step check that previous mode was kernel mode and try to fix the trap. If
we can't fix the current general protection fault exception we fill the interrupted process with
the vector number and error code of the exception and add it to the notify die chain:

if ('user_mode(regs)) {
if (fixup_exception(regs))
goto 2

tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_GP;
if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
die("general protection fault", regs, error_code);
goto B

If we can fix exception we go to the exit label which exits from exception state:

exception_exit(prev_state);

If we came from user mode we send siesecv signal to the interrupted process from user
mode as we did it in the do_trap function:

if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
printk_ratelimit()) {
pr_info("%s[%d] general protection ip:%1lx sp:%lx error:%lx",
tsk->comm, task_pid_nr(tsk),
regs->ip, regs->sp, error_code);
print_vma_addr (" in ", regs->ip);
pr_cont("\n");

force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);

That's all.

Conclusion

It is the end of the fifth part of the Interrupts and Interrupt Handling chapter and we saw
implementation of some interrupt handlers in this part. In the next part we will continue to
dive into interrupt and exception handlers and will see handler for the Non-Maskable
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Interrupts, handling of the math coprocessor and SIMD coprocessor exceptions and many
many more.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Interrupts and Interrupt Handling. Part 6.

Non-maskable interrupt handler

It is sixth part of the Interrupts and Interrupt Handling in the Linux kernel chapter and in the
previous part we saw implementation of some exception handlers for the General Protection
Fault exception, divide exception, invalid opcode exceptions and etc. As | wrote in the
previous part we will see implementations of the rest exceptions in this part. We will see
implementation of the following handlers:

e Non-Maskable interrupt;

e BOUND Range Exceeded Exception;
e Coprocessor exception;

e SIMD coprocessor exception.

in this part. So, let's start.

Non-Maskable interrupt handling

A Non-Maskable interrupt is a hardware interrupt that cannot be ignored by standard
masking techniques. In a general way, a non-maskable interrupt can be generated in either
of two ways:

e External hardware asserts the non-maskable interrupt pin on the CPU.
® The processor receives a message on the system bus or the APIC serial bus with a
delivery mode nwmI .

When the processor receives a nv1i from one of these sources, the processor handles it
immediately by calling the ~v1 handler pointed to by interrupt vector which has number 2
(see table in the first part). We already filled the Interrupt Descriptor Table with the vector
number, address of the nmi interrupt handler and nm1_stack Interrupt Stack Table entry:

set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);

inthe trap_init function which defined in the arch/x86/kernel/traps.c source code file. In
the previous parts we saw that entry points of the all interrupt handlers are defined with the:
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.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
ENTRY (\sym)

END(\sym)
.endm

macro from the arch/x86/entry/entry _64.S assembly source code file. But the handler of the
Non-Maskable interrupts is not defined with this macro. It has own entry point:

ENTRY (nmi)

END(nmi)

in the same arch/x86/entry/entry 64.S assembly file. Lets dive into it and will try to
understand how Non-Maskable interrupt handler works. The nmi handlers starts from the
call of the:

PARAVIRT_ADJUST_EXCEPTION_FRAME

macro but we will not dive into details about it in this part, because this macro related to the
Paravirtualization stuff which we will see in another chapter. After this save the content of the
rdx register on the stack:

pushq %rdx

And allocated check that cs was not the kernel segment when an non-maskable interrupt
occurs:

cmpl $_ KERNEL_CS, 16(%rsp)
jne first_nmi

The _ kerneL_cs macro defined in the arch/x86/include/asm/segment.h and represented
second descriptor in the Global Descriptor Table:

#define GDT_ENTRY_KERNEL_CS 2
#define _ KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
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more about ebT Yyou can read in the second part of the Linux kernel booting process
chapter. If cs is not kernel segment, it means that it is not nested nmr and we jump on the
first_nmi label. Let's consider this case. First of all we put address of the current stack
pointer to the rdx and pushes 1 to the stack inthe first_nmi label:

first_nmi:
movq (%rsp), %rdx
pushqg $1

Why do we push 1 on the stack? As the comment says: we allow breakpoints in NMIs .
On the x86 64, like other architectures, the CPU will not execute another ~m1 until the first

nvI is completed. A w1 interrupt finished with the iret instruction like other interrupts and
exceptions do it. If the ~m1 handler triggers either a page fault or breakpoint or another
exception which are use iret instruction too. If this happens while in nm1 context, the
CPU will leave nvm1 context and a new nvi may come in. The iret used to return from
those exceptions will re-enable nmis and we will get nested non-maskable interrupts. The
problem the w~v1 handler will not return to the state that it was, when the exception
triggered, but instead it will return to a state that will allow new nm1is to preempt the running

nv1i  handler. If another nm1 comes in before the first NMI handler is complete, the new
NMI will write all over the preempted w~mis stack. We can have nested nwis where the
next nm1 is using the top of the stack of the previous w1 . It means that we cannot
execute it because a nested non-maskable interrupt will corrupt stack of a previous non-
maskable interrupt. That's why we have allocated space on the stack for temporary variable.
We will check this variable that it was set when a previous nm1 is executing and clear if it is
not nested nm1 . We push 1 here to the previously allocated space on the stack to denote
that a non-maskable interrupt executed currently. Remember that when and nmr or another
exception occurs we have the following stack frame:

focooooocnonooosoonoaonos +
I SS I
| RSP |
| RFLAGS |
I cs I
| RIP |
focooooocnonooosoonoacnos +

and also an error code if an exception has it. So, after all of these manipulations our stack
frame will look like this:
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sS |
RSP |
RFLAGS |
cs [
RIP [
RDX [

I

In the next step we allocate yet another 40 bytes on the stack:

subq $(5*8), %rsp

and pushes the copy of the original stack frame after the allocated space:

.rept
pushq *3(%rsp)
.endr

with the .rept assembly directive. We need in the copy of the original stack frame. Generally
we need in two copies of the interrupt stack. Firstis copied interrupts stack: saved stack
frame and copied stack frame. Now we pushes original stack frame to the saved stack
frame which locates after the just allocated 40 bytes ( copied stack frame). This stack
frame is used to fixup the copied stack frame that a nested NMI may change. The second -

copied stack frame modified by any nested wmis to let the first nvi know that we
triggered a second w~v1 and we should repeat the first nmx  handler. Ok, we have made
first copy of the original stack frame, now time to make second copy:

addq $(10*8), %rsp

.rept 5

pushq -6*8(%rsp)
.endr

subq $(5*8), %rsp

After all of these manipulations our stack frame will be like this:
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| original SS |
| original Return RSP |
| original RFLAGS |
| original CS |
| original RIP |

| copied SS |
| copied Return RSP |
| copied RFLAGS [
| copied CS [
| copied RIP [

| Saved SS [
| Saved Return RSP [
| Saved RFLAGS [
| Saved CS [
| Saved RIP |

After this we push dummy error code on the stack as we did it already in the previous
exception handlers and allocate space for the general purpose registers on the stack:

pushq $-1
ALLOC_PT_GPREGS_ON_STACK

We already saw implementation of the ALLoc_PT_GREGS_oN_sTAck macro in the third part of
the interrupts chapter. This macro defined in the arch/x86/entry/calling.h and yet another
allocates 120 bytes on stack for the general purpose registers, from the rdi to the ris :

.macro ALLOC_PT_GPREGS_ON_STACK addskip=0
addq $-(15*8+\addskip), %rsp
.endm

After space allocation for the general registers we can see call of the paranoid_entry :

call paranoid_entry

We can remember from the previous parts this label. It pushes general purpose registers on
the stack, reads msr_es Base Model Specific register and checks its value. If the value of
the msr_Gs_BASE is negative, we came from the kernel mode and just return from the
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paranoid_entry , in other way it means that we came from the usermode and need to
execute swapgs instruction which will change user gs with the kernel gs :

ENTRY(paranoid_entry)
cld
SAVE_C_REGS 8
SAVE_EXTRA_REGS 8
movl $1, %ebx
movl $MSR_GS_BASE, %ecx

rdmsr

testl %edx, %edx

js 1f

SWAPGS

xorl %ebx, %ebx
1: ret

END(paranoid_entry)

Note that after the swapgs instruction we zeroed the ebx register. Next time we will check
content of this register and if we executed swapgs than ebx must contain e and 1 in
other way. In the next step we store value of the cr2 control register to the r12 register,
because the nmi handler can cause page fault and corrupt the value of this control
register:

movq %Ccr2, %ri2

Now time to call actual nvi handler. We push the address of the pt_regs tothe rdi ,
error code to the rsi and call the do_nmi handler:

mov(q %rsp, %rdi
mov(q $-1, %rsi
call do_nmi

We will back to the do_nmi little later in this part, but now let's look what occurs after the
do_nmi Wwill finish its execution. After the do_nmi handler will be finished we check the cr2
register, because we can got page fault during do_nmi performed and if we got it we restore

original cr2 , in other way we jump on the label 1 . After this we test content of the ebx
register (remember it must contain o if we have used swapgs instruction and 1 if we
didn't use it) and execute swapGs_UNSAFE_sTAck if it contains 1 or jump to the nmi_restore
label. The swaApPGs_UNSAFE_STACK macro just expands to the swapgs instruction. In the
nmi_restore label we restore general purpose registers, clear allocated space on the stack
for this registers, clear our temporary variable and exit from the interrupt handler with the

INTERRUPT_RETURN Macro:
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movq %Cr2, %rcx
cmpq %rcx, %ri2
je 1f

movq %rl2, %cr2

testl %ebx, %ebx
jnz nmi_restore
nmi_swapgs:
SWAPGS_UNSAFE_STACK
nmi_restore:
RESTORE_EXTRA_REGS
RESTORE_C_REGS
/* Pop the extra iret frame at once */
REMOVE_PT_GPREGS_FROM_STACK 6*8
/* Clear the NMI executing stack variable */
movq $0, 5*8(%rsp)
INTERRUPT_RETURN

where 1INTERRUPT_RETURN is defined in the arch/x86/include/irgflags.h and just expands to the
iret instruction. That's all.

Now let's consider case when another nm1 interrupt occurred when previous w~m1 interrupt
didn't finish its execution. You can remember from the beginning of this part that we've made
a check that we came from userspace and jump on the first_nmi in this case:

cmpl $__ KERNEL_CS, 16(%rsp)
jne first_nmi

Note that in this case it is first nm1 every time, because if the first nm1 catched page fault,
breakpoint or another exception it will be executed in the kernel mode. If we didn't come
from userspace, first of all we test our temporary variable:

cmpl $1, -8(%rsp)
je nested_nmi

and ifitis setto 1 we jump to the nested nmi label. Ifitis not 1 , we testthe 1st stack.
In the case of nested nvmis we check that we are above the repeat_nmi . In this case we
ignore it, in other way we check that we above than end_repeat_nmi and jump on the

nested_nmi_out label.

Now let's look on the do_nmi exception handler. This function defined in the
arch/x86/kernel/nmi.c source code file and takes two parameters:

e address of the pt_regs ;
e error code.
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as all exception handlers. The do_nmi starts from the call of the nmi_nesting preprocess
function and ends with the call of the nmi_nesting_postprocess . The
nmi_nesting_preprocess function checks that we likely do not work with the debug stack and
if we on the debug stack set the update debug_stack per-cpu variable to 1 and call the
debug_stack_set_zero function from the arch/x86/kernel/cpu/common.c. This function
increases the debug_stack use _ctr per-cpu variable and loads new 1Interrupt Descriptor

Table :
static inline void struct
{
if (unlikely(is_debug_stack(regs->sp))) {
debug_stack_set_zero();
this_cpu_write(update_debug_stack, 1);
}
}

The nmi_nesting_postprocess function checks the update_debug stack per-cpu variable
which we set in the nmi_nesting_preprocess and resets debug stack or in another words it
loads origin Interrupt Descriptor Table . After the call of the nmi_nesting preprocess
function, we can see the call of the nmi_enter inthe do_nmi . The nmi_enter increases

lockdep_recursion field of the interrupted process, update preempt counter and informs the
RCU subsystem about nm1 . There is also nmi_exit function that does the same stuff as

nmi_enter , but vice-versa. After the nmi_enter we increase _ nmi_count inthe irqg_stat
structure and call the default_do_nmi function. First of all in the default_do_nmi we check
the address of the previous nmi and update address of the last nmi to the actual:

if (regs->ip == __this_cpu_read(last_nmi_rip))
b2b = ;

else
_ this_cpu_write(swallow_nmi, );

_ this_cpu_write(last_nmi_rip, regs->ip);

After this first of all we need to handle CPU-specific nm1s :

handled = nmi_handle(NMI_LOCAL, regs, b2b);
__this_cpu_add(nmi_stats.normal, handled);

And then non-specific nmis depends on its reason:
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reason = x86_platform.get_nmi_reason();
if (reason & NMI_REASON_MASK) {
if (reason & NMI_REASON_SERR)
pci_serr_error(reason, regs);
else if (reason & NMI_REASON_IOCHK)
io_check_error(reason, regs);

__this_cpu_add(nmi_stats.external, 1);
return;

That's all.

Range Exceeded Exception

The next exception is the Bounp range exceeded exception. The Bounp instruction
determines if the first operand (array index) is within the bounds of an array specified the
second operand (bounds operand). If the index is not within bounds, a Bounp range
exceeded exception or #Br is occurred. The handler of the #Br exception is the

do_bounds function that defined in the arch/x86/kernel/traps.c. The do_bounds handler
starts with the call of the exception_enter function and ends with the call of the

exception_exit

prev_state = exception_enter();

if (notify_die(DIE_TRAP, "bounds", regs, error_code,
X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
goto ;

exception_exit(prev_state);
return;

After we have got the state of the previous context, we add the exception to the notify die
chain and if it will return ~oTIFY_sTor we return from the exception. More about notify chains
and the context tracking functions you can read in the previous part. In the next step we
enable interrupts if they were disabled with the contidional_sti function that checks 1r
flag and call the 1ocal irgq _enable depends on its value:
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conditional_sti(regs);

if ('user_mode(regs))
die("bounds", regs, error_code);

and check that if we didn't came from user mode we send sieseev signal with the die
function. After this we check is MPX enabled or not, and if this feature is disabled we jump
on the exit_trap label:

if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
goto exit_trap;

3

where we execute “do_trap” function (more about it you can find in the previous part):

°C

exit_trap:
do_trap(X86_TRAP_BR, SIGSEGV, '"bounds'", regs, error_code, );
exception_exit(prev_state);

If wpx feature is enabled we check the BnDsTATUS with the get_xsave_field_ptr function
and if it is zero, it means that the mpx was not responsible for this exception:

bndcsr = get_xsave_field_ptr (XSTATE_BNDCSR);
if (!'bndcsr)
goto exit_trap;

After all of this, there is still only one way when wpx is responsible for this exception. We
will not dive into the details about Intel Memory Protection Extensions in this part, but will
see it in another chapter.

Coprocessor exception and SIMD exception

The next two exceptions are x87 FPU Floating-Point Error exception or #vr and SIMD
Floating-Point Exception or #xr . The first exception occurs when the x87 Fpu has
detected floating point error. For example divide by zero, numeric overflow and etc. The
second exception occurs when the processor has detected SSE/SSE2/SSE3 simp floating-
point exception. It can be the same as for the x87 rpu . The handlers for these exceptions
are do_coprocessor_error and do_simd_coprocessor_error are defined in the
arch/x86/kernel/traps.c and very similar on each other. They both make a call of the
math_error function from the same source code file but pass different vector number. The
do_coprocessor_error passes x86_TRAP_MF vector number to the math_error :
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dotraplinkage void struct long

{

enum ctx_state prev_state;

prev_state = exception_enter();
math_error(regs, error_code, X86_TRAP_MF);
exception_exit(prev_state);

and do_simd_coprocessor_error passes x86_TRAP_XF tothe math_error function:

dotraplinkage void

struct long
enum ctx_state prev_state;
prev_state = exception_enter();

math_error(regs, error_code, X86_TRAP_XF);
exception_exit(prev_state);

First of all the math_error function defines current interrupted task, address of its fpu, string

which describes an exception, add it to the notify die chain and return from the exception

handler if it will return NoOTIFY_STOP :

struct task_struct *task = current;

struct fpu *fpu = &task->thread.fpu;

siginfo_t info;

char *str = (trapnr == X86_TRAP_MF) ? "fpu exception"
"simd exception";

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)

return;

After this we check that we are from the kernel mode and if yes we will try to fix an excetpion

with the fixup_exception function. If we cannot we fill the task with the exception's error

code and vector number and die:

if (luser_mode(regs)) {

if (!fixup_exception(regs)) {
task->thread.error_code = error_code;
task->thread.trap_nr = trapnr;
die(str, regs, error_code);

}

return;



If we came from the user mode, we save the fpu state, fill the task structure with the vector
number of an exception and siginfo_t with the number of signal, errno , the address
where exception occurred and signal code:

fpu__save(fpu);

task->thread.trap_nr = trapnr;
task->thread.error_code = error_code;
info.si_signo = SIGFPE;
info.si_errno = 0;

info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
info.si_code = fpu__exception_code(fpu, trapnr);

After this we check the signal code and if it is non-zero we return:

if (!info.si_code)
return;

Or send the siecrPe signal in the end:

force_sig_info(SIGFPE, &info, task);

That's all.

Conclusion

It is the end of the sixth part of the Interrupts and Interrupt Handling chapter and we saw
implementation of some exception handlers in this part, like non-maskable interrupt, SIMD
and x87 FPU floating point exception. Finally we have finsihed with the trap_init function
in this part and will go ahead in the next part. The next our point is the external interrupts
and the early irg_init function from the init/main.c.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Interrupts and Interrupt Handling. Part 7.

Introduction to external interrupts

This is the seventh part of the Interrupts and Interrupt Handling in the Linux kernel chapter
and in the previous part we have finished with the exceptions which are generated by the
processor. In this part we will continue to dive to the interrupt handling and will start with the
external hardware interrupt handling. As you can remember, in the previous part we have
finished with the trap_init function from the arch/x86/kernel/trap.c and the next step is the
call of the early_irg_init function from the init/main.c.

Interrupts are signal that are sent across IRQ or 1nterrupt Request Line by a hardware or
software. External hardware interrupts allow devices like keyboard, mouse and etc, to
indicate that it needs attention of the processor. Once the processor receives the 1nterrupt
Request , it will temporary stop execution of the running program and invoke special routine
which depends on an interrupt. We already know that this routine is called interrupt handler
(or how we will call it 1sR or 1nterrupt Service Routine from this part). The 1sr or

Interrupt Handler Routine can be found in Interrupt Vector table that is located at fixed
address in the memory. After the interrupt is handled processor resumes the interrupted
process. At the boot/initialization time, the Linux kernel identifies all devices in the machine,
and appropriate interrupt handlers are loaded into the interrupt table. As we saw in the
previous parts, most exceptions are handled simply by the sending a Unix signal to the
interrupted process. That's why kernel is can handle an exception quickly. Unfortunately we
can not use this approach for the external hardware interrupts, because often they arrive
after (and sometimes long after) the process to which they are related has been suspended.
So it would make no sense to send a Unix signal to the current process. External interrupt
handling depends on the type of an interrupt:

e 1/0 interrupts;
e Timer interrupts;
e Interprocessor interrupts.

| will try to describe all types of interrupts in this book.

Generally, a handler of an 1/0 interrupt must be flexible enough to service several devices
at the same time. For example in the PCI bus architecture several devices may share the
same 1rQ line. In the simplest way the Linux kernel must do following thing when an 1/0
interrupt occurred:

e Save the value of an 1rQ and the register's contents on the kernel stack;
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e Send an acknowledgment to the hardware controller which is servicing the 1rq line;

e Execute the interrupt service routine (next we will call it 1sr ) which is associated with
the device;

¢ Restore registers and return from an interrupt;

Ok, we know a little theory and now let's start with the early irq init function. The
implementation of the early irq init function is in the kernel/irg/irgdesc.c. This function
make early initialization of the irq desc structure. The irq desc structure is the foundation
of interrupt management code in the Linux kernel. An array of this structure, which has the
same name - irq_desc , keeps track of every interrupt request source in the Linux kernel.
This structure defined in the include/linux/irgdesc.h and as you can note it depends on the

CONFIG_SPARSE_IRQ kernel configuration option. This kernel configuration option enables
support for sparse irqs. The irq desc structure contains many different files:

® irq _common_data - perirg and chip data passed down to chip functions;

® status_use_accessors - contains status of the interrupt source which is combination of
the values from the enum from the include/linux/irg.h and different macros which are
defined in the same source code file;

® kstat_irgs - irq stats per-cpu;

® handle_irq - highlevel irg-events handler;

e action - identifies the interrupt service routines to be invoked when the IRQ occurs;

® irq_count -counter of interrupt occurrences on the IRQ line;

e depth - o ifthe IRQ lineis enabled and a positive value if it has been disabled at
least once;

® last_unhandled - aging timer for unhandled count;

® irgs_unhandled - count of the unhandled interrupts;

® lock -a spinlock used to serialize the accesses to the 1rq descriptor;

® pending _mask - pending rebalanced interrupts;

e owner - an owner of interrupt descriptor. Interrupt descriptors can be allocated from
modules. This field is need to proved refcount on the module which provides the
interrupts;

e and etc.

Of course it is not all fields of the irg_desc structure, because it is too long to describe each
field of this structure, but we will see it all soon. Now let's start to dive into the
implementation of the early irq init function.

Early external interrupts initialization


https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/master/include/linux/irqdesc.h
https://github.com/torvalds/linux/blob/master/include/linux/irq.h
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29

Now, let's look on the implementation of the early irq init function. Note that
implementation of the early irq_init function depends on the conFic_sPArRsE_IRQ kernel
configuration option. Now we consider implementation of the early irg init function when
the conrF1G_spPArRsE_IRQ kernel configuration option is not set. This function starts from the
declaration of the following variables: irq descriptors counter, loop counter, memory node
and the irq_desc descriptor:

int _ _init void
{

int count, i, node = first_online_node;
struct irg_desc *desc;

The node is an online NUMA node which depends on the wmax_numnobes value which
depends on the conFic_NobEs_sHIFT kernel configuration parameter:

#define MAX_NUMNODES (1 << NODES_SHIFT)

#ifdef CONFIG_NODES_SHIFT

#define NODES_SHIFT CONFIG_NODES_SHIFT
#else

#define NODES_SHIFT 0
#endif

As | already wrote, implementation of the first_online node macro depends on the

MAX_NUMNODES Vvalue:

#if MAX_NUMNODES > 1

#define first_online_node first_node(node_states[N_ONLINE])
#else
#define first_online_node 0

The node_states is the enum which defined in the include/linux/nodemask.h and represent
the set of the states of a node. In our case we are searching an online node and it will be o
if MAX_NUMNODES is one or zero. If the max_numnopEs is greater than one, the

node_states[N_ONLINE] Will return 1 andthe first_node macro will be expands to the call
ofthe _ first_node function which will return minimal or the first online node:
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#define first_node(src) _ first_node(&(src))

static inline int __ first_node(const nodemask_t *srcp)

{
return min_t(int, MAX_NUMNODES, find_first_bit(srcp->bits, MAX_NUMNODES));

More about this will be in the another chapter about the numa . The next step after the
declaration of these local variables is the call of the:

init_irqg_default_affinity();

function. The init_irq_default_affinity function defined in the same source code file and
depends on the conrFic_smp kernel configuration option allocates a given cpumask structure
(inour case itis the irq default_affinity ):

#if defined(CONFIG_SMP)
cpumask_var_t irg_default_affinity;

static void __init void

{
alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
cpumask_setall(irq_default_affinity);

}

#else

static void __init void
{

}

#endif

We know that when a hardware, such as disk controller or keyboard, needs attention from
the processor, it throws an interrupt. The interrupt tells to the processor that something has
happened and that the processor should interrupt current process and handle an incoming
event. In order to prevent multiple devices from sending the same interrupts, the IRQ system
was established where each device in a computer system is assigned its own special IRQ so
that its interrupts are unique. Linux kernel can assign certain 1rgs to specific processors.
This is known as swmp IRQ affinity , and it allows you control how your system will respond
to various hardware events (that's why it has certain implementation only if the conrF1c_smp
kernel configuration option is set). After we allocated irq_default_affinity cpumask, we
can see printk output:

printk (KERN_INFO "NR TRQS:%d\n", NR_IRQS);
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which prints NR_IRQS :

~$ dmesg | grep NR_IRQS
[ 1 NR_IRQS:

The n~R_IRgs is the maximum number of the irq descriptors or in another words maximum
number of interrupts. Its value depends on the state of the conFic _xse_10_Apic kernel
configuration option. If the conFic_x86_10_Aric is not set and the Linux kernel uses an old
PIC chip, the NR_IRQs is:

#define NR_IRQS_LEGACY 16

#ifdef CONFIG_X86_IO_APIC

#else
# define NR_IRQS NR_IRQS_LEGACY
#endif

In other way, when the conFic_xse_10_APic kernel configuration option is set, the NrR_IRQs
depends on the amount of the processors and amount of the interrupt vectors:

#define CPU_VECTOR_LIMIT (64 * NR_CPUS)
#define NR_VECTORS 256
#define IO_APIC_VECTOR_LIMIT ( 32 * MAX_IO_APICS )
#define MAX_IO_APICS 128
# define NR_IRQS \
(CPU_VECTOR_LIMIT > IO_APIC_VECTOR_LIMIT ? \
(NR_VECTORS + CPU_VECTOR_LIMIT) : \

(NR_VECTORS + IO_APIC_VECTOR_LIMIT))

We remember from the previous parts, that the amount of processors we can set during
Linux kernel configuration process with the conFic_NR_cPus configuration option:
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File Edit ‘iew Search Terminal Help

.config - Linux/x86 4.2.0-rcl Kernel Configuration
> Processor type and features ——M@™M8M8@™MM8¥ XX ————————————————
Processor type and features

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y=
includes, <N> excludes, <M= modularizes features. Press <Esc=<Esc> to
exit, <?> for Help, </= for Search. Legend: [*] built-in [ ]

FProcessor family (Generic-x86-64) --->
*] Supported processor vendors --->
*] Enable ODMI scanning
]

IBM Calgary I0OMMU support
] Enable Maximum number of SMP Processors and NUMA Nodes
(i) Maximum number of CPUs
[ 1 SMT (Hyperthreading) scheduler support
[*] Multi-core scheduler support
Preemption Model (Voluntary Kernel Preemption (Desktop))
[#] Reroute for broken boot IRQs

< Exit = < Help > < Save > < Load >

In the first case ( cPU_VECTOR_LIMIT > I0_APIC VECTOR_LIMIT ), the NR_IRQs will be 4352 ,in
the second case ( CPU_VECTOR _LIMIT < I0_APIC_VECTOR LIMIT ), the NR_IRQs willbe 768 . In
my case the NR_cpus is 8 as you can see in the my configuration, the cpu_vecTor LIMIT
is 512 and the 10 _APIC VECTOR LIMIT iS 4096 . SO NR_IRQS for my configurationis 4352 :

~$ dmesg | grep NR_IRQS
[ 0.000000] NR_IRQS:4352

In the next step we assign array of the IRQ descriptors to the irq_desc variable which we
defined in the start of the early_irq_init function and calculate count of the irq_desc
array with the ArRrRaY_size macro:

desc = irq_desc;
count = ARRAY_SIZE(irq_desc);

The irq desc array defined in the same source code file and looks like:

struct irg_desc irq_desc[NR_IRQS] _ cacheline_aligned_in_smp = {

[0 ... NR_IRQS-1] = {

.handle_irq = handle_bad_irq,

.depth =1,

.lock = __ RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
}

}

The irq desc is array of the irq descriptors. It has three already initialized fields:



®* handle_irq - as | already wrote above, this field is the highlevel irg-event handler. In
our case it initialized with the handle_bad_irq function that defined in the
kernel/irg/handle.c source code file and handles spurious and unhandled irgs;

e depth - o ifthe IRQ lineis enabled and a positive value if it has been disabled at
least once;

® lock - Aspin lock used to serialize the accesses to the 1rqQ descriptor.

As we calculated count of the interrupts and initialized our irq desc array, we start to fill
descriptors in the loop:

for (1 = 0; 1 < count; i++) {
desc[i].kstat_irgs = alloc_percpu(unsigned int);
alloc_masks(&desc[i], GFP_KERNEL, node);
raw_spin_lock_init(&desc[i].lock);
lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
desc_set_defaults(i, &desc[i], node, );

We are going through the all interrupt descriptors and do the following things:

First of all we allocate percpu variable for the irq kernel statistic with the alloc_percpu
macro. This macro allocates one instance of an object of the given type for every processor
on the system. You can access kernel statistic from the userspace via /proc/stat :

~$ cat /proc/stat

cpu 207907 68 53904 5427850 14394 0 394 0 0 O
cpu® 25881 11 6684 679131 1351 0 18 0 O O

cpul 24791 16 5894 679994 2285 0 24 0 0 0

cpu2 26321 4 7154 678924 664 0 71 0 0 O

Ccpu3 26648 8 6931 678891 414 0 244 0 0 0O

Where the sixth column is the servicing interrupts. After this we allocate cpumask for the
given irq descriptor affinity and initialize the spinlock for the given interrupt descriptor. After
this before the critical section, the lock will be acquired with a call of the raw_spin_lock and
unlocked with the call of the raw_spin_unlock . In the next step we call the

lockdep_set_class macro which set the Lock validator irq_desc_lock_class class for the
lock of the given interrupt descriptor. More about 1ockdep , spinlock and other
synchronization primitives will be described in the separate chapter.

In the end of the loop we call the desc_set_defaults function from the kernel/irg/irgdesc.c.
This function takes four parameters:
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e number of a irq;

¢ interrupt descriptor;

e online nNuvA node;

e owner of interrupt descriptor. Interrupt descriptors can be allocated from modules. This
field is need to proved refcount on the module which provides the interrupts;

and fills the rest of the irq desc fields. The desc_set defaults function fills interrupt
number, irq chip, platform-specific per-chip private data for the chip methods, per-IRQ
data for the irq chip methods and MSI| descriptor for the per irq and irq chip data:

desc->irg_data.irq = irq;
desc->irg_data.chip = &no_irq_chip;
desc->irqg_data.chip_data = 5
desc->irg_data.handler_data = 2
desc->irg_data.msi_desc = 2

The irq_data.chip structure provides general ap1 like the irq_set chip ,
irg_set_irq_type and etc, for the irq controller drivers. You can find it in the kernel/irg/chip.c
source code file.

After this we set the status of the accessor for the given descriptor and set disabled state of
the interrupts:

irg_settings_clr_and_set(desc, ~0, _IRQ _DEFAULT_INIT_FLAGS);
irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);

In the next step we set the high level interrupt handlers to the handle bad_irq which
handles spurious and unhandled irgs (as the hardware stuff is not initialized yet, we set this
handler), set irq desc.desc to 1 which means that an 1rq is disabled, reset count of the
unhandled interrupts and interrupts in general:
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desc->handle_irq = handle_bad_irq;
desc->depth = 1;

desc->irq_count = 0;
desc->irqs_unhandled = 0;
desc->name = ;

desc->owner = owner;

After this we go through the all possible processor with the for each possible cpu helper
and set the «kstat_irgs to zero for the given interrupt descriptor:

for_each_possible_cpu(cpu)
*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;

and call the desc_smp_init function from the kernel/irg/irqgdesc.c that initializes numa node
of the given interrupt descriptor, sets default swp affinity and clears the pending mask of
the given interrupt descriptor depends on the value of the conFIG_GENERIC_PENDING_IRQ
kernel configuration option:

static void struct int

{

desc->irq_data.node = node;
cpumask_copy(desc->irq_data.affinity, irq_default_affinity);
#ifdef CONFIG_GENERIC_PENDING_IRQ
cpumask_clear (desc->pending_mask);
#endif

}

In the end of the early_irq_init function we return the return value of the
arch_early_irq_init function:

return arch_early _irq_init();

This function defined in the kernel/apic/vector.c and contains only one call of the
arch_early_ioapic_init function from the kernel/apic/io_apic.c. As we can understand from
the arch_early ioapic_init function's name, this function makes early initialization of the
I/O APIC. First of all it make a check of the number of the legacy interrupts wit the call of the
nr_legacy_irgs function. If we have no legacy interrupts with the Intel 8259 programmable
interrupt controller we set io_apic_irqs tothe oxffffffffffffffff :
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if (!'nr_legacy_irqgs())
io_apic_irqgs = ~0UL;

After this we are going through the all 1/0 Apics and allocate space for the registers with
the call of the alloc_ioapic_saved_registers

for_each_ioapic(1i)
alloc_ioapic_saved_registers(i);

And in the end of the arch_early ioapic_init function we are going through the all legacy
irgs (from 1rRQe to 1RQ15 ) in the loop and allocate space for the irq cfg which represents
configuration of an irq on the given numa node:

for (1 = 0; 1 < nr_legacy_irqs(); i++) {
cfg = alloc_irqg_and_cfg_at(i, node);
cfg-> = IRQO_VECTOR + i;
cpumask_setall(cfg->domain);

That's all.

Sparse IRQs

We already saw in the beginning of this part that implementation of the early irg_init
function depends on the conFic_spArRse IRQ kernel configuration option. Previously we saw
implementation of the early irq_init function when the conFic_spAarRse 1RQ configuration
option is not set, now let's look on the its implementation when this option is set.
Implementation of this function very similar, but little differ. We can see the same definition of
variables and call of the init_irq default_affinity in the beginning of the early irg_init
function:



#ifdef CONFIG_SPARSE_IRQ

int __init void

{
int i, initcnt, node = first_online_node;
struct irqg_desc *desc;

init_irqg_default_affinity();

#else

But after this we can see the following call:

initcent = arch_probe_nr_irgs();

The arch_probe_nr_irgs function defined in the arch/x86/kernel/apic/vector.c and calculates
count of the pre-allocated irgs and update nr_irgs with its number. But stop. Why there are
pre-allocated irgs? There is alternative form of interrupts called - Message Signaled
Interrupts available in the PCI. Instead of assigning a fixed number of the interrupt request,
the device is allowed to record a message at a particular address of RAM, in fact, the display
on the Local APIC. ms1 permits a deviceto allocate 1, 2, 4, 8, 16 or 32 interrupts
and wmsi-x permits a device to allocate up to 2048 interrupts. Now we know that irqs can
be pre-allocated. More about ms1 will be in a next part, but now let's look on the
arch_probe_nr_irgs function. We can see the check which assign amount of the interrupt
vectors for the each processor in the system to the nr_irgs if it is greater and calculate the
nr which represents number of wms1 interrupts:

int nr_irqs = NR_IRQS;

if (nr_irgs > (NR_VECTORS * nr_cpu_ids))
nr_irqs = NR_VECTORS * nr_cpu_ids;

nr = (gsi_top + nr_legacy_irqs()) + * nr_cpu_ids;

Take a look on the gsi_top variable. Each apic is identified with its own 1p and with the
offset where its 1rqQ starts. It is called es1 base or Global System Interrupt base. So the
gsi_top represents it. We get the clobal system Interrupt base from the MultiProcessor
Configuration Table table (you can remember that we have parsed this table in the sixth part

of the Linux Kernel initialization process chapter).
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After this we update the nr depends on the value of the gsi_top :

#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
if (gsi_top <= NR_IRQS_LEGACY)
nr += * nr_cpu_ids;
else
nr += gsi_top * ;
#endif

Update the nr_irgs ifitless than nr and return the number of the legacy irgs:

if (nr < nr_irqgs)
nr_irqs = nr;

return nr_legacy_irqgs();

3

The next after the arch_probe_nr_irgs is printing information about number of 1Rrgs :

printk (KERN_INFO "NR IRQS:%d nr_irqgs:%d %d\n", NR_IRQS, nr_irqs, initcnt);

We can find it in the dmesg output:

$ dmesg | grep NR_IRQS
[ 0.000000] NR_IRQS:4352 nr_irqs:488 16

After this we do some checks that nr_irqs and initcnt values is not greater than
maximum allowable number of irgs :

if (WARN_ON(nr_irqgs > IRQ_BITMAP_BITS))
nr_irqs = IRQ_BITMAP_BITS;

if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
initcnt = IRQ_BITMAP_BITS;

where 1RrRQ BITMAP_BITS iS equaltothe Nr_1rQs ifthe conFIG_SPARSE_IRQ is not set and
NR_IRQS + 8196 in other way. In the next step we are going over all interrupt descriptors

which need to be allocated in the loop and allocate space for the descriptor and insert to the
irq_desc_tree radix tree:
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for (1 = 0; i < initent; i++) {
desc = alloc_desc(i, node, );
set_bit(i, allocated_irgs);
irg_insert_desc(i, desc);

In the end of the early irq_init function we return the value of the call of the
arch_early irq_init function as we did it already in the previous variant when the
CONFIG_SPARSE_IRQ oOption was not set:

return arch_early irq_init();

That's all.

Conclusion

It is the end of the seventh part of the Interrupts and Interrupt Handling chapter and we
started to dive into external hardware interrupts in this part. We saw early initialization of the

irq_desc structure which represents description of an external interrupt and contains
information about it like list of irq actions, information about interrupt handler, interrupt's
owner, count of the unhandled interrupt and etc. In the next part we will continue to research
external interrupts.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Dive into external hardware interrupts

e Local APIC

e Intel 8259

e PIC

e MultiProcessor Configuration Table
e radix tree

e dmesg
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Interrupts and Interrupt Handling. Part 8.

Non-early initialization of the IRQs

This is the eighth part of the Interrupts and Interrupt Handling in the Linux kernel chapter and
in the previous part we started to dive into the external hardware interrupts. We looked on
the implementation of the early irq init function from the kernel/irg/irqgdesc.c source code
file and saw the initialization of the irq_desc structure in this function. Remind that

irq_desc structure (defined in the include/linux/irgdesc.h is the foundation of interrupt
management code in the Linux kernel and represents an interrupt descriptor. In this part we
will continue to dive into the initialization stuff which is related to the external hardware
interrupts.

Right after the call of the early irq_init function in the init/main.c we can see the call of
the init_1rq function. This function is architecture-specific and defined in the
arch/x86/kernel/irginit.c. The init_1rQ function makes initialization of the vector_irq
percpu variable that defined in the same arch/x86/kernel/irginit.c source code file:

DEFINE_PER_CPU(vector_irg_t, vector_irq) = {
[6 ... NR_VECTORS - 1] = 7
3

and represents percpu array of the interrupt vector numbers. The vector_irq_t defined in
the arch/x86/include/asm/hw_irg.h and expands to the:

typedef int vector_irq_t[NR_VECTORS];

where NR_VECTORs is count of the vector number and as you can remember from the first
part of this chapteritis 256 for the x86 64:

#define NR_VECTORS 256

So, in the start of the init_1rQ function we fill the vecto_irq percpu array with the vector
number of the 1egacy interrupts:
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void _ init init_IRQ(void

{
int i;
for (1 = 0; 1 < nr_legacy_irqgs(); i++)
per_cpu(vector_irqg, 0)[IRQO_VECTOR + i] = 1i;
}

This vector_irq will be used during the first steps of an external hardware interrupt
handling in the do_1rQ function from the arch/x86/kernel/irq.c:

__visible unsigned int __irg_entry do_IRQ(struct

{
irq = __this_cpu_read(vector_irq[ 1),
if ('handle_irq(irqg, regs)) {
}
exiting_irq();
return 1;
}

Why is 1legacy here? Actually all interrupts are handled by the modern |O-APIC controller.
But these interrupts (from oex3e to ex3f ) by legacy interrupt-controllers like Programmable
Interrupt Controller. If these interrupts are handled by the 1/0 apic then this vector space
will be freed and re-used. Let's look on this code closer. First of all the nr_legacy_irgs
defined in the arch/x86/include/asm/i8259.h and just returns the nr_legacy irqgs field from
the 1legacy_pic structure:

static inline int nr_legacy_irqs(void

{

return legacy_pic->nr_legacy_irqs;
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This structure defined in the same header file and represents non-modern programmable
interrupts controller:

struct legacy_pic {
int nr_legacy_irgs;
struct irg_chip *chip;
void (*mask)(unsigned int irq);
void (*unmask)(unsigned int irq);
void (*mask_all)(void);
void (*restore_mask)(void);
void (*init)(int auto_eoi);
int (*irg_pending)(unsigned int irq);
void (*make_irq)(unsigned int irq);

};

Actual default maximum number of the legacy interrupts represented by the ~NR_IRQ LEGACY
macro from the arch/x86/include/asm/irq_vectors.h:

#define NR_IRQS_LEGACY 16

In the loop we are accessing the vecto_irq per-cpu array with the per_cpu macro by the
IRQO_VECTOR + i index and write the legacy vector number there. The 1rQe_vecToR macro
defined in the arch/x86/include/asm/irq_vectors.h header file and expands to the ox3e :

#define FIRST_EXTERNAL_VECTOR 0x20

#define IRQO_VECTOR ( (FIRST_EXTERNAL_VECTOR + 16) & ~15)

Why is ex3e here? You can remember from the first part of this chapter that first 32 vector
numbers from o to 31 are reserved by the processor and used for the processing of
architecture-defined exceptions and interrupts. Vector numbers from ox3e to ox3f are
reserved for the ISA. So, it means that we fill the vector_irq from the 1rQe_vecTor which is
equal to the 32 tothe 1rqe_vector + 16 (before the ox3o ).

In the end of the init_1rRQ function we can see the call of the following function:

x86_init.irgs.intr_init();

from the arch/x86/kernel/x86 init.c source code file. If you have read chapter about the
Linux kernel initialization process, you can remember the xse_init structure. This structure
contains a couple of files which are points to the function related to the platform setup

( x86_64 in our case), for example resources - related with the memory resources,
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mpparse - related with the parsing of the MultiProcessor Configuration Table table and etc.).
As we can see the xse_init also contains the irgs field which contains three following
fields:

struct x86_init_ops x86_init __initdata

{
.irgs = {
.pre_vector_init = init_TISA_irgs,
.intr_init = native_init_1IRQ,
.trap_init = x86_init_noop,
H
3

Now, we are interesting in the native_init_IRQ . As we can note, the name of the
native init_IRQ function contains the native prefix which means that this function is
architecture-specific. It defined in the arch/x86/kernel/irginit.c and executes general
initialization of the Local APIC and initialization of the ISA irgs. Let's look on the
implementation of the native init _1rQ function and will try to understand what occurs
there. The native init_IRQ function starts from the execution of the following function:

X86_init.irgs.pre_vector_init();

As we can see above, the pre_vector_init pointstothe init 1SA irgs function that
defined in the same source code file and as we can understand from the function's name, it
makes initialization of the 1sa related interrupts. The init_1sA_irqs function starts from
the definition of the chip variable which has a irq_chip type:

void _ _init void
{

struct irg_chip *chip = legacy_pic->chip;

The irg_chip structure defined in the include/linux/irq.h header file and represents
hardware interrupt chip descriptor. It contains:

e name - name of a device. Used in the /proc/interrupts :
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$ cat /proc/interrupts

CPUO CPU1 CPU2 CPU3 CPU4 CPU5 CPUG6
CPU7
I0-APIC -edge timer
I0-APIC -edge 18042
I0-APIC -edge rtco

look on the last column;

® (*irg_mask)(struct irq_data *data) - mask an interrupt source;
® (*irq_ ack)(struct irq data *data) - start of a new interrupt;

® (*irg_startup)(struct irq_data *data) - start up the interrupt;

® (*irg_shutdown)(struct irq_data *data) - shutdown the interrupt

and etc.

fields. Note that the irq data structure represents set of the per irq chip data passed down
to chip functions. It contains mask - precomputed bitmask for accessing the chip registers,

irg -interrupt number, hwirq - hardware interrupt number, local to the interrupt domain
chip low level interrupt hardware access and etc.

After this depends on the conFic_xse 64 and conFic_xse6_LocAL_APIC kernel configuration
option call the init_bsp_Apic function from the arch/x86/kernel/apic/apic.c:

#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
init_bsp_APIC();
#endif

This function makes initialization of the APIC of bootstrap processor (or processor which
starts first). It starts from the check that we found SMP config (read more about it in the sixth
part of the Linux kernel initialization process chapter) and the processor has apic :

if (smp_found_config || !cpu_has_apic)
return;

In other way we return from this function. In the next step we call the clear_local Aric
function from the same source code file that shutdowns the local apic (more about it will be
in the chapter about the Advanced Programmable Interrupt controller ) and enable apic of
the first processor by the setting unsigned int value tothe APIC_SPIV_APIC_ ENABLED :
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value = apic_read(APIC_SPIV);
value &= ~APIC_VECTOR_MASK;
value |= APIC_SPIV_APIC_ENABLED;

and writing it with the help of the apic write function:

apic_write(APIC_SPIV, value);

After we have enabled apic for the bootstrap processor, we return to the init_1sA irgs
function and in the next step we initialize legacy Pprogrammable Interrupt controller and set
the legacy chip and handler for the each legacy irq:

legacy_pic->init(0);
for (1 = 0; i < nr_legacy_irqs(); i++)

irq_set_chip_and_handler(i, chip, handle_level irq);

Where can we find init function? The 1legacy_pic defined in the arch/x86/kernel/i8259.c
and it is:

struct legacy_pic *legacy_pic = &default_legacy_pic;

Where the default_legacy_pic iS:

struct legacy_pic default_legacy_pic = {

.init = init_8259A,

The init_s259a function defined in the same source code file and executes initialization of
the Intel 8259 “programmable Interrupt Controller (more about it will be in the separate
chapter about Programmable Interrupt Controllers and APIC ).

Now we can return to the native_init_IRqQ function, afterthe init_1sa_irqgs function
finished its work. The next step is the call of the apic_intr_init function that allocates
special interrupt gates which are used by the SMP architecture for the Inter-processor
interrupt. The alloc_intr_gate macro from the arch/x86/include/asm/desc.h used for the
interrupt descriptor allocation:
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#define alloc_intr_gate(n, addr)
do {
alloc_system_vector(n);

s s s 7

set_intr_gate(n, addr);
} while (0)

As we can see, first of all it expands to the call of the alloc_system vector function that
checks the given vector number in the user_vectors bitmap (read previous part about it)
and if it is not set in the user_vectors bitmap we set it. After this we test that the

first_system_vector is greater than given interrupt vector number and if it is greater we
assign it:

if (!test_bit( , used_vectors)) {

set_bit( , used_vectors);
if (first_system_vector > )
first_system_vector = 7
} else {
BUG();

We already saw the set_bit macro, now let's look on the test _bit and the
first_system_vector . The first test_bit macro defined in the
arch/x86/include/asm/bitops.h and looks like this:

#define test_bit(nr, addr) \
(__builtin_constant_p((nr)) \
? constant_test_bit((nr), (addr)) \

: variable_test_bit((nr), (addr)))

We can see the ternary operator here make a test with the gcc built-in function
__builtin_constant_p tests that given vector number ( nr ) is known at compile time. If
you're feeling misunderstanding of the _ builtin_constant_p , we can make simple test:
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#include <stdio.h>
#define PREDEFINED_VAL 1
int main {

int i = 5;

("_builtin_constant_p(i) is %d\n", _ _builtin_constant_p(i));

("_builtin_constant_p(PREDEFINED_VAL) is %d\n", _ builtin_constant_p(PREDEF

INED_VAL));
("_builtin_constant_p(1600) is %d\n", __builtin_constant_p( ));

return 0;

and look on the result:

$ gcc test.c -o test

$ ./test

__builtin_constant_p(i) is 0
__builtin_constant_p(PREDEFINED_VAL) is 1
__builtin_constant_p(100) is 1

Now | think it must be clear for you. Let's get back to the test_bit macro. If the
__builtin_constant_p Will return non-zero, we call constant_test_bit function:

static inline int constant_test_bit(int const void

{

const u32 *p = (const u32 *)addr;

return ((1UL << (nr & )) & (p[nr >> 5])) I=

and the variable test_bit in other way:

static inline int variable_test_bit(int const void

{
ug8 v;
const u32 *p = (const u32 *)addr;

asm("btl %2,%1; setc %0" : "=qm" (v) : "m" (*p), "Ir" (nr));
return v;

What's the difference between two these functions and why do we need in two different

functions for the same purpose? As you already can guess main purpose is optimization. If

we will write simple example with these functions:



#define CONST 25

int
int nr = ;
variable_test_bit(nr, (int*) );
constant_test_bit(CONST, (int*) )
return 0,

}

and will look on the assembly output of our example we will see following assembly code:

pushq %rbp
mov(q %rsp, %rbp

movl $268435456, %esi

movl $25, %edi
call constant_test_bit

for the constant_test_bit , and:

pushq %rbp
mov(q %rsp, %rbp

subq $16, %rsp
movl $24, -4(%rbp)

mov1l -4(%rbp), %eax
movl $268435456, %esi
movl %eax, %edi

call variable_test_bit

for the variable test _bit . These two code listings starts with the same part, first of all we
save base of the current stack frame in the %rbp register. But after this code for both
examples is different. In the first example we put $268435456 (here the $268435456 is our
second parameter - ox10000000 )to the esi and s$25 (our first parameter) to the edi
register and call constant_test_bit . We put function parameters to the esi and edi
registers because as we are learning Linux kernel for the xse_e4 architecture we use

system vV AMD64 ABI calling convention. All is pretty simple. When we are using predefined
constant, the compiler can just substitute its value. Now let's look on the second part. As you
can see here, the compiler can not substitute value from the nr variable. In this case
compiler must calculate its offset on the program's stack frame. We subtract 16 from the

rsp register to allocate stack for the local variables data and put the $24 (value of the nr
variable) to the rbp with offset -4 . Our stack frame will be like this:
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<- stack grows

After this we put this value to the eax , SO eax register now contains value of the nr . In
the end we do the same that in the first example, we put the s$268435456 (the first parameter
of the variable test bit function) and the value of the eax (value of nr )tothe edi
register (the second parameter of the variable test bit function ).

The next step after the apic_intr_init function will finish its work is the setting interrupt
gates from the FIRST_EXTERNAL_VECTOR Or ox20 tothe ox2s6 :

1 = FIRST_EXTERNAL_VECTOR;

#ifndef CONFIG_X86_LOCAL_APIC
#define first_system_vector NR_VECTORS
#endif

for_each_clear_bit_from(i, used_vectors, first_system_vector) {
set_intr_gate(i, irg_entries_start + * (i - FIRST_EXTERNAL_VECTOR));

But as we are using the for_each_clear_bit_from helper, we set only non-initialized interrupt
gates. After this we use the same for_each_clear_bit_from helper to fill the non-filled
interrupt gates in the interrupt table with the spurious_interrupt :

#ifdef CONFIG_X86_LOCAL_APIC

for_each_clear_bit_from(i, used_vectors, NR_VECTORS)
set_intr_gate(i, spurious_interrupt);

#endif

Where the spurious_interrupt function represent interrupt handler for the spurious
interrupt. Here the used_vectors is the unsigned long that contains already initialized

interrupt gates. We already filled first 32 interrupt vectors in the trap_init function from
the arch/x86/kernel/setup.c source code file:


https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c

for (1 = 0; 1 < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors);

You can remember how we did it in the sixth part of this chapter.

In the end of the native init 1RQ function we can see the following check:

if (lacpi_ioapic && !of_ioapic && nr_legacy_irqgs())
setup_irq(2, &irqg2);

First of all let's deal with the condition. The acpi_ioapic variable represents existence of /0
APIC. It defined in the arch/x86/kernel/acpi/boot.c. This variable set in the

acpi_set_irq model ioapic function that called during the processing Multiple APIC
Description Table . This occurs during initialization of the architecture-specific stuff in the
arch/x86/kernel/setup.c (more about it we will know in the other chapter about APIC). Note
that the value of the acpi_ioapic variable depends on the conFic_AcPI and

CONFIG_x86_LOCAL_APIC Linux kernel configuration options. If these options did not set, this
variable will be just zero:

#define acpi_ioapic 0

The second condition - 10f_ioapic && nr_legacy irgs() checks that we do not use Open
Firmware 1/0 Apic and legacy interrupt controller. We already know about the
nr_legacy_irqs . The second is of_iocapic variable defined in the

arch/x86/kernel/devicetree.c and initialized in the dtb_iocapic_setup function that build
information about apics in the devicetree. Note that of_ioapic variable depends on the
conFic_oF Linux kernel configuration option. If this option is not set, the value of the
of_ioapic Will be zero too:

#ifdef CONFIG_OF
extern int of_ioapic;

#else
#define of_ioapic 0
#endif

If the condition will return non-zero value we call the:
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setup_irq(2, &irq2);

function. First of all about the irq2 . The irq2 isthe irqaction structure that defined in

the arch/x86/kernel/irginit.c source code file and represents 1rq 2 line that is used to query

devices connected cascade:

static struct irgaction irq2 = {

};

.handler = no_action,

.name = "cascade",
.flags = IRQF_NO_THREAD,

Some time ago interrupt controller consisted of two chips and one was connected to second.

The second chip that was connected to the first chip via this 1rq 2 line. This chip serviced

lines from s to 15 and after this lines of the first chip. So, for example Intel 8259A has

following lines:

The

IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ
IRQ

IRQ

o -system time;

1 - keyboard;

2 - used for devices which are cascade connected;
8 -RTC;

9 -reserved,;

10 - reserved;

11 - reserved;

12 - ps/2 Mouse,

13 - COProcessor;

14 - hard drive controller;
1 -reserved;

3 - com2 and cowm4 ;

4 - com1 and coms ;

5 - LPT2 ;

6 - drive controller;

7 - LPT1 .

setup_irq function defined in the kernel/irg/manage.c and takes two parameters:

e vector number of an interrupt;

irgaction structure related with an interrupt.

This function initializes interrupt descriptor from the given vector number at the beginning:

struct irg_desc *desc = irg_to_desc(irq);
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And call the __setup_irq function that setups given interrupt:

chip_bus_lock(desc);

retval = _ _setup_irq(irq, desc, act);
chip_bus_sync_unlock(desc);

return retval;

Note that the interrupt descriptor is locked during _ setup_irg function will work. The

__setup_irg function makes many different things: It creates a handler thread when a
thread function is supplied and the interrupt does not nest into another interrupt thread, sets
the flags of the chip, fills the irgaction structure and many many more.

All of the above it creates /prov/vector_number directory and fills it, but if you are using
modern computer all values will be zero there:

$ cat /proc/irq/2/node
0

$cat /proc/irq/2/affinity_hint
00

cat /proc/irq/2/spurious
count 0

unhandled 0
last_unhandled 0 ms

because probably apic handles interrupts on the our machine.

That's all.

Conclusion

It is the end of the eighth part of the Interrupts and Interrupt Handling chapter and we
continued to dive into external hardware interrupts in this part. In the previous part we
started to do it and saw early initialization of the 1rqs . In this part we already saw non-early
interrupts initialization in the init_1rQ function. We saw initialization of the vector_irq per-
cpu array which is store vector numbers of the interrupts and will be used during interrupt
handling and initialization of other stuff which is related to the external hardware interrupts.

In the next part we will continue to learn interrupts handling related stuff and will see
initialization of the softirgs .

If you have any questions or suggestions write me a comment or ping me at twitter.


http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX

Please note that English is not my first language, And | am really sorry for any
inconvenience. If you find any mistakes please send me PR to linux-insides.
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Interrupts and Interrupt Handling. Part 9.

Introduction to deferred interrupts (Softirq,
Tasklets and Workqueues)

It is the nine part of the Interrupts and Interrupt Handling in the Linux kernel chapter and in
the previous Previous part we saw implementation of the init_1rq from that defined in the
arch/x86/kernel/irginit.c source code file. So, we will continue to dive into the initialization
stuff which is related to the external hardware interrupts in this part.

Interrupts may have different important characteristics and there are two among them:

e Handler of an interrupt must execute quickly;
e Sometime an interrupt handler must do a large amount of work.

As you can understand, it is almost impossible to make so that both characteristics were
valid. Because of these, previously the handling of interrupts was split into two parts:

¢ Top half;
e Bottom half;

Once the Linux kernel was one of the ways the organization postprocessing, and which was
called: the bottom half of the processor, but now it is already not actual. Now this term has
remained as a common noun referring to all the different ways of organizing deferred
processing of an interrupt.The deferred processing of an interrupt suggests that some of the
actions for an interrupt may be postponed to a later execution when the system will be less
loaded. As you can suggests, an interrupt handler can do large amount of work that is
impermissible as it executes in the context where interrupts are disabled. That's why
processing of an interrupt can be split on two different parts. In the first part, the main
handler of an interrupt does only minimal and the most important job. After this it schedules
the second part and finishes its work. When the system is less busy and context of the
processor allows to handle interrupts, the second part starts its work and finishes to process
remaining part of a deferred interrupt.

There are three types of deferred interrupts in the Linux kernel:

® softirgs ,
® tasklets ,

® workqueues ;
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And we will see description of all of these types in this part. As | said, we saw only a little bit
about this theme, so, now is time to dive deep into details about this theme.

Softirgs

With the advent of parallelisms in the Linux kernel, all new schemes of implementation of the
bottom half handlers are built on the performance of the processor specific kernel thread that
called ksoftirqd (will be discussed below). Each processor has its own thread that is called

ksoftirqd/n where the n is the number of the processor. We can see it in the output of
the systemd-cgls util:

$ systemd-cgls -k | grep ksoft
- 3 [ksoftirqd/e]
- 13 [ksoftirqd/1]
- 18 [ksoftirqd/2]
- 23 [ksoftirqd/3]
- 28 [ksoftirqd/4]
- 33 [ksoftirqd/5]
- 38 [ksoftirqd/6]
- 43 [ksoftirqd/7]

The spawn_